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Abstract

Background Electrical activity has a crucial impact on the development and survival of neurons. Numerous recent
studies have shown that noninvasive electrical stimulation (NES) has neuroprotective action in various retinal
disorders.

Objective To systematically review the literature on in vivo studies and provide a comprehensive summary
of the neuroprotective action and the mechanisms of NES on retinal disorders.

Methods Based on the PRISMA guideline, a systematic review was conducted in PubMed, Web of Science, Embase,
Scopus and Cochrane Library to collect all relevant in vivo studies on “the role of NES on retinal diseases” published
up until September 2023. Possible biases were identified with the adopted SYRCLE's tool.

Results Of the 791 initially gathered studies, 21 articles met inclusion/exclusion criteria for full-text review. The results
revealed the neuroprotective effect of NES (involved whole-eye, transcorneal, transscleral, transpalpebral, transorbi-
tal electrical stimulation) on different retinal diseases, including retinitis pigmentosa, retinal degeneration, high-
intraocular pressure injury, traumatic optic neuropathy, nonarteritic ischemic optic neuropathy. NES could effectively
delay degeneration and apoptosis of retinal neurons, preserve retinal structure and visual function with high security,
and its mechanism of action might be related to promoting the secretion of neurotrophins and growth factors,
decreasing inflammation, inhibiting apoptosis. The quality scores of included studies ranged from 5 to 8 points (a total
of 10 points), according to SYRCLE's risk of bias tool.

Conclusion This systematic review indicated that NES exerts neuroprotective effects on retinal disease models
mainly through its neurotrophic, anti-inflammatory, and anti-apoptotic capabilities. To assess the efficacy of NES

in a therapeutic setting, however, well-designed clinical trials are required in the future.

Keywords Noninvasive electrical stimulation (NES), Transcorneal electrical stimulation (TES), Whole-eye electrical
stimulation (WES), Transscleral electrical stimulation (TsES), Transpalpebral electrical stimulation (TpES), Transorbital
electrical stimulation, Neuroprotection, Retina
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(ES) activates the motor neuron cell body, accelerates
axon regeneration, and increases the secretion of ben-
eficial cytokines such as brain-derived neurotrophic fac-
tor (BDNF) [7, 8]. Currently, transcranial ES technology
has been widely used in the treatment of various diseases
related to brain neurons, including cognitive impairment,
schizophrenia, depression, dementia, Parkinson’s disease,
stroke, traumatic brain injury, multiple sclerosis, and
fibromyalgia [9-15]. The primary role of ES in the brain
is to alter the polarity of the neuronal membrane, lead-
ing to a subthreshold shift in membrane potentials at the
resting state to hyperpolarization or depolarization [16].
Neural networks have a more selective response to cur-
rent fields than single neurons, as current flows can inter-
fere with the functional connection, synchronization, and
oscillatory activity of various cortical and subcortical net-
works [17].

Vision is imaged in the brain, the retina and optic
nerve, which receive light stimuli and convert informa-
tion into neural impulses, transmit them to the brain,
are important components of the visual pathway [18].
Published studies have confirmed that after ES, healthy
volunteers experience phosphenes involving the visual
cortex [19], along with observable alterations in visual
functions like vision, visual field, and contrast sensitivity
[20-22]. If ES can influence a healthy visual brain, it has
the potential to restore damaged visual systems as well.

The inner surface of the eye is lined with a type of light-
sensitive tissue called the retina, which is responsible for
the initial stage of visual processing. The retina’s complex
structure and function render it vulnerable to alterations
from any kind of pathological injury [23]. Photorecep-
tors are in charge of detecting various light wavelengths
over a broad spectrum of brightness. As first-order neu-
rons that convert light energy into visual signals, healthy
photoreceptors are critical for vision. In the late stages
of illness, the loss of photoreceptors quickly causes vis-
ual impairment and, ultimately, retinal remodeling since
afferent secondary (bipolar cells) and tertiary (retinal
ganglion cells) retinal neuron signals are lost [24-27].
Retinal degeneration (RD), including retinitis pigmentosa
(RP) and age-related macular degeneration (AMD), typi-
cally shows these pathological alterations.

The health of retinal ganglion cells (RGCs), whose
axons converge to form the optic nerve and provide the
last circuit between retinal processing and higher-level
visual processing in the midbrain and cortex, is another
factor that influences vision in addition to photorecep-
tor health. Damaged RGCs prevent the midbrain from
receiving visual information for processing and interpre-
tation [28]. RGC injury often occurs in diseases such as
glaucoma, anterior ischemic optic neuropathy, and trau-
matic optic neuropathy.
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The current retinal neuroprotection strategies can
be divided into (1) drugs targeting survival pathways,
including anti-apoptotic agents such as tauroursode-
oxycholic acid, steroids, dopamine-related therapies, as
well as growth factors such as ciliary nerve trophic fac-
tor (CNTF) and BDNF; and (2) the rehabilitative meth-
ods that increase endogenous, including physical exercise
and ES [28]. The advantage of the former is that drugs
can target the retina to produce beneficial effects, but
the challenge is how to effectively deliver interventions
to the target tissue. Physical exercise rehabilitation is one
of the latter, with a greater emphasis on neuroprotec-
tive effects on multiple systems, and it has not yet been
fully investigated as a potential intervention for retinal
neuroprotection.

Research on creating an ES treatment for numerous
eye conditions has significantly increased in recent years.
The therapeutic approach is based on electrical current
stimulation of neurons along the visual pathway [29].
Retinal implants (retinal prostheses) are a type of inva-
sive ES that use energy converters to generate electricity
to mimic photoreceptor activities [30]. Retinal prostheses
can be implanted in three locations. Epiretinal prosthe-
ses are anchored to the retinal inner surface and elec-
trically target the ganglion cell layer (GCL). Subretinal
prostheses are inserted between the retina and the retinal
pigment epithelial layer, primarily targeting the retinal
inner nuclear layer. Suprachoroidal prostheses are placed
between the choroid and the sclera to stimulate the ret-
ina from the outside [31]. The retinal implants provide
an innovative method for restoring vision in degenera-
tive retinal diseases. However, several limitations hinder
their clinical advancement, such as the choice of implant
materials, subpar visual quality, and constrained viewing
angles. Especially as an invasive therapy, it carries the risk
of serious complications [32].

In contrast to invasive ES, noninvasive electrical stimu-
lation (NES) through the eyelids, orbit, and cornea has
the benefit of minimal invasion, only touching the skin
and cornea, with only mild adverse reactions reported,
and may have a significant protective effect on the retina.
For instance, transcorneal electrical stimulation (TES)
is a non-invasive neuromodulatory method with posi-
tive effects on the evocation of visual cortical responses
[33]. There is convincing evidence that TES can alter rats’
brain oscillations [34, 35], and molecular evidence dem-
onstrates that TES can stimulate non-visual brain regions
as well [36]. The above favorable characteristics explain
why it has been studied as a potential protective tech-
nique and is widely used in many diseases.

Our current study aimed to (1) evaluate reports on the
neuroprotective effect of noninvasive electrical stimu-
lation on in vivo models of retinal disorders through a
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systematic literature review, and (2) elucidate its poten-
tial mechanisms of action.

Methods

The current systematic review was designed according
to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) [37]. Two independent
researchers participated in the systematic review at each
stage (study search and selection, data extraction, and
risk of bias appraisal).

Searching strategy

Web of Science, PubMed, Embase, Scopus, and the
Cochrane Library were all searched. Two authors inde-
pendently searched all original papers that had been
published up until September, 2023. Only articles in the
English language were taken into consideration due to a
language restriction for the selection. A combination of
medical subject headings (MeSH) and free text terms
were used to identify the diseases and interventions as
follows:

(i) retina OR retinitis pigmentosa OR retinal degen-
eration OR optic nerve OR retinal ganglion cell OR
photoreceptor OR retinal neuroprotective OR retinal
neuron

AND

(ii) noninvasive OR transcorneal OR transscleral OR
transeyelid OR transorbital OR transpalpebral.

AND
(iii) electrical stimulation OR electric stimulation.

The generated reference lists were manually reviewed
to find any potential research that the electronic searches
had neglected. All the articles from these searches were
exported to EndNote X8 with duplicate records deleted,
as well as articles that were not part of in vivo stud-
ies. Articles were first screened by reading titles and
abstracts, and those that were irrelevant or lacked com-
plete text were excluded. The remaining articles were
then screened based on the inclusion and exclusion crite-
ria by reading the full text.

Inclusion and exclusion criteria

The inclusion criteria were considered: (1) animal stud-
ies; (2) studies that focused on the effects and action
mechanisms of NES on retinal diseases; (3) independent
and full-text accessible original data.
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The exclusion criteria were considered: (1) studies
focused on electrical stimulation other than NES; (2)
studies that analyzed the NES effect along with other
treatments without isolated eyes for NES; (3) absence
of control (the control had to be comparable to the eyes
treated with NES).

Data extraction and management

Two investigators performed data collection indepen-
dently using an Excel sheet. Discrepancies were assessed
by consensus, and when they were not initially reached,
the third reviewer was consulted. The following informa-
tion was extracted from each study: study title, author,
year of publication, diseases, animal’s species, sex and
age, types of animal model, number of animals per group
(and number of animals in total if specified), routes and
parameters, frequency and duration, time points, tissues
studied, laboratory techniques, and major findings.

Methodological quality appraisal for included studies

The methodological quality of the included studies was
assessed using the SYRCLE’s risk of bias (RoB) tool, a
RoB tool for animal intervention studies presented by
the Systematic Review Centre for Laboratory Animal
Experimentation (SYRCLE) [38]. It consists of ten items
within six main domains, namely selection bias, perfor-
mance bias, detection bias, attrition bias, reporting bias,
and other sources of bias. The answer for the judgment
of bias was either “YES” to indicate a low risk of bias,
“NO” to indicate a high risk of bias, or “NC” to indicate
an uncertain level of bias because of insufficient informa-
tion. The items judged as “YES” were scored one point,
and the scores of 10 items were added together for the
quality score of each study.

Results

Study inclusion

A total of 791 articles were extracted from the original
retrieval, of which 182 articles appeared in Web of Sci-
ence, 157 in PubMed, 232 in Embase, 161 in Scopus,
and 59 in the Cochrane Library. Next, search filters were
implemented, which excluded 575 articles (449 dupli-
cates, 35 reviews, and 91 conference abstracts). By read-
ing the titles and abstracts, 16 studies unrelated to retinal
diseases, 67 other types of studies, and 89 other irrel-
evant studies were excluded. Thus, 44 articles were read
in their full text. After analyzing these articles, 23 articles
failed for at least 1 criterion and were excluded (in vitro
studies, other electrical stimulation other than NES, and
other focus). Finally, 21 articles were included in the sys-
tematic review [39-59]. The process and results are sum-
marized in Fig. 1.
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Identification of studies via databases

Fig. 1 Flow chart of the results according to the search strategies

Study characteristics

Included studies analyzed NES actions on different reti-
nal injuries: retinal degeneration diseases (9 studies,
including 6 studies themed on RP, 3 studies themed on
RD); high-intraocular pressure injury (H-IOP, 3 studies);
traumatic optic neuropathy: optic nerve crush (ONC, 5
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studies), optic nerve transection (ONT, 3 studies); non-
arteritic ischemic optic neuropathy (NAION, 1 study).
Among all the included studies, transcorneal electri-
cal stimulation was used most frequently (17 studies).
The other 4 studies involved whole-eye electrical stimu-
lation (WES), transscleral electrical stimulation (TSES),
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transpalpebral electrical stimulation (TpES), and tran-
sorbital electrical stimulation, respectively. The majority
of research only used one eye for treatment (15 studies).
The most frequent parameters for ES were stimulation
frequency of 20 Hz (16 studies), the rest ranging from 0.5
to 200 Hz (PPS); pulse duration of 1 ms/phase (9 studies),
the rest ranging from 50 ps to 10 ms/phase; the current
intensity of 100 pA (13 studies), the rest ranging from 4
to 700 pA; time duration of 1 h (13 studies), the rest rang-
ing from 30 s to 6 h. The minimum treatment was only
stimulated once, while the maximum was twice a week,
lasting for 20 weeks.

The studies were conducted on laboratory animals,
which included Sprague—Dawley (SD) rats (5 studies),
Wistar rats (3 studies), Hooded rats (3 studies), Long-
Evans rats (1 study), P23H-1 rhodopsin mutation rats (1
study), Royal College of Surgeons (RCS) rats (1 study),
Rd10 mutant mice (2 studies), C57/BL mice, Rhodopsin
knockout mice (Rho™'~) mice, DBA/2J mice, B6. Cg-Tg
(Thyl-YFP) HJrs/] transgenic mice, Mongolian gerbils,
and Rhodopsin P347L transgenic rabbits (1 study each).
One of the studies used both Thy1l-YFP mice and Hooded
rats.

Animal models of RD (9 studies, including RP) were
induced by different methods, six of which used different
types of genetically engineered animals, including RCS
and P23H-1 rats, Rd10 mice, Rho~/~ mice, and P347L
rabbits; two of these studies used SD rats to establish the
model induced by light damage (2500-16000 1x); another
study established the model by intraperitoneal injection
of N-methyl-N-nitrosourea (MNU) at 60 mg/kg (C57BL
mice). Anterior chamber perfusion (NaCl solution)
was used to establish H-IOP injury models (2 studies),
and another study chose DBA/2] mice as the glaucoma
model. Calibrated forceps crushed optic nerve surgery
(0.1 mm jaw gap, 30 s) was used to establish the ON
trauma model in Wistar, Hooded, and Long-Evans rats,
optic nerve transection was another method (Wistar and
SD rats). In addition, NAION in SD rats was induced by
Rose bengal (RB)-laser induction.

The laboratory techniques involved in the included
articles can be divided into three categories. Electroreti-
nogram (ERG, 10 studies), multi-electrode-array (MEA, 2
studies), visually evoked potentials (VEP, 2 studies), elec-
troencephalography (EEG, ECoG, 2 studies), vision-test
(VIST), optokinetic tracking (OKT), and black-and-white
transition box were utilized for visual function testing.
Immunohistochemistry (IHC, 11 studies) and immuno-
histofluorescence (IF), Fluorogold (FG, 7 studies), and
Oregon Green BAPTA retrograde labeling, hematoxylin—
eosin stain (HE, 4 studies), toluidine blue stain (2 stud-
ies), terminal-deoxynucleotidyl transferase-mediated nick
end labeling (TUNEL, 2 studies), anterograde labeling (2

Page 5 of 28

studies), in vivo confocal neuroimaging (ICON, 3 stud-
ies), and confocal scanning laser ophthalmoscope (CSLO)
were utilized for observing the histopathology and mor-
phology of retinas. Western blot (WB, 6 studies), quan-
titative real-time PCR (qRT-PCR, RT-PCR, or qPCR, 6
studies), and Northern blot were utilized for molecular
biology assays. Details are summarized in Table 1.

Methodological quality

SYRCLE’s tool was used to assess the risk of bias in ani-
mal experiments. The quality scores ranged from 5 to
8 points. Overall, regarding selective bias, 11 studies
(52.38%) mentioned “randomization’, but did not intro-
duce specific approaches, and the rest did not report
sequence generation. While 17 studies (80.95%) reported
comparable baseline characteristics between control and
experimental groups, nevertheless, none study clari-
fied if allocation was concealed. Therefore, selective bias
is the main reason for the deduction of quality scores.
Regarding performance bias, 14 studies (66.67%) made
it clear that the animals were housed in identical feed-
ing conditions, such as the same temperature, humid-
ity, light levels, and reported blinding while performing
the experiments. Regarding detection bias, random out-
come assessment while performing the experiments was
reported for only two studies, but blinding while assess-
ing the outcomes was reported for all studies. Low-risk
bias was captured for all studies in the incomplete out-
come data and the selective outcome reporting item,
although none of these studies reported protocols, this
judgment was validated based on what was reported in
the methods. Eighteen studies (85.71%) were considered
to be low risk in the other bias item, but three studies
were the opposite, they used one eye as the experimental
eye and the other as the control, which could result in a
high risk of bias. The bias risk of in vivo studies is sum-
marized in Table 2.

NES effect on retinal and visual function

Thirteen studies provided functional evaluation of retinas
after treatment with NES. NES not only improves retinal
and visual function in assessments like electrophysiologi-
cal analysis and functional testing, but it also affects the
neurons of cerebral cortex, especially the visual cortex.

NES preserved the function of retinal cells

In different retinal degeneration models (including RP),
NES exhibited varying degrees of protective effects
on retinal and visual function. In RCS rats, the ampli-
tude of ERG b-wave or STR-like negative responses was
greater than that of eyes with sham stimulation in the
TES-treated eyes [39]. However, in the late stage of reti-
nal degeneration (at 9 weeks old), the mean thickness of
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outer nuclear layer (ONL) in the TES-treated eyes was
still thicker, but there was no significant change in the
amplitude of b-wave (by ERG). WES protected the visual
function of P23H-1 rats. Hanif et al. [40] found that over
a period of 17 weeks, the spatial frequency threshold of
WES-treated eyes increased by about 18% in the first
4 weeks, and then maintained a threshold of about 11%
higher than sham’s eyes. In the following weeks 4-17,
the average spatial frequency threshold ratio of WES
rats increased by 7% to 18% (by OKT). Similarly, inner
retinal function, as measured by ERG oscillatory poten-
tials (OPs), showed improved OPs amplitudes at 8 and
12 weeks post-WES.

In rd10 mice [41], an MEA record was used to ana-
lyze the light response of photoreceptors, bipolar cells,
and ganglion cells. Compared to the sham surgery, 100
pA of TsES increased the amplitudes of N1, N2, and P2
waves by 118%, 120%, and 127%, respectively. (the N1
and N2 waves arise from photoreceptors [60, 61] and
P1, P3 waves arise from ON and OFF bipolar cells). TsES
improved the light response of individual RGCs, which
are output neurons that transmit visual signals from the
retina to the brain, TsES mainly improved the signal-to-
noise ratio and sensitivity of RGCs by reducing abnor-
mally high self-discharge. Honghua Yu et al. [46] reported
that TpES effectively improved retinal function in Rho™/~
mice, the marked increases in b-wave amplitudes of
photopic Pho 600, 3-Hz, and 10-Hz flicker (a typical indi-
cator of cone function) were detected in ES-treated eyes
at 1, 2, and 3 weeks after the first ES. However, the effect
of the 7-day ES treatment was temporary, adding an addi-
tional session for 7 consecutive days every other week of
ES prolonged the benefit (by ERG). Moreover, the a- and
b-wave amplitudes of the photopic ERG and the b-wave
amplitudes of the scotopic ERG at higher stimulus inten-
sities were larger in the TES eyes than in the sham eyes of
Tg rabbits, indicating that TES preserved the cone com-
ponents better than rod components, although in Tg rab-
bits the rod components are more affected than the cones
[43].

Similar protective effects have been observed in the
intense light exposure and MNU-induced models of
RD. Post 14 days of light exposure, TES (200 pA, 300
pA) treatment significantly increased the rod photore-
ceptor a-wave amplitudes with stimulation intensities
ranging from—8 dB to 2.5 dB, while b-wave exhibited
higher responses with stimulation intensities rang-
ing from—24 dB to 2.5 dB compared with the control
group (scotopic ERG) [42]. Another study showed that
one week after light exposure, the ERG Vmax of the
TES-treated retinas was higher than that of the sham-
treated retinas [44]. The b-wave implicit time for the rod
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response was lower in the TES-treated retinas compared
with the sham retinas 2 weeks after light damage.

The degree and regions of protection provided by NES
for retinal and visual function are related to the current
intensity. In the MNU-induced RP mice [45], the pho-
topic and scotopic ERG b-wave amplitudes of the ret-
ina treated with 100 and 200 pA TES were significantly
increased, with the 200 pA TES having significantly
higher amplitudes than the 100 pA TES. After quantify-
ing topographic photoreceptor function of TES-treated
retinas, it was found that compared with the normal con-
trol retinas, the central, mid-peripheral, and peripheral
regions of the 200 A TES-treated retinas retained 61.3%,
50.1%, and 41.8% of photoreceptor function, respectively.
The retinas treated with 100 pA TES retained 50.8%,
39.8%, and 31.5% of photoreceptor function in these
three regions, respectively (by MEA). The signal-to-noise
ratio (SNR) was calculated to analyze the efficiency of
visual signal transmission. In MNU-induced RP mice, the
impaired light-induced response and spontaneous hyper-
activity collectively contributed to decreased SNR values.
RGCs in the 200 pA TES-treated retinas could transmit
visual signals much more reliably and economically, due
to the SNR value in the 200 pA retinas being at least two-
fold larger than that in the 100 pA retinas, and 16-fold
larger than that in the sham retinas.

NES protects the retina from damage caused by high
intraocular pressure. The TES-treated retinas had a
50.5% higher ERG b-wave amplitude and a 42.9% higher
PhNR (the first trough following b-wave) amplitude com-
pared to the sham-treated retinas at 1 week after H-IOP
[49]. There was further improvement in b-wave and
PhNR amplitudes, reported 61.8% and 44.1% higher than
that in the sham-treated retinas at 1 month, respectively.
In the ischemic rats model induced by H-IOP [48], the
b-wave amplitudes of scotopic ERG were well preserved
and recovered in the TES-treated retinas. It is worth not-
ing that compared with the control retinas, the b-wave
amplitude of TES-treated retinas immediately increased
significantly, even higher than the normal retinas during
the initial period of dark adaptation on day 7 and almost
entire period of dark adaptation on day 14.

The optic nerve crush immediately attenuated the VEP
amplitude. Ken-Ichiro Miyake et al. [51] found that TES
augmented the VEP that had deteriorated due to the
optic nerve crush. After TES, VEP amplitude significantly
increased and was ~ 200% larger than that immediately
after the crush. The recovery index of VEP in TES-
treated eyes increased to 273% (6 h) and 179% (1 week) of
the value after the crush (by VEP). In addition, TES pro-
tected the visual function of rats from NAION damage.
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The effect of NES on cerebral cortex

Agadagba et al. [47] demonstrated that electrical stimula-
tion of the retina affects not just the neurons in the pri-
mary visual cortex but also appears to activate rodent
prefrontal cortical connection networks. Spontaneous
ECoG was carried out in rd mice to investigate neuro-
modulation of functional and directional connectivity
aspects in both visual and non-visual brain cortices after
short- and long-term retinal electrical stimulation in reti-
nal degeneration. The results showed that extended TES
triggers a long-lasting improvement of coordinated theta,
alpha, and beta waves in rd mice, which exhibits high lev-
els of interregional coherence and connectivity as well as
synchronized phase amplitude coupling characteristics
between theta and gamma oscillations. This sustained
improvement in phase amplitude coupling (PAC), coher-
ence, and directional connectivity was seen in the non-
visual region (prefrontal cortex) of stimulated animals as
well as the visual region (primary visual cortex).

NES effect on retinal histomorphology

Twenty studies observed the protective effect of NES on
retinal histomorphology, which mainly involved photore-
ceptors, RGCs and other retinal cell components.

NES preserved photoreceptors

In different retinal disorder models, NES exhibited vary-
ing degrees and regions of protective effects on pho-
toreceptor histomorphology. In rd10 mice [41], retinal
degeneration resulted in the ONL being thin with only
one layer of soma remaining. TsES improved the survival
rate of rd10 photoreceptor cells, it increased the num-
ber of layers to 2—3, and the thickness of ONL from the
center to the peripheral region slightly thickened at each
location (by IHC). In Rho™'~ mice [46], TpES promoted
photoreceptor survival, the ONL thickness and the num-
ber of cone cells were preserved after ES treatment (by
IHC), and fewer TUNEL + apoptotic photoreceptors in
ES-treated retinas were detected. Assessment for pho-
toreceptor gene expression demonstrated higher levels,
including recoverin, G-opsin, and B-opsin, in ES-treated
retinas (by qPCR).

In Tg rabbits [43], the loss of photoreceptors was maxi-
mum in the visual streak, a band of acute vision across
the retina where the photoreceptor density is highest,
ONL was only found in a row of nuclei loosely arranged,
and the loss of photoreceptors was not significantly dif-
ferent in other regions outside at 12 weeks of age. TES
rescued photoreceptors in the visual streak, the number
of rows of nuclei in the ONL was 2-3 rows; the nuclei
were closely packed in the retina receiving TES, and
the thickness of ONL increased, indicating that the
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neuroprotection of photoreceptors was limited to the
visual streak (by IHC).

The degree and area of protection provided by NES
to photoreceptors are related to current intensity. Com-
pared with 50 pA, the survival of photoreceptors in RCS
rats treated with 100 pA TES was more significant [39].
To determine whether the differences in the thickness
of the ONL were localized or widespread across the ret-
ina, the mean thickness of the ONL was determined at
18 points along the superior—inferior plane of the eye. It
was found that the mean ONL thickness at each point in
the superior and inferior hemispheres of the retinas was
significantly thicker than that of the control retina, indi-
cating that the neuroprotective effect of TES on photo-
receptors may extend throughout the entire retina with
current (by toluidine blue stain).

Tao Ye et al. [45] observed similar results in mice. Since
rod cells account for at least 96% of total photoreceptors
in the mouse retina, ONL thickness mainly indicates rod
integrity and could be considered an indicator of rod
number and vitality. In MNU-induced RP mice, photore-
ceptors in the central region were more sensitive to TES
treatment, compared with the normal control retinas, the
central, mid-peripheral, and peripheral regions of the 200
HA TES-treated retinas retained 57.1%, 46.6%, and 31.7%
of the ONL thickness, respectively. The retinas treated
with 100 pA TES retained 38.1%, 33.0%, and 23.5% of the
ONL thickness in these three regions, respectively (by
HE stain). Besides the rods, TES treatment effectively
saved cone cells. Compared with the normal control reti-
nas, the 200 pA TES-treated retinas retained 55.6% of
cone density, while the 100 pA TES-treated retinas only
retained 36.6% (by IHC).

The TES start time had an impact on the degree of pro-
tection as well. After being exposed to intense light [44],
photoreceptor cell death mainly occurred in the superior
retina, the length of IS/OS (inner segment and outer seg-
ment), and the ONL thickness of photoreceptors were
reduced. At 14 days, only one row of cells remained of
the photoreceptors in the superior hemisphere’s poste-
rior retina, which were most vulnerable to light damage,
and the average ONL thickness was only 34.24% of that
of normal rats (by HE stain). TES-treated retinas showed
a significant preservation of the IS/OS length at 3/4 posi-
tions in the superior retina and partly in the inferior
retina, and the ONL thickness of whole retina was saved
(by TUNEL, HE, and IHC). When compared to acute
pre-TES, which only provided temporary protection
against photoreceptor degeneration after 7 days, chronic
and low-intensity post-TES dramatically enhanced pho-
toreceptor survival up to 14 days following light expo-
sure [42]. Additionally, peripheral retinas as well as the
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superior and inferior central retinas had a neuroprotec-
tive effect following TES (by HE stain).

NES preserved retinal ganglia cells

In different retinal disorder animal models, NES exhib-
ited varying degrees of protective effects on retinal gan-
glia cells and their axons. In the P23H-1 RD rats [40],
the nuclei density in the GCL was visibly increased in
WES-treated retinas, cell density in the RGC layer from
the two superior and two inferior 0.5 mm regions of the
retinal cross sections increased by 17-39%. Similarly, the
total cellular density in the RGC layer from all regions
increased by 14% overall (by toluidine blue stain).

In the ischemic rats model induced by H-IOP [48],
TES retained 75% of the RGCs equivalent to normal rat
retinas on day 7 after ischemic injury, and it was still
able to preserve 60% of the RGCs on day 14. As a com-
parison, the RGC density in the sham surgery group
was only 49% of that of normal rats (by FG retrograde
labeling). Similarly, HE staining showed that TES better
preserved the mean thickness of separate retinal layers,
including the inner limiting membrane to outer limiting
membrane, inner plexiform layer, and ONL (by HE stain).
Lin Fu et al. [49] found that in the TES-treated retinas,
which underwent electrical stimulation twice weekly for
the entire month, there was a 39.2% higher overall RGC
density compared to the sham-treated retinas. The TES
significantly ameliorated secondary cell death after the
acute ocular hypertension (AOH) injury (by IHC). In the
mouse model of glaucoma [50], it was found that more
RGC axons survived in the eyes treated with TES.

In the early stages after optic nerve trauma, NES effec-
tively preserved the morphology and survival of RGCs.
RGC survival following an optic nerve crush was shown
to be greatly improved when TES was used [54]. Early
post-traumatic periods (day 3) revealed RGC death in
untreated animals, while TES-treated retinas appear to
be almost undamaged. This indicates that TES influences
in the early phase of the pathophysiological process.
ICON analysis of the soma size changes in TES-treated
retinas early after axonal trauma showed the absence
of the typical sequence of cell swelling and shrinkage
expected after injury, demonstrating that TES has a sig-
nificant impact on the post-traumatic pathophysiology.
Additionally, in vivo imaging demonstrated that tran-
sorbital ES caused dendritic pruning in surviving neu-
rons during the initial post-ONC period [55]. In contrast,
dendrites in untreated retinas degenerated slowly after
the axonal trauma and neurons died (by ICON). The
hypothesis that cell signaling is eliminated in the remain-
ing neurons was supported by the total loss of VEP. How-
ever, intracellular free calcium imaging revealed that the
cells were still alive despite this indication of “silencing”
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(by Oregon Green BAPTA labeling). Therefore, early
after trauma, complete dendritic stripping following
transorbital ES protects neurons from excitotoxic cell
death by silencing them.

TES would rescue the retinal axons from degeneration
in addition to improving their functional recovery [51].
In TES-treated animals, many labeled fibers on the cen-
tral side of the crushed region were found, a clear fluo-
rescent signal was observed in both the lateral geniculate
nucleus (LGN) and superior colliculus (SC), areas that
are targets of the retinal axons, while these markers were
not found in unstimulated animals. How much tracer had
been transported beyond the crushed region was esti-
mated by calculating the tracer transport index, which
compares the fluorescence intensity on each side of the
crushed region. The value of the index was significantly
higher in the stimulated animals than in the unstimulated
ones (by fluorescent anterograde tracer labeling).

Similar to photoreceptors, the degree of protection
provided by NES to RGCs is related to the repetitions,
current intensity, pulse duration, and stimulation fre-
quency. Daily application of TES significantly promoted
the survival of RGCs after the crush (by FG retrograde
labeling). It promoted regeneration of RGC axons within
a distance of 250 um of the crush site, and the regenera-
tion gradually increased as the number of TES applica-
tions increased (by anterograde labeling) [52]. TES
promoted the survival of RGCs after ONT (by retro-
grade labeling) [58]. Retinas that had received TES had
many more surviving RGCs than those without electrical
stimulation [56]. The increase in the densities of RGCs
depended on the pulse duration of electric current. TES
of 0.5 ms/phase pulse duration significantly increased the
number of RGCs (70% of the normal density). In addi-
tion, TES of 1- and 3-ms/phase pulse duration further
increased the density up to 85% and 83%, respectively,
of normal. The shapes of surviving RGCs were similar to
those of the RGCs in the intact retinas (by FG retrograde
labeling). Takeshi Morimoto et al. [57] confirmed that
the optimal neuroprotective parameters for TES were
pulse duration of 1 and 2 ms/phase, current intensity of
100 and 200 pA, stimulation frequency of 1, 5, and 20 Hz,
more than 30 min of TES was necessary to have a neuro-
protective effect, repeated ES was more neuroprotective
than a single ES. Symmetric pulses without an inter-pulse
interval were most effective (by FG retrograde labeling).

NES protected the survival of RGCs in pathology,
however, this morphological protective effect did not
match its demonstrated functional performance in
some animal models. Petra Henrich-Noack et al. [53]
revealed that ONC significantly decreased the number of
RGCs at 4 weeks after the lesion, more RGCs had died
and the percentage of surviving cells decreased to 8.6%
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compared to baseline. This cell loss was significantly less
pronounced in the TES-treated rats, in which still 28.2%
of the RGCs could be detected (by ICON). However,
improved neuronal survival did not support recovery of
visual function (VIST) nor allow EEG alterations. In the
NAION rats [59], the decreased amplitude in the sco-
topic threshold responses (STR) of ERG of the TES group
was better preserved than in the control group on the
28th day, not on the 14th day after induction, but RGC
survival of the TES group was larger than in the control
group on the 14th and 28th days. The above results mean
that the preservation effect of TES for visual function
could be slightly delayed compared with that for cell sur-
vival (by FG retrograde labeling).

NES effect on other retinal cells

The effects of NES on other retinal components were
mainly concentrated on Miiller cells and microglia cells.
In Rho™'~ mice [46], Miiller cells could be inducted to
proliferate and migrate toward the ONL by NES, whereas
in rare cases they were found to colocalize with the pho-
toreceptor marker recoverin. Two days after ES, Miil-
ler cells exhibited significantly increased expression of
neurogenic signals Sox2, Wntl, Wnt3a, and Wnt7a, as
well as photoreceptor progenitor cell markers Chx10,
Crx, Nr2e3, and Nrl. Two weeks after ES, some Miil-
ler cells could be seen to develop typical photoreceptor
morphology and express mature photoreceptor-specific
marker recoverin. The numbers of cells expressing the
photoreceptor and retinal neuron markers recoverin and
BIII-tubulin in ES-treated cultures showed a significant
increase compared to the sham (by IHC). Therefore, ES
directly stimulates Miiller cells to promote their progeni-
tor cell potential and photoreceptor progeny.

In addition, one week after acute ocular hypertension,
microglia density increased 3.3-fold in the sham-treated
retinas compared with the normal retinas, but only 2.5-
fold in the TES-treated retinas [49]. The microglia cell
density was 1.34 folds higher in the sham-treated retinas
compared to normal retinas at 1 month. Microglia acti-
vation was fully reduced in the TES-treated retinas, and
density was identical to that of normal retinas (by IHC).

Possible neuroprotective mechanisms of NES

Ten studies revealed the potential neuroprotective mech-
anisms of NES on retinal diseases, which mainly involved
neuro-nutrition, anti-inflammatory, anti-apoptosis, and
other effects.

NES effect on neurotrophins and growth factors

The neuroprotective effect of NES on the retina is closely
related to its regulation of neurotrophins, including
CNTE, BDNEF, and basic fibroblast growth factor (bFGF).
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After TES (300 pA) [42], the mRNA levels of both neu-
rotrophic factors CNTF and BDNF were up-regulated
on the first day in the RD rats, CNTF peaked on the
7th day, and BDNF peaked on the 3rd day, both of their
mRNAs decreased to baseline levels, at 14 days (by qRT-
PCR). In which, the expression of CNTF showed a time-
dependent and radial expanding pattern from the GCL to
the outer retina, it was selectively upregulated in Miiller
cells (by IHC). Especially in the retinas treated with 200
nA, where the mRNA levels of BDNF and CNTF were
higher than those in the retinas treated with 100 pA [45].
Such findings suggested that neurotrophic factors BDNF
and CNTF were involved in the TES-induced protective
effects and they were related to the current intensity (by
qRT-PCR).

BDNF involves the preservation of retinal cells dena-
tured by toxic light and ischemic damage. Fibroblast
growth factor 2 (FGF-2), as a mediator for retinal preser-
vation, was associated with upregulation of growth factor
mosaicism. Hanif et al. [40] found that the gene expres-
sion levels of BDNF, and FGF-2 in the retina of P23H-1
rats increased after a sine wave current (4 pA peak to
peak at 5 Hz) WES treatment (by RT-PCR). However,
these changes in gene expression occur quickly, by 1 h
post-WES, and are back to normal by 24 h post-WES.
The survival of RGCs likewise depends on BDNF, phos-
phorylation of the tyrosine kinase receptor B (TrkB) is
an indication of its activity and binding of BDNF. Assraa
Hassan Jassim et al. [50] demonstrated that TES-treated
retinas had significantly greater TrkB phosphorylation
than control retinas. Meanwhile, TES reduced p75NTR
in glaucomatous retinas to a level similar to that of the
healthy retinas (by WB). p75NTR is dysregulated in glau-
coma models and has been shown to induce neuronal
apoptosis. Moreover, ES-induced retinal production of
bFGF contributes to the enhanced proliferative and neu-
rogenic potential of Miiller cells (by qPCR) [46].

NES exerts neuroprotective effects by regulating the
expression of insulin-like growth factor 1 (IGF-1), but it
is related to treatment repetitions. In the GCL and the
outer plexiform layer of the normal rat retina, IGF-1
immunoreactivity was barely detectable [52]. However,
retinal IGF-1 was elevated in the entire retinal layer with
daily TES until day 12, but this was not the case with a
single application. The axonal regeneration by the daily
TES was completely blocked by a specific antagonist
to the IGF-1 receptor, whereas the promotion of RGC
survival was not prevented (by IHC). RT-PCR analysis
showed that the expression level increased for the mRNA
of IGF-1 depending on the pulse duration of the TES
[56]. The expression of IGF-1 mRNA in the retina with
1-ms/phase pulses of TES was higher than that with 0.5-
ms/phase, and this difference was maintained for at least
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1 week. The increase in IGF-1 expression achieved the
same results in WB and Northern blot analyses.

In addition, Takeshi Morimoto et al. [56] showed that
IGF-1 was located in the endfeet of the Miiller cells, and
TES activated the Miiller cells to produce more IGF-1
and release it into the inner retina. Blocking of the IGF-
1R by JB-3 reduced the degree of neuroprotection by TES
on the axotomized RGCs, indicating that TES activates
an intrinsic retinal IGF-1 system that then rescues the
axotomized RGCs (by IHC).

NES effect on inflammatory markers

The retinal protection of NES partially depends on
its anti-inflammatory properties. Inflammation plays
a major role in glaucoma progression. To determine
whether TES impacted the inflammatory response,
immunolabeling for CD3 was used to evaluate whether T
cells had infiltrated the retina, and Microglia were immu-
nolabeled with Ibal [50]. After TES treatment, the num-
ber of CD3+T cells and Ibal + microglia cells notably
decreased. The percent area fraction of inner retina that
was labeled with Ibal + microglia was significantly higher
for control eyes compared to TES-treated eyes (by IHC).
Similarly, Lin Fu et al. [49] demonstrated that after AOH
injury, the protein expression of phosphorylated nuclear
factor-kB-p65 (p-NFkB-p65) in the retina was upregu-
lated 1.67-fold (by WB), the mRNA expression level of
TNF-a was upregulated 2.18-fold (by RT-PCR) com-
pared to normal retina, and Interleukin 6 (IL-6) increased
at both gene and protein levels (by WB, RT-PCR). TES
treatment inhibited the upregulation of these factors.
Meanwhile, the expression level of cyclooxygenase-2
(COX-2) in TES-treated retina was 82.7% lower than that
in the sham-treated retina (by WB), and the anti-inflam-
matory cytokine IL-10 was significantly increased (by
WB, RT-PCR), which was associated with a suppression
of microglia cell activation in TES-treated eyes.

In the normal retina [58], astrocytes and Miiller cells
were in a resting state, ramified microglia were distrib-
uted in a mosaic pattern, with very few amoeboid micro-
glia, and very few Tumor Necrosis Factor-a (TNF-a)
positive cells were detected. Following ONT, Miiller
cells, astrocytes, and microglia were activated, in which
microglia underwent morphological changes, going from
ramified to rod- or ameboid-shaped. TNF-a is a pro-
inflammatory cytokine that is rapidly upregulated and
promotes RGC death after optic nerve injury. TNF-a
was colocalized with ameboid microglia, but not with
rod microglia, astrocytes, or Miiller cells, which indicates
that ameboid microglia are the source of TNF-a after
ONT. However, TES significantly decreased the expres-
sion of TNF-a from ameboid microglia (by IF and WB).
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NES effect on retinal cells apoptosis

NES saves retinal nerve cells by influencing the expres-
sion of apoptotic factors. In the model of light damage
[42], the upregulation of B-cell lymphoma-2 (Bcl-2) and
the downregulation of BCL-2-associated X protein (Bax)
in the retina after TES were related to their neuropro-
tective effects. Bcl-2 increased sharply from 2 h after
TES, reaching its peak at 6-7 h, and remained elevated
for 14 days. Bax was downregulated from post-TES 2 h
(by qRT-PCR, WB). In which, Bcl-2 immunoreactivity
appeared in the end feet and processes of Miiller cells
(by IHC). In MNU-induced RP mice [45], TES down-
regulated the expression levels of Bax and Calpain-2,
Conversely, the expression level of Bcl-2 was upregulated
after TES treatment, indicating that apoptotic-associ-
ated genes were involved in the TES-induced protective
effects against MNU toxicity (by qRT-PCR).

In addition, Hanif et al. [40] revealed a signifi-
cant upregulation of Caspase 3 expression after WES.
Although caspase 3 is frequently associated with the pro-
cess of cell death, it also contributes to cell survival in
mildly stressful situations.

Other effects and mechanisms
Hanif et al. [40] found that glutamine synthetase (GS)
expression appears to rise in response to ES therapy,
which could lead to increased glutamate turnover rates
and reduced susceptibility to glutamate excitotoxic-
ity. Miiller cells were where the majority of GS immu-
noreactivity was found in normal retinas [48]. The
end-feet areas of Miiller cells showed a small increase
in GS immunoreactivity six hours after ischemia in the
sham-stimulated retinas. The strongest immunoreactiv-
ity for GS was reached at the 24th hour as intense immu-
noreactivity moved from the inner limiting membrane to
the outer limiting membrane. Next, it started to decline
on day 7 and continued to do so until it reached nearly
normal levels on day 14 (by IHC). In the ischemic rats
model induced by H-IOP, the GS protein level in TES-
treated retinas began to increase at 6 h after ischemia,
peaked at 24 h, accounting for 322% of the normal ret-
ina, and decreased to near normal levels on the 14th day.
Except for the 14th day after ischemia, the GS expression
levels in TES-treated retinas were significantly higher
than those in the control retinas at each time point.
Moreover, for correct neural signaling, energy homeo-
stasis is crucial, and abnormalities in retinal and optic
nerve metabolism have been seen in the glaucoma D2
model [50]. AMP-kinase (AMPK) is a key metabolic reg-
ulator of ATP availability. In the optic nerve and retina
treated with TES, the pAMPK/AMPK ratio was signifi-
cantly lower than in the control group, indicating that
TES rescued ATP decreased (by WB).
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Discussion

Summary of evidence

There is a great need for neuroprotective therapies for
retinal disease. Ideal neuroprotective techniques increase
the survival of neurons by maintaining their structure
and function [28, 62]. The current study summarized the
retinal protective effect of NES, a kind of relatively safe
physical therapy, which was described in the literature
as a neuroprotective technique capable of ameliorating
the damage of RP, RD, H-IOP, ON trauma, and NAION.
However, all of the abovementioned retinal disorders
have the same pathological alterations, which are abnor-
malities in the structure and function of nerve cells or
other retinal cell components that range from primary to
tertiary neurons. NES frequently targets these underly-
ing causes of many diseases and finally has a therapeu-
tic impact, which has been confirmed by our current
systematic review. The analyzed articles showed that
different animal models of retinal diseases benefit from
different types of NES treatment, both functionally and
structurally.

NES improved retinal and visual function in assess-
ments like electrophysiological analysis and functional
testing, including raised ERG and VEP amplitudes,
improved the average spatial frequency threshold ratio,
increased the signal-to-noise ratio, and affected the con-
nection networks between neurons in the primary vis-
ual cortex and prefrontal cortex. Besides, NES not only
affects the retina and its related functions, but can also
modulate neurons in the brain. Yu et al. [63] found that
TES exerts antidepressant-like effects by improving neu-
roplasticity (including neurogenesis and synaptic plas-
ticity) in the hippocampus and amygdala. Alzheimer’s
disease and aged mice with cognitive dysfunction also
benefit from TES treatment [64].

The functional protections of NES are closely associ-
ated with the structural maintenance of retinal cellular
components. NES saved the thickness of ONL (contains
the nucleus of photoreceptors), the density of cones and
rods, and the length of IS/OS, thus improving cell sur-
vival and protecting the degeneration damage of the
photoreceptors. For RGC injury, NES preserved the cell
density in the RGC layer and reduced cell death while
increasing the viability of their axons. Besides, NES
inhibits the activity of microglia, and promotes the differ-
entiation potential of Miiller cells by directly stimulating
them.

Studies of proteomics and gene expression profiling by
Kanamoto et al. [65] and Willmann et al. [66] found that
the neuroprotective effect of NES may involve a variety
of mechanisms, it stimulates neurotrophic factors and
cell survival pathways by modulating proteins and genes
involved in cellular signaling, neuronal transmission,
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metabolism, and inflammation. The neuroprotective
effect of NES that the current systematic review has dem-
onstrated mainly involves the following aspects: (1) NES
promotes the release of neurotrophin and growth factors
from retina and Miiller cells, including CNTF, BDNE,
FGEF-2, IGF-1, bFGF, and p-TrkB (p-TrkB is an indica-
tion of its activity and binding of BDNEF). Specifically,
NES increased the expression of BDNF and FGF-2 in the
whole retina, and upregulated the levels of CNTF, BDNF,
and IGF-1 in Miller cells. Similar increases in BDNF,
IGF-1, and FGF-2 were found in electrically stimulated
Miiller cell cultures, and the release of the growth factor
was likely due to stimulation of L-type voltage-dependent
calcium channels [67-69]. NES-induced retinal produc-
tion of bFGF contributes to protecting the survival of
retinal cells while enhancing the proliferation and neuro-
genic potential of Miiller cells. Furthermore, NES could
attenuate glutamate-mediated excitotoxicity by increas-
ing the level of GS in Miiller cells. (2) NES inhibits the
activation of microglia and exerts anti-inflammatory
effects. The anti-inflammatory properties of NES are
mainly achieved by downregulating p-NFkB-p65, TNE-q,
IL-6, and COX-2, as well as upregulating the expression
of cytokine IL-10. (3) NES prevents apoptosis of retinal
ganglion cells and photoreceptors. It exerts an anti-apop-
totic role by downregulating Bax, Calpain-2, and p75NT¥,
and upregulating Bcl-2. Additionally, NES improved
energy homeostasis by reducing the pAMPK/AMPK
ratio. The main categories and potential neuroprotective
mechanisms of NES are shown in Fig. 2.

In summary, NES plays a neuroprotective role in the
structure and function of the retina by promoting neuro-
nutrition, reducing inflammation, and inhibiting cell
apoptosis; almost no adverse effects in the included ani-
mal studies were reported. The results provide sufficient
evidence for further clinical studies.

NES as a potential clinical technique
Bringing NES therapy to clinic
For multiple retinal neurodegenerative diseases, NES
therapy has been applied to clinical practice [70-72].
At present, there are 11 NES trials (including RP and
RD) listed on clinicaltrials.gov [73]. There are also small
sample clinical reports on NES treatment for AMD,
and diseases mainly characterized by damage to RGCs
(glaucoma, nonarteritic ischemic optic neuropathy, or
traumatic optic neuropathy) [74—76]. These patient pop-
ulations may all benefit from the treatment of NES. As
one of the attractive candidates, rapidly translating NES
into the clinic is a goal for the future. However, some
issues need to be taken seriously.

Generally, starting NES therapy at the earliest stage
of the disease will most effectively delay progression. In
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animal experiments, treatment can be initiated imme-
diately after model building. However, in the clinical
setting, visual loss is usually detected months to years
after the onset of retinal disease, and the chance of sig-
nificantly preventing visual loss is minimal when treat-
ment is initiated in the middle or late stages of retinal
disease. Several studies have used TES in patients with
long-term visual loss due to retinal artery occlusion and
reaped some benefits, but whether these results can be
improved by early treatment or by an optimized stimula-
tion paradigm is unclear [77, 78]. Thus, early screening
and intervention for retinal disease may contribute to the
clinical translation of NES. Besides, retinal diseases pro-
gress very slowly, the intended target of NES is to slow or
halt the progression of the disease. To make measurable
differences in the control group compared to the NES
group, the study design requires following the subjects
for a sufficient length of time, with careful consideration
of the potential diversity of the patient population or dis-
ease status (subtype, stage), and a reasonable selection of
appropriate outcome measures [28].

In the current neuroprotective strategies, the targeted
survival pathway drugs (anti-apoptotic agents, growth
factors) can be targeted to the retina to produce benefi-
cial effects, but how to effectively deliver the intervention
to the target tissue is a problem. NES, as a rehabilitation
therapy, extensively regulates the retina by directly stimu-
lating the eye and thus activating the endogenous repair
mechanisms. Each of these strategies has the potential to
be used in several different retinal diseases, and through
specific or multiple pathways, resulting in increased reti-
nal neuronal survival and preservation of visual func-
tion. However, there is a lack of studies combining two
or more strategies, including matching ES with targeted
survival drugs. Osaka et al. [59] reported the benefits of
steroids or TES on anatomic changes and visual function
in a rat model of nonarteritic ischemic optic neuropathy,
and determined that the two treatments may be comple-
mentary, steroids are effective for reducing disc edema,
while TES is effective for preserving RGCs function
and structure. Unfortunately, they did not test the two
treatments together, but this study still gives us inspira-
tion: study designs targeting multiple combinations of
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neuroprotective strategies need to be considered in the
future.

Optimization of parameters

The types and parameters of NES are particularly impor-
tant for the implementation of clinical practice [79, 80].
The existence of an optimal stimulation protocol that is
generally applicable to all subjective species is unrealis-
tic [81]. The stimulation parameters, such as the pulse
duration, current intensity, stimulation frequency, and
repetition frequency, should be adjusted reasonably and
varied according to the pathological type and subjective
species. In rats, Takeshi Morimoto et al. [57] reported
that the optimal neuroprotective parameters for TES
were pulse duration of 1 and 2 ms/phase, current inten-
sity of 100 and 200 pA, stimulation frequency of 1, 5, and
20 Hz, and duration at least 30 min. Interestingly, TES
dose-dependently exerts neuroprotective effects in reti-
nal diseases. The protective effect of electrical stimula-
tion at 50 pA, 100 pA, 200 pA, and 300 pA was enhanced
as the current intensity increased. Similar results have
been confirmed in human trials. Alfred Stett et al. [82]
found that loss of visual field area in patients with RP
was significantly reduced in treated eyes compared to
untreated eyes by regular use of TES in a dose-depend-
ent manner, TES treatment is most effective above 0.8—
1.0 mA (5 ms/phase, 20 Hz). For the patients who have
a branch retinal artery occlusion, the intensity to elicit a
phosphene ranged between 0.5-0.9 mA (20 Hz, 30 min),
and the phosphene was perceived in both the peripheral
and central visual fields [78]. This does not mean that
the current intensity can be increased without hesita-
tion. As the current intensity reaches the threshold, its
neuroprotective effect may decrease. When the TES was
increased to 100 pA and 200 pA, there was a significant
increase in the density to 85.4% and 80.0%, respectively,
of intact retinas, however, an increase of TES to 300 pA
and 500 pA resulted in a decrease in the mean RGC den-
sities to 70.0% and 64.5%, respectively, of intact retinas
[57].

Hanif et al. [40] and Ying-qin Ni et al. [42] reported
different timings of gene expression after ES, which is
crucial for selecting the repetition frequency. The gene
expression of BDNF and FGF-2 increases occur quickly,
by 1 h post-WES, and are back to normal by 24 h post-
WES [40]. After TES, the mRNA levels of BDNF peaked
on the 3rd day, CNTF peaked on the 7th day, and both of
them decreased at 14 days [42]. Although they chose dif-
ferent stimulation routes and parameters, the results can
inspire us. Compared to daily TES, daily WES stimula-
tion may produce larger protective effects on maintaining
gene expression changes and possibly further protect-
ing the structure and function of retina, on the contrary,
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once or twice a week TES may be better, which may be
enlightening for the selection of clinical repetition fre-
quency. Similarly, in terms of pulse duration, stimulation
frequency, it is not necessarily the case that the higher
the parameter, the better the effect. In clinical practice,
the stimulation dose must be adjusted to the individual
tolerance level that patients can withstand, and the limits
of the safe current density on the ocular surface must also
be taken into account.

Complications and safety profile

As a retinal neuroprotective strategy, NES’ s goal is to
provide the optimal therapeutic dose for the retina while
minimizing side effects. The most frequently used route
of NES in currently included animal experiments was
TES (17 of 21 studies). TES only contacts the cornea,
which greatly reduces the risk of serious complications
compared to retinal implants. There is only one report
on complications of TES in the articles we included [42].
After a TES with parameters of 400 pA and 50 Hz, rats
exhibited corneal epithelial proliferation and retinal per-
foration, which may be attributed to high charge density
stimulation causing some of the current density not to be
properly dissipated at the retina and resulting in injury.
Therefore, prolonged use of high degrees of stimulation
is not advised. In clinical trials, only a small number of
complications of TES have been reported [83-85]. An
article that included over 1000 patients reported the fol-
lowing local side effects for TES: foreign body sensation,
dry eye syndrome (reported in ~ 3% and 15% of cases,
respectively), and transient superficial keratitis (reported
in ~ 5% of cases) [1]. Overall, the safety of TES therapy
is positive, since such complications are easily address-
able, although not to be ignored if repeated stimulation is
needed for optimal results.

For most retinal diseases, the treatment process may
take several years, the impact of long-term TES treat-
ment is not yet known. According to Yang et al. [86],
although TES did not affect tear production, it increased
the possibility of ocular surface injury by reducing
mucin (MUC) 4 expression and conjunctival secretion of
MUCS5AC in vivo. While literature often fails to distin-
guish between which electrodes and which application
mode were used when assessing safety. In most TES ani-
mal experiments, contact lens electrodes were applied to
the cornea, in clinical TES studies, DTL electrodes were
used, these differences may have an impact on the assess-
ment of safety. Unlike TES, TpES increased tear produc-
tion but did not cause corneal fluorescein staining. The
electrical resistance from the orbital skin to the TpES was
lower than that from the cornea to the retina in the TES.
Thus, as another safe and effective ES method for treating
retinal neurodegeneration, further conducting large-scale
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clinical trials and in-depth animal experiments to elu-
cidate the efficacy and mechanism of TpES is another
future direction. In addition, there have been no reports
of complications with other types of ES, one reason may
be that there are fewer studies (4 of 21 studies) compared
to TES, the same issues confront clinical research as well.

Limitations

Certain restrictions on this systematic study should be
noted. (1) The SYRCLE’s evaluation revealed that the
included studies’ general quality is moderate. To increase
the validity and rigor of the investigations, it is recom-
mended that emphasis be given to the full reporting of
random sequence generation, allocation concealment,
random outcome assessment, and the use of blinding
in the future. (2) The studies included in this systematic
review were inconsistent in key areas such as the models
used to represent retinal disorders and the route, param-
eters used for NES therapy, which added to the research’s
heterogeneity. Statistics for grouping were not taken into
account due to the methodological diversity among stud-
ies. As a result, no meta-analyses were carried out using
the available data. (3) Since only studies published in Eng-
lish were included in this systematic review, there may be
differences in language and regional literature that were
missed, which could have an impact on the extrapolation
of the systematic review’s findings.

Conclusion

In this systematic review, NES demonstrated neuro-
trophic, anti-inflammatory, and anti-apoptotic capa-
bilities as a neuroprotective method adopted in retinal
illnesses with high security. These findings backed up the
idea that NES has the potential to be a successful therapy
for the treatment of retinal disorders. To evaluate the
effectiveness of NES in a therapeutic environment, how-
ever, well-designed randomized controlled clinical trials
are required.
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