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Abstract 

Background:  Increasing evidence supports the concept of prenatal programming as an early factor in the aging pro-
cess. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length 
(TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but 
their interrelationship and determinants at birth remain uncertain.

Methods:  We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL 
and mtDNA content using Pearson’s correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and 
mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methyla-
tion Illumina microarray. Subsequently, DNAm age was calculated according to Horvath’s epigenetic clock, and mean 
global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural 
equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and 
their potential determinants.

Results:  DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content 
(r = − 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global 
methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a 
decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). 
Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging 
biomarkers.

Conclusions:  We provide insight into molecular aging signatures at the start of life, including their interrelations 
and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA 
content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate 
to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the 
start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncom-
municable diseases.
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Background
Aging starts at conception; even before conception, envi-
ronmental factors can prime its conditions. It is com-
monly accepted that genetic make-up and environment 
are major determinants of healthy aging and life expec-
tancy [1, 2]. However, evidence is accumulating that the 
rate of age-associated functional decline is also deter-
mined by prenatal programming [3–7]. DNA methylation 
age (DNAm age), global genome-wide DNA methylation, 
telomere length (TL), and mitochondrial DNA content 
(mtDNA content) have independently been reported to 
correlate with chronological age and, therefore, these 
markers have been employed as potential measures of 
aging [8, 9]. DNAm age has been indicated as an epige-
netic clock with biological significance in the context of 
age acceleration (AA), which has previously been linked 
to obesity [10], age-related diseases [11–13], and all-
cause mortality [11, 14, 15].

The mechanisms by which global DNA hypometh-
ylation contributes to the process of aging and age-
related noncommunicable diseases (NCD) are not yet 
well understood. Different modes of action have been 
suggested, such as the increase of genomic instabil-
ity through the accumulation of DNA damage-induced 
chromatin modifications [16, 17] or decreased efficacy 
of DNA (cytosine-5)-methyltransferase 1 (DNMT1) 
[18]. A decreased mtDNA copy number in peripheral 
blood has been linked with aging and mortality [19, 20]. 

TL is variable at birth, tracks over the lifetime [21], and 
decreases with advancing age. Furthermore, TL has con-
sistently been linked to cellular senescence and disease 
susceptibility [8, 22]. According to the TL/mitochondrial 
axis of aging [23], reactive oxygen and nitrogen species, 
together with other free radicals, target telomeres in an 
age-dependent manner. Dysfunctional telomeres can 
lead to decreased mitochondrial biogenesis and func-
tion via repression of Pgc-1α,β and Sirt1 gene expression 
[24, 25], causing an age-related decrease in mtDNA con-
tent and general health [19, 26]. Intriguingly, this process 
may even start before birth, when newborn telomeres are 
influenced by the in utero environment [4, 5] and impact 
the entire life course [6, 21]. DNA methylation status, 
measured as global methylation, DNAm age, TL, and 
mtDNA content at birth, could have important implica-
tions for overall life expectancy and disease susceptibility 
later in life [23].

Various studies dealt with the relationship between tel-
omere length and other individual aging biomarkers in 
the elderly, adults, and adolescents [27–41] (Fig.  1 and 
Additional file 1: Table S1). To unravel the relationships 
between the different aging biomarkers already in cord 
blood and confirm or disprove previous findings in older 
age groups is important because these findings provide 
evidence for the starting point of biological mechanisms 
leading to age-related disease. In the present study, we 
first investigated the inter-correlations between aging 
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biomarkers to obtain insights into the underlying aging 
mechanisms in the ENVIRONAGE (ENVIRonmental 
influence ON AGEing in early life) birth cohort. In a sec-
ond step, we compared the effects of potentially impor-
tant determinants of early-life aging.

Methods
Study population
Our study initially enrolled 199 eligible mother-newborn 
pairs with singleton newborns in the ENVIRONAGE 
birth cohort [42]. These mother-newborn pairs were 
recruited as a subset of the ongoing prospective cohort 
between July 2014 and June 2015 at the East-Limburg 
Hospital in Genk, Belgium. This study was conducted 
according to the principles outlined in the Helsinki Dec-
laration [43] after approval by the Ethical Committee 

of Hasselt University and the East-Limburg Hospital in 
Genk. Written informed consent was obtained from all 
participating mothers at recruitment. Epigenome-wide 
methylation status of the CpG sites was retrieved from 
cord blood samples in the framework of the EXPOsOM-
ICS project (FP7) [44]. Data on relative TL were avail-
able for 198 neonates. For six of these neonates’ data on 
mtDNA content was missing. Finally, two samples were 
removed from the analysis because they were classified 
as extreme outliers concerning the calculated DNAm age 
[> 3 × interquartile range (IQR) below the first quartile 
or above the third quartile], using the R package NCmisc 
1.1.6. Therefore, the final sample size in this study was 
190 (Fig. 2).

Maternal body mass index (BMI) was determined dur-
ing the first antenatal visit (weeks 7–9 of pregnancy) by 

Fig. 1  Overview of the identified studies investigating the interrelationship between the aging biomarkers telomere length (TL)), DNA methylation 
age or DNA methylation age acceleration (DNAm age/DNAm AA), mitochondrial DNA content (mtDNA content) or global DNA methylation (global 
m.) in the age groups of adolescents (mean age ≥ 10), adults (mean age > 19) and older people (mean age > 65). The arrows in the ovals show which 
correlations/associations have been investigated in the different age groups
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dividing weight in kilograms by height in meters squared. 
The conception date was estimated based on the first 
ultrasonographic examination. After delivery, mothers 
filled out a study questionnaire, which collected detailed 
information about sociodemographic and lifestyle factors 
for both mothers and fathers. Paternal age was missing 
in nine cases and imputed with the mean paternal age at 
birth. Parity was classified into three categories for moth-
ers having their first, second, and third or more new-
borns. Maternal educational level was coded as “low" for 
mothers who did not obtain any diploma, “middle” when 
they obtained a high school diploma, and “high” when 
they obtained a college or university degree. Maternal 
smoking status was categorized as “never smoker,” when 
the mother never smoked before or during pregnancy, 
“former smoker” when the mother had quit smoking 
before pregnancy, and “smoker” when the mother contin-
ued to smoke during pregnancy. Newborn ethnicity was 
categorized based on the grandparents’ origin and was 
classified as European when two or more grandparents 
were European and non-European when at least three 
grandparents were of non-European origin. The season 
of delivery was divided into the cold season (October 
1—March 31) and the warm season (April 1—September 
30).

Cord blood sample collection
Cord blood samples were collected directly after deliv-
ery in BD Vacutainer® Lithium Heparin, Plus Plastic 
K2EDTA Tubes (BD, Franklin Lakes, NJ, USA) and 
centrifuged at 3200  rpm for 15  min. After that, buffy 
coat and plasma were separated and frozen instantly at 
− 80 °C.

Epigenome‑wide DNA methylation
Cord blood DNA was extracted and processed at the Epi-
genomics and Mechanisms Branch (formerly Epigenet-
ics Group), International Agency for Research on Cancer 
(IARC). In detail, after thawing and extraction with the 
QIAamp DNA mini Kit (Qiagen Ltd, Manchester, UK), 
DNA was first bisulfite-converted using the Zymo EZ 
DNA methylation™ kit (Zymo, Irvine, CA, USA), conse-
quently hybridized to Illumina Infinium Human Meth-
ylation 450K BeadChip arrays [45] and scanned using 
the Illumina HiScanSQ system. After background sub-
traction with Illumina GenomeStudio, the raw intensity 
data were preprocessed, including the calculation of the 
methylation level at each CpG as the beta-value, the nor-
malization using the funnorm normalization of the minfi 
package [46], and quality control employing in-house 
software within the R statistical computing environment. 
Samples underwent further quality control employ-
ing Illumina’s detection p-value > 0.05 and bead count 
lower than 3, excluding failed samples. Additionally, 
background subtraction and dye bias correction were 
performed on Infinium II probes. Finally, data were also 
trimmed for outliers containing values more than three 
interquartile ranges below the first quartile or above 
the third quartile so that 485,512 probes remained for 
analysis.

Mean relative TL and mtDNA content measurements
The quantity and purity of the extracted DNA were 
assessed by spectrometric analysis using the Nanodrop 
1000 spectrophotometer (Isogen, Life Science, Belgium), 
and integrity was evaluated using agarose gel electro-
phoresis. All measurements were performed in tripli-
cate on a 7900HT Fast Real-Time PCR System (Applied 
Biosystems, Foster City, CA, USA) using a 384-well for-
mat. DNA quantity was determined through the Quant-
iT™ PicoGreen® dsDNA Assay Kit (LifeTechnologies, 
Europe), to ensure a uniform DNA input of 5  ng/PCR 
reaction. Average relative telomere length and mtDNA 
content were measured by a modified quantitative real-
time PCR (qPCR) protocol as described previously [5, 
47, 48] and in detail provided in Additional file  2: Text 
S1. PCR cycles are described in detail in Additional file 3: 
Tables S2–S4. Telomere assay‑precision expressed by the 
intra-class correlation coefficient (ICC) [49] was 0.936 

Fig. 2  Flow chart visualizing the sample selection. Initially, 199 
mother-newborn pairs participating in the ENVIRONAGE birth cohort 
between July 2014 and June 2015, with epigenome-wide DNA 
methylation data, were selected. The final number of participating 
mother-newborn pairs included in the analysis was 190
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(95% CI: 0.808 to 0.969) for the inter-assay ICC and 0.952 
(95% CI: 0.947 to 0.956) for the intra-assay ICC was. 
Cycle thresholds of the telomere and mtDNA amplifica-
tions were normalized relative to the cycle thresholds 
of the single-copy gene amplifications Additional file  3: 
Tables S2–S4 using the qBase software (Biogazelle, Zwi-
jnaarde, Belgium). Relative average telomere lengths and 
mitochondrial content were expressed as the individual 
relative ratio to the average ratios of the entire sample set.

Statistics
DNAm age was calculated according to the epigenetic 
clock developed by Horvath using the Bioconductor 
package “methylclock” [50] with the cell count reference 
option according to Bakulski [51]. The degree of meth-
ylation was expressed as the percentage of methylated 
cytosines over the sum of methylated and unmethylated 
cytosines. Global DNA methylation was calculated by 
calculating the study population’s arithmetic mean of the 
beta-values (epigenome-wide average DNA methylation). 
Additionally, mean methylation of the three functional 
gene regions, promoter (n = 140,003 probes), gene body 
(n = 158,210 probes), and intergenic regions (n = 187,299 
probes) was calculated. TL and mtDNA were log10 trans-
formed to improve normal distribution.

In the statistical analysis, Pearson correlation was 
applied to address the relationship between the four 
aging biomarkers. In the next step, path analysis, adjusted 
for a priori selected covariates, was performed to assess 
the associations between the aging biomarkers and estab-
lish significant early-life aging determinants. This form of 
structural equation modeling (SEM) is characterized by 
multiple linear regression equations with simultaneous 
estimation of regression coefficients for all hypothesized 
relations between the variables. The path analysis model 
included sex, gestational age newborn ethnicity, birth-
weight, maternal smoking, maternal education, mater-
nal early-pregnancy BMI, and parity as covariates. For 
TL and mtDNA content, additionally, white blood cell 
count, season of delivery, and parental age, and for global 
methylation cell-type distribution according to Bakulski 
[51] were included as covariates. The presence of random 
effects was taken into account by using (i) the residuals 
of DNAm age and global methylation regressed on array 
chip and array position and (ii) the residuals of TL and 
mtDNA content regressed on sample storage time. The 
following assumptions regarding the direction of the 
associations were made: (i) TL affected mtDNA con-
tent and was in turn affected by DNAm age and global 
methylation, (ii) DNAm age was affected by mtDNA 
content and global methylation, (iii) global methylation 
was affected by mtDNA content. The path analysis was 
accomplished with the lavaan package, version 0.6–5 

[52]. Statistical significance was defined as p < 0.05. All 
data analyses were performed in RStudio using R 3.5.2.

Results
Demographics
Demographic characteristics and perinatal factors of the 
mother-newborn pairs are reported in Table 1. The new-
borns in this study were mostly of European origin (89%) 
with a mean (SD) gestational age of 39.15 (± 1.54) weeks 
and a mean (SD) birthweight of 3393 (± 484) g. The TL 
and mtDNA content range was between 0.51–1.58 and 
0.25–4.35, respectively, and the mean (± SD) DNAm age 

Table 1  Population characteristics and perinatal factors from 
n = 190 participants

The numbers represent counts (percentages) for categorical and means 
(± standard deviation) for continuous variables. For TL, mtDNA content, and 
methylation values, additionally, the range is reported as between brackets 
[lowest value—highest value]

TL = relative telomere length, DNAm age = epigenetic age

Characteristics Mean (± SD) or n (%)

Newborn

Girls, n 88 (49.2%)

Birthweight, grams 3393.08 ± 484.49

European, n 169 (89.0%)

Gestational age, weeks 39.15 ± 1.54

Relative telomere length 0.95 ± 0.16 [0.51–1.58]

Relative mtDNA content 1.04 ± 0.47 [0.25–4.35]

DNAm age, years 0.46 ± 0.26 [-0.23–1.21]

Global DNA methylation, proportion 0.50 ± 10 [47–53]

Gene-promotor methylation, proportion 0.29 ± 0.01 [0.27–0.31]

Gene-body methylation, proportion 0.64 ± 0.01 [0.60–0.67]

Intergenic-region methylation, proportion 0.52 ± 0.01 [0.49–0.55]

Maternal

Age, years 29.35 ± 4.5

Early pregnancy BMI, kg/m2 24.39 ± 4.34

Education

Low, n 27 (14.2%)

Middle, n 66 (34.7%)

High, n 97 (51.1%)

Smoking, n

Never smoked 123 (64.7%)

Former smoker 44 (23.2%)

Smoked during pregnancy 23 (12.1%)

Parity

1, n 104 (54.7%)

2, n 58 (30.5%)

 ≥ 3, n 28 (14.7%)

Paternal age, years 31.81 ± 5.34

Season of delivery

October 1–March 31 84 (44.2%)

April 1—September 30 106 (55.8%)
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was 0.46 (± 0.26) years. The mothers were on average 29 
(± 4.5) years old and had a pre-pregnancy BMI of 24.39 
(± 4.34) kg/m2.

Correlation between the biomarkers of aging
Figure 3 shows the inter-correlation of the different bio-
logical markers of aging. Cord blood DNAm age showed 
a significant, inverse correlation with all other aging bio-
markers, except with TL where the correlation was not 
significant. The strength of correlation for DNAm age 
was in descending order with cord blood mean (i) gene 
body methylation, r = −  0.65, (ii) global methylation 
r = −  0.64, (iii) intergenic region methylation r = −  0.63 
and (iv) promoter methylation r = −  0.57 (all p < 0.001) 
and with mtDNA content (r = −  0.16, p = 0.027). Cord 
blood TL and mtDNA content were significantly cor-
related (r = 0.26, p < 0.001). Global methylation was 
significantly correlated with promoter, gene body and 

intergenic region methylation (r = 0.92, r = 0.97 and r = 1, 
all p < 0.001).

When stratified for sex, these correlations remained 
significant (Additional file  4: Figure S1 and Additional 
file  5: Figure S2). For newborn girls, the correlation 
between TL with mean global, body, intergenic methyla-
tion, and DNAm age changed direction, as did the cor-
relation between mtDNA content and mean promoter 
methylation in boys (all remaining non-significant).

Associations between the aging biomarkers and covariates 
in the path analysis
The path analysis model representing the causal assump-
tions of the relationships between the aging biomarkers 
and a priori selected covariates showed a good overall 
fit (χ2 = 23.00, degrees of freedom = 27, p = 0.69; Root 
Mean Square Error of Approximation = 0.00, p = 0.963, 
Standardized Root Mean Square Residual = 0.034, 

Fig. 3  Pearson correlations between DNAm Age = epigenetic age calculated according to Horvath [9], TL = relative telomere length, 
mtDNAcontent = relative mitochondrial DNA content, globalmean = mean global DNA methylation, promotermean = mean methylation of the 
promoter gene-region, bodymean = mean methylation of the gene-body and intergenicmean = mean methylation of the intergenic region. In the 
top right corner, the correlation coefficients, and in the bottom left corner scatterplots of the correlation with regression line and 0.95% confidence 
interval are shown. The diagonal density plots display the distribution of observations. 5mC = 5-methylcytosine; mtDNA = mitochondrial DNA; 
nDNA = nuclear DNA; T/S = telomere/ single copy gene ratio * p < 0.05; ** p < 0.001
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Comparative Fit Index = 1.00). A graphical indication of 
the significant associations with standardized estimates is 
shown in Fig. 4.

Assuming all other variables were held constant, the 
strongest effect was shown for global methylation on 
DNAm age with a decrease of 0.64 standard deviations 
(SD) in DNAm age for each SD (0.01%) increase in global 
methylation (p < 0.001). The unstandardized coefficient 
translated to a decrease of 0.21 years of DNAm age for an 
IQR increase (0.011 units) of global methylation. For each 
SD increase in log10 transformed TL, the mean level of 
log10 transformed mtDNA content increased by 0.31 SD 
(p < 0.001) [for the unstandardized coefficients mtDNA 
content increased by 6.96% (95% CI: 4.97%, 8.95%) for a 
10% increase in TL].

Concerning the covariates, season of delivery was asso-
ciated with a decrease of 0.21 SD in log10 transformed 
TL and 0.24 SD in log10 transformed mtDNA content 
(p = 0.02 and p = 0.003, respectively) for the warmer half 
of the year compared to the cold half of the year. This 
corresponds for the unstandardized coefficients to a 
decrease of − 7.10% (95% CI: − 3.44%, − 10.63%) in TL 
and −  16.44% (95% CI: −  8.64%, −  23.58%) in mtDNA 
content respectively. Furthermore, an increase of one 
SD in gestational age (1.54 years) was associated with an 
increase of 0.20 SD in DNAm age (p = 0.017), indicating 

a 1.25 weeks higher DNAm age for each additional week 
of gestation. Newborns girls had on average 5.68% (95% 
CI: 2.95%–8.48%) longer telomeres, corresponding to 
an increase of 0.19 SD in mean log10 transformed cord 
blood TL (p < 0.001), or unstandardized to an increase 
of 6.4% cord blood TL (95% CI: 4.38–8.42). Additionally, 
female sex was associated with a 0.3 unit higher global 
methylation (0.27 SD, p < 0.001), and a 11.49% (95% CI: 
−  9.43%, −  13.55%) lower mtDNA content (0.16 SD, 
p = 0.016). Moving from a lower maternal educational 
level to a higher one was associated with a decrease of 
0.21 SD (p = 0.014) in DNAm age or a decrease of about 
2.77 weeks in DNAm age for the unstandardized coeffi-
cient. An increase of one SD (5.34 years) in paternal age 
was linked to an increase of 0.15 SD (p = 0.027) in log10 
transformed mtDNA content, or for the unstandardized 
coefficient to an increase of 1.20% mtDNA content for an 
increase in one year of paternal age.

Discussion
Over the years, different biological markers have been 
developed to track chronological age and predict the 
onset of various age-related diseases and risks of different 
lifestyle factors in adults. The investigation of newborns 
may shed light on mechanisms that could explain differ-
ences in disease susceptibility later in life through fetal 

Fig. 4  Graphical display of the path analysis model showing only the p < 0.05 significant standardized estimates for the multiple regression analyses 
with the four markers of biological age as endogenous variables (bottom). The analysis’s exogenous variables comprised the other respective 
aging biomarkers, sex, gestational age, newborn ethnicity, birthweight, maternal smoking, maternal education, maternal early-pregnancy BMI, and 
parity. For TL and mtDNA content, additionally, white blood cell count, season of delivery and parental age, and for global methylation cell-type 
distribution according to Bakulski [51], were included as covariates. The coefficients in the figure were standardized, representing a 1 SD change 
in each exposure pathway. Red color stands for negative and green color for positive associations. The arrow’s width indicates the degree of 
correlation, with wider arrows indicating higher correlation. Significant associations between cord blood cell composition and white blood cell 
count are not shown for the sake of clarity. DNAmAge = epigenetic age calculated according to Horvath [9]; Gestat.Age = gestational age in days; 
Globalm = global DNA methylation; TL = relative telomere length; mtDNA = mitochondrial DNA content; Warm Season = warm season (April 1 – 
September 30). *p < 0.05; **p < 0.001
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programming. Here, we provide insight into molecular 
aging signatures at the start of life and their interrela-
tions, showing that cord blood DNAm age is inversely 
associated with global methylation and mtDNA content 
but not with newborn telomere length. Furthermore, we 
provide evidence that the telomere-mitochondrial aging 
axis is already connected from early life onwards.

Interrelationships between biomarkers of aging
With this study on newborns, we demonstrate an 
absence of correlation between TL and epigenetic age 
consistent with findings in adults [31] (Fig. 1 and Addi-
tional file 1: Table S1). A cross-sectional study including 
800 middle-aged persons found no significant correlation 
between blood TL and DNAm age (r = − 0.05, p = 0.17) 
[32]. Furthermore, in 773 participants (mean chrono-
logical age = 69.68) of the LipidCardio Study no signifi-
cant association between TL and DNAm age (β = 3.00, 
p = 0.18) was demonstrated [27]. Besides, the dynamics 
of both factors have also been shown to change through-
out life. Telomere attrition is higher in young children 
when environmental influences exert the most impact 
on inter-individual variation in telomere length, which 
is subsequently preserved throughout life [21]. Likewise, 
the DNA methylation-based biological clock "ticks" dif-
ferently over the life course. The Horvath clock shows a 
non-linear rate of the clock ticking faster than chronolog-
ical aging during childhood and adolescence and a linear 
association with chronological years during adulthood 
[53]. In older people, an increase in DNAm age occurs 
even at a slower rate than chronological age [54]. Find-
ings concerning the correlation between blood TL and 
DNAm age in adult and elderly populations are, there-
fore, not automatically transferrable to early childhood. 
However, this is the period that is presumably the most 
sensitive to environmental influences and sets the base 
for later life [21]. Our findings are important as they indi-
cate that cord blood TL and DNAm age not only relate 
to different pathways/mechanisms of biological aging in 
adults but also in neonates for the period of fetal pro-
gramming. Although telomere length and the epigenetic 
clock in newborns indicate different aging measures, this 
does not mean that DNA methylation is not linked with 
TL. Distinct epigenetic signatures were identified, and 
epigenetic regulation of newborn TL was reported pre-
viously [55] involving CpGs distinct from the CpG-sets 
used to predict biological age by epigenetic age clocks. 
Moreover, variants in Telomerase Reverse Transcriptase 
(TERT) gene on chromosome 5, associated with Horvath 
DNAm age derived intrinsic epigenetic age acceleration, 
were also found to be associated with longer telomeres, 
indicating that hTERT expression is required for DNAm 
aging in human primary fibroblast [56].

The finding of a correlation between mtDNA con-
tent and TL in cord blood is in line with previous find-
ings of a positive association in 613 cord blood samples 
of the ENVIRONAGE cohort, showing a 5.22% (95% 
CI: 3.26 to 7.22; p < 0.0001) higher mtDNA content for 
a 10% increase in TL [57]. Furthermore, also in healthy 
adults (r = 0.120, p < 0.001) [35], older women (r = 0.39, 
p < 0.0001) [28] and 166 non-smoking elderly (r = 0.23, 
p = 0.0047) [29] TL and mtDNA content were positively 
associated, conform with the mitochondrial-telomere 
axis of aging [23, 24, 57].

We also detected a correlation between global DNA 
methylation and three functional gene regions (promoter, 
gene body, intergenic) with DNAm age. In adults, no evi-
dence for such an association was found in a previous 
pooled analysis of 479 individuals from the Australian 
Mammographic Density Twins and Sisters and 3354 indi-
viduals from the Melbourne Collaborative Cohort Study 
(r = 0.01, p > 0.19) [36]. This could be explained by the 
different dynamics of global methylation and DNAm age 
in newborns and adults. Global levels of DNA methyla-
tion increase over the first few years of life [58], remain 
relatively stable during adulthood, and then decrease 
beginning in late adulthood [59].

Another finding of our study is the inverse correla-
tion between DNAm age and mtDNA content in cord 
blood. This finding is corroborated by a recent study in 
812 older males of the Veteran Affairs Normative Aging 
Study, where the mtDNA copy number was negatively 
associated with cross-sectional, though not with pro-
spective measures of DNAm age (p = 0.03 and p = 0.33 
respectively) [30] (Fig.  1). In contrast, in a case–control 
study, DNAm age-derived AA and mtDNA content were 
not significantly correlated in the entire group of patients 
with bipolar disorder (BD), their siblings, and healthy 
age-matched controls (r = 0.038, p = 0.780), though posi-
tively correlated within the older  (33-51 years) group of 
BD patients (r = 0.697, p < 0.001) [37] (Fig. 1). The differ-
ent directions of correlation in our study of healthy new-
borns and the case–control study of BD patients may be 
partially explained by underlying differences in the bio-
chemical mechanisms and etymology of BD.

Associations between the aging biomarkers and covariates
The results of the path analysis confirmed previous find-
ings in cord blood that at delivery, female sex is posi-
tively associated with telomere length [5, 21, 22, 60, 61] 
and global methylation [62]. In another study applying 
pyrosequencing of LINE-1 as a proxy of global meth-
ylation [63], an inverse association with the female sex 
was reported. Also, our finding of a negative associa-
tion between female sex and cord blood mtDNA content 
is in line with previous findings. A study of the FLEHS 
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III birth cohort in Flanders, Belgium, also found a trend 
for newborn girls having, on average, 5.96% less mtDNA 
content than boys (p = 0.08) [64].

Furthermore, delivery during the warm season was 
associated with shorter telomeres and less mtDNA con-
tent, which is in line with earlier findings of a longitudi-
nal study including 2,827 residents of Costa Rica with a 
baseline age of 60 and older of longer telomeres in blood 
collected in October-December [65]. Moreover, a recent 
study in the ENVIRONAGE birth cohort found prenatal 
temperature exposure above a certain threshold associ-
ated with shorter cord blood TL [66]. We also observed 
a negative association between the warm season and 
mtDNA content, which is in contrast to findings in the 
same cohort on placental tissue mtDNA content, report-
ing a negative association between mtDNA content and 
the cold season (β = -0.243 ± 0.040, p < 0.0001) [48]. A 
possible explanation for the discordance in the mtDNA 
content of the two tissues may originate from their differ-
ent biological function, which has been postulated previ-
ously [67].

Our finding of an inverse association between maternal 
educational level with DNAm age is in accordance with 
previous findings on the relation between cord-blood 
DNAm age and maternal socioeconomic status (SES), 
another measure of maternal educational attainment. 
[68]. Furthermore, the association between paternal age 
at birth and mtDNA content corroborates an earlier 
report in adults [69].

With regard to the causal assumptions in the path 
analysis, different possibilities concerning the direction 
of effect between the aging biomarkers are reasonable. 
On the one hand, telomere-dependent growth arrest is 
associated with increased mitochondrial dysfunction [70] 
through suppression of PGC-1α and PGC-1β promoters, 
impairing mitochondrial biogenesis and function [71]; on 
the other hand, mitochondrial dysfunction leads to tel-
omere attrition and genomic instability via the increase 
in oxidative stress [70, 72]. Furthermore, global hypo-
methylation is linked with biological aging via the loss 
of constitutive heterochromatin integrity, a hallmark of 
aging in eukaryotes leading to global 5mC with increased 
genetic instability as a result [17, 73]. The generation of 
important co-substrates required for histone phospho-
rylation, acetylation and deacetylation processes, such as 
adenosine triphosphate (ATP), acetyl CoA, flavin adenine 
dinucleotide, and nicotinamide adenine dinucleotide 
depends again on mitochondrial activity [74]. In a study 
of the ENVIRONAGE cohort investigating the relation-
ship between epigenome-wide methylation with cord 
blood insulin and mtDNA content, several pathways and 
differentially methylated regions (DMRs) also pointed 
in the direction of histone modification as one of the 
underlying mechanisms connecting these factors [75]. 
Dysfunctions in mitochondrial activity represented by 
alterations in mtDNA content may, therefore, have direct 
effects on global DNA methylation profiles [76, 77]. 
These molecular changes are not limited to the postnatal 

Fig. 5  Associations between the cord blood aging biomarkers investigated in this study and health outcomes at birth and later in life were found in 
previous studies. A green check mark indicates that the study reported an association, and a grey cross indicates the lack of an association. A slash 
indicates that no study investigating the relationship with the health outcome was identified. Y = years of age
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period, as environmental influences during pregnancy 
have been shown to already determine the genome meth-
ylation status and telomere length at birth [78, 79].

Clinical relevance
The significance of cord blood aging biomarkers lies in 
their predictive value for age-related NCD long before 
actual health effects become visible. We recently found 
that telomere length in childhood and early adulthood 
is highly determined by cord blood telomere length [21]. 
Therefore, observed health and disease conditions related 
to shorter telomeres, may find to some extent their onset 
at birth. Understanding the interrelationships and deter-
minants of aging biomarkers is essential from a pre-
vention point of view, as these insights enable the early 
recognition of individuals with increased risks and the 
development of personalized treatment plans.

Telomere length at birth determines the natural life 
span [80], and it has been estimated, that at an age of 
40 years, the difference in life expectancy between peo-
ple with an 1 SD shorter or longer TL than the popu-
lation mean amounts to 2.5 years [81]. Studies directly 
investigating the predictive power of aging biomarkers 
at birth with life-span and age-related disease in adults 
and older people are lacking. However, their relation-
ship with childhood health measures may act as a sur-
rogate for their association with health outcomes later 
in life, as previous studies demonstrated a link between 
health outcomes in childhood and adulthood [82–84].

Cord blood aging biomarkers have been linked with 
deviating health measures in infancy and childhood, 
showing associations with neurocognitive [85–87], car-
diovascular [88, 89] and metabolic outcomes [60, 75, 
90–93], pubertal onset [94, 95] and the immune sys-
tem [96, 97] (Fig.  5). In this context we recently dem-
onstrated that telomere length at birth was significantly 
related to childhood diastolic blood pressure at the age 
of four [98]. Despite the lack of studies in many fields 
of age-related health measures, the fact that metabolic 
outcomes are related to all four cord blood aging bio-
markers (Fig.  5) stresses the importance of alterations 
in the childhood metabolism linking cord blood aging 
biomarkers with adverse health outcomes at old age. 
Deviations from childhood health measures can be pre-
dictive of adverse health outcomes in adulthood and 
old age for example lower birthweight or weight at the 
age of 1 year have been associated with later life cardio-
vascular disease [99–101], diabetes type II [102], and 
frailty [103]. Furthermore, childhood BP was predictive 
of cardiovascular health in adulthood [104], pubertal 
timing was associated with multiple morbidities and 
lifespan in men [105], and infant eczema predicted 
adult asthma [106].

Concerning the determinants of aging biomarkers, 
identified in this study, their effect could translate to an 
altered disease susceptibility later in life. Children born 
in the warmer half of the year have on average shorter 
telomeres and lower mitochondrial DNA content, pre-
disposing them to adverse infancy and childhood health 
measures such as lower birthweight, lower neurocog-
nitive performance and higher blood pressure. On a 
population level, this could in turn result in a higher sus-
ceptibility to cardiovascular disease, diabetes type II, and 
frailty, therefore lowering life expectancy at old age.

Strengths and limitations
Our study has several strengths and limitations. This is, 
to our knowledge, the first study to investigate the cor-
relation between TL, DNAm age, global methylation, and 
mtDNA content in neonates, which is essential to disen-
tangle their relationships in this crucial developmental 
stage. We also used data from a birth cohort that reflects 
the physiological ranges of the measured variables. On 
the other hand, the sample size of 190 newborns may 
have been too small to sustain significant results. Fur-
thermore, the analysis of epigenetic age was confined to 
the algorithm published by Horvath [9]; other algorithms 
like the Hannum predictor [107] or various “gestational 
clocks” [108, 109] were not investigated as our focus was 
on the aging processes. We did, however, include gesta-
tional age in the path analysis. Regarding the Horvath 
clock, age acceleration is often studied besides age meth-
ylation Our study could not access a potential age accel-
eration as newborns have the same chronological age. 
Furthermore, path analysis made it necessary to hypoth-
esize about the direction of effects between the aging bio-
markers. Based on previous literature findings, evidence 
for both possible directions could often be found, making 
it necessary to choose one direction despite plausible rea-
sons for another assumption.

Conclusions
As the rate of age-associated functional decline may 
already be determined before birth, the status of aging 
biomarkers in cord blood could have important impli-
cations for overall life expectancy and disease suscepti-
bility later in life. DNAm age and TL were significantly 
correlated with mtDNA content in our study, yet no 
relationship was observed between TL and DNAm age. 
This suggests that both biomarkers capture different 
aspects of aging from birth onwards and underlines the 
importance of the directed use of these biomarkers in 
the future risk assessment and early prevention of age-
related disease. Path analysis demonstrated that the asso-
ciations between the different aging biomarkers persist 
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in a complex structure of interrelationships and envi-
ronmental factors that better approximate the biological 
background. Moreover, comparing the standardized path 
coefficients makes it possible to estimate the extent of 
susceptibility to different internal and external influences 
and confirms previous observations of sex-dependent 
differences and the importance of prenatal temperature 
exposure in aging.
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