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Abstract 

Background:  The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). 
However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-
related genes involved in AMI.

Methods:  CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune 
cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key mod‑
ules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key 
immune-modules. The protein–protein interaction (PPI) network was constructed and Molecular Complex Detec‑
tion (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an 
important role in the occurrence and progression of AMI.

Results:  The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta 
(γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI 
patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identi‑
fied, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis 
indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological 
processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four 
hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis 
between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with 
neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T 
cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 
genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the 
ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI.
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Background
Coronary artery disease (CAD) is a common chronic 
heart disease worldwide. The accumulation of a large 
number of lipids under the intima of the coronary artery 
leads to the formation of atherosclerotic plaque, which 
gradually leads to the narrowing of the vascular lumen, 
finally resulting in impaired blood perfusion of the myo-
cardium [1]. CAD usually presents with a variety of dif-
ferent symptoms, including ischemic cardiomyopathy, 
stable and unstable angina, acute myocardial infarction 
(AMI), and even sudden accidental death [2]. Emergency 
percutaneous coronary intervention (PCI) can quickly 
restore cardiac perfusion and makes a great contribution 
in improving the prognosis of AMI patients. Neverthe-
less, AMI has becomea main cause of hospitalization and 
mortality in patients, especially in China, and its inci-
dence is increasing annually [3]. Previous studies have 
shown that AMI is a complex disease that is influenced 
by multiple factors, such as inflammation responses [4], 
immune mechanisms [5], hypertension, hyperglycae-
mia, smoking, obesity and dyslipidemia [6]. Accumulat-
ing evidence also shows that total cholesterol (TC) and 
low-density lipoprotein cholesterol (LDL-C) exert a syn-
ergistic effect on the immune inflammatory response, 
which can increase oxidative stress and vascular inflam-
mation, leading to reduced bioavailability of nitric oxide 
(NO), and ultimately the formation of atherosclerotic 
plaque [7]. Several researches have indicated that ator-
vastatin therapy can effectively reduce levels of LDL-C, 
interleukin (IL)-1, tumour necrosis factor-alpha (TNF-α), 
C-reactive protein (CRP), and IL-6 in patients with high 
cholesterol, compared with dietary control alone [8]. At 
present, lipid-lowering therapy has become the corner-
stone of drug therapy for CAD or AMI. We can effectively 
reduce the occurrence of major adverse cardiovascular 
events (MACEs) by downregulating LDL-C level. How-
ever, even if the level of LDL-C is reduced significantly, 
even until levels close to that at birth, MACEs cannot be 
completely eliminated. Immune inflammatory responses 
may partially account for this residual risk. Clear inflam-
matory intervention can be expected to effectively fur-
ther improve the prognosis of patients, compared with 
only a reduction in LDL-C levels. Recently, Fernandez 
et al. provided the first overview of the human immune 
cell landscape during atherosclerosis and provided 
insights into the identity of immune cells that reside in 

the plaque and described their different activation states, 
which has opened the door for the study of atheroscle-
rosis caused by autoimmune response [9]. Furthermore, 
Yang et al. suggested that the activation of signal cointe-
grator 1 complex subunit 2 (ASCC2), solute carrier family 
25 member 37 (SLC25A37), and leucine rich repeat con-
taining 18 (LRRC18), can be used as diagnostic markers 
of CAD, while immune cell infiltration plays a crucial role 
in the occurrence and development of CAD [10]. How-
ever, the pattern of immune cell infiltration in AMI has 
not been fully elucidated. Therefore, clarifying immune 
infiltration in AMI and identifying the key genes associ-
ated with immune cells may provide a novel perspective 
on the prevention and treatment of AMI.

Along with increased popularization and application 
of gene chip gene-chip sequencing technology, microar-
ray analysis has become a practical and novel method of 
identifying susceptive genes correlated with AMI [11], 
thus helping clinicians gain a deeper understanding of 
the relationship between genes and disease [12, 13]. 
However, the sensitivity and reproducibility of microar-
ray analysis based on differentially expressed genes may 
be limited [14, 15]. Weighted gene co-expression network 
analysis (WGCNA) is used increasingly widely to analyse 
a large number of gene expression data and is a powerful 
systematic biological approach to analyse network rela-
tionships and molecular mechanisms [16]. WGCNA is 
often used to identify co-expressed gene modules that are 
of specific biological significance and explore the associa-
tion between gene modules and interesting sample char-
acteristics [17].

For the past few years, an increased number of studies 
have indicated that immune cell infiltration may play a 
critical role in the pathogenesis and progression of CAD. 
Yang et  al. have suggested that there is an increased in 
the infiltration of monocytes coupled with the decreased 
infiltration of CD8 + T cells in patients with CAD [10]. 
However, immune cell infiltration in AMI has not been 
fully elucidated. CIBERSORT, is an analysis tool that is 
used widely to explore the infiltration ratio of 22 immune 
cells in the samples based on the expression profiles of 
microarray data or RNA-seq data [18]. At present, a 
few studies have combined WGCNA with CIBERSORT 
to identify key immune related genes involved in AMI. 
Therefore, to meet this demand, in this study, CIBER-
SORT was used to calculate the proportions of 22 types 
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of immune cells in AMI patients, while WGCNA was 
used to identify key modules that are significantly associ-
ated with AMI. Thereafter, the CIBERSORT results were 
combined with WGCNA to identify immune-related key 
modules and genes in patients with AMI to help eluci-
date the immune related molecular mechanism of AMI 
and lay the foundation for the development of immu-
nomodulatory therapy for AMI.

Materials and methods
AMI microarray datasets
The gene expression matrix of the GSE61144 dataset, 
which included ten normal and fourteen AMI samples 
was extracted from Gene Expression Omnibus (GEO, 
http://​www.​ncbi.​nlm.​nih.​gov/​geo) public database, which 
is based on the GPL6106 Illumina human-6 v2.0 expres-
sion beadchip platform. The ‘Normalize Between Arrays’ 
function of the limma package was used to normalize 
the gene expression matrix [19]. When a probe corre-
sponded with multiple gene names, it was removed, and 
when multiple probes corresponded with the same gene, 
the average value of multiple probes was used as the true 
expression value of the gene. The specific workflow is 
shown in Fig. 1.

WGCNA analysis identified modules that were significantly 
associated with AMI
As one of the most commonly used tools in systems biol-
ogy, WGCNA can be used to construct a scale-free net-
work based on gene expression data [20]. The genes with 
the top 25% of variance were selected for the WGCNA 
analysis. In this study, the appropriate soft threshold was 
defined as 18, and the WGCNA analysis was carried out 
according to methods detailed in our latest publication 
[21].

Evaluation of immune cell subtype distribution 
and identification of modules significantly associated 
with immune cells
The CIBERSORT.R script was downloaded from 
the CIBERSORT website and was used to explore 
the immune infiltration pattern of AMI [18]. After 
the expression matrix of immune cells was obtained 
according to instructions given on the CIBERSORT 
website, the “ggplot2” software package was used to 
draw a histogram, heat map, and boxplot diagrams. The 
histogram showed the proportion of 22 immune cells 
infiltration in AMI patients, while the heat map and 
boxplot diagrams showed the difference in immune cell 
infiltration in control and AMI subjects. The "corrplot" 
software package in R software was used to calcu-
late the Pearson correlation coefficient between each 
type of immune cells and display the results through 

the relevant heat map. Using the previously described 
method, the correlation between genes and immune 
cells was further explored based on the gene expres-
sion profiles of key modules to identify several novel 
key modules that were significantly associated with 
immune cells.

Enrichment analysis of interesting modules
Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) enrichment analysis of the 
genes in biologically significant modules was conducted 
using the clusterProfler and DOSE package in R [22]. 
The threshold was determined as p.adjust < 0.05.

Fig. 1  A flow chart for analysis. GO Gene Ontology annotation, KEGG 
Kyoto Encyclopedia of Genes and Genomes pathway enrichment 
analyses, PPI protein–protein interaction, MCODE molecular complex 
detection, WGCNA Weighted gene co-expression network analysis

http://www.ncbi.nlm.nih.gov/geo
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Identification of key genes and the correlation 
between key genes and immune cells
The Search Tool for the Retrieval of Interacting Genes 
(STRING) online database (version 11.0; http://​www.​
string-​db.​org) was used to construct a protein–protein 
interaction (PPI) network based on genes in modules that 
were significantly associated with immune cells [23]. The 
PPI network was visualized using Cytoscape software 
[24]. The MCODE combined with cytoHubba plug-ins in 
Cytoscape software were used to identify hub genes. The 
Pearson correlation coefficient between the identified 
hub genes and each type of immune cell was calculated 
using the "corrplot" software package in R software and 
the results were visualized using a heat map.

Study population
A total of 444 subjects with chest pain, which included 
230 patients with AMI and 214 controls, collected from 
the Cardiovascular Department of Hunan Provincial Peo-
ple’s Hospital. All cases suffering from AMI enrolled in 
this study received percutaneous coronary intervention 
(PCI) within 12 h after the onset of chest pain. AMI was 
diagnosed according to the 2018 diagnostic guidelines for 
AMI patients [25]: an electrocardiogram (ECG) showing 
new ischemic changes, echocardiogram indicating the 
loss of viable myocardium and/or new localized ventricu-
lar wall dyskinesia and serum levels of cardiac troponin 
T (cTnT) above the upper limit of 99% of the reference 
value. Sex- and age- matched healthy participants with 
no history of cardiovascular or other systemic diseases 
were also enrolled in this study based on ECG tests, 
blood, physical examination, and coronary angiography. 
Exclusion criteria are as follows: (1) active inflammation; 
(2) subjects treated with thrombolytic therapy and sub-
jects suffering from cardiovascular and cerebrovascular 
diseases (such as cardiomyopathy, severe valvular abnor-
malities, atrial fibrillation, congenital heart disease or 
ischemic stroke); and (3) subjects with autoimmune dis-
eases, tumours, renal and/or hepatic dysfunction. Labo-
ratory findings, angiographic results and baseline clinical 
features of all subjects were collected and recorded in 
detail. Blood samples were obtained from AMI patients 
within hours of admission with an episode of chest pain 
and before an antiplatelet or anticoagulant was adminis-
tered. The diagnostic criteria for hypertension and dia-
betes and the normal range of biochemical examinations 
were conducted as previously described [26, 27]. Study 
protocols were developed based on instructions from the 
Ethics Committee of Hunan Provincial People’s Hospi-
tal and the 2008 revision of the Declaration of Helsinki 
of 1975 (http://​www.​wma.​net/​en/​30pub​licat​ions/​10pol​
icies/​b3/). All subjects provided written and informed 
consent.

RT‑qPCR
Whole blood samples were obtained from all subjects 
and placed in a heparin vacuum tube for preservation. 
Subsequently, peripheral blood monocytes (PBMCs) 
were isolated using Ficoll‐Hypaque density gradient cen-
trifugation by following the manufacturer’s instructions. 
Total RNA was isolated from the isolated PBMCs using 
TRIzol reagent, according to the manufacturer’s instruc-
tions. cDNA was then reverse-transcribed using a Pri-
meScript RT reagent kit (Takara Bio, Japan). A Taq PCR 
Master Mix Kit (Takara) was used to perform the RT-
qPCR based on an ABI Prism 7500 sequence-detection 
system (Applied Biosystems, USA). The proprietary of 
the qPCR primers used in this experiment were designed 
and validated by Songon Biotech (Songon Biotech, 
Shanghai, China). Statistical significance was considered 
to be indicated by a p-value < 0.05.

Statistical analysis
SPSS (Version 22.0) was used for all statistical analy-
ses in this study. Continuous data with a normal dis-
tribution between the AMI and normal groups were 
analysed using an independent sample t-test. Non nor-
mal distribution data, such as TG level, were expressed 
as median and quartile ranges, and were analysed using 
the Wilcoxon-Mann–Whitney test. The chi-square test 
was used to analyse measurement data, such as the num-
ber of drinkers and smokers, and the sex ratio. Based on 
previous studies [21], MedCalc software (MedCalc Soft-
ware, Mariakerke, Belgium, version 19.7.4) was used to 
perform nonparametric receiver operating characteristic 
(ROC) curve analysis. R software (version 4.1.0) was used 
to perform the bioinformatics analysis. All tests were 
two-sided, and a p < 0.05 was considered to indicate sta-
tistical significance.

Results
Data pre‑processing
The data were pre-processed by adding missing values, 
deleting outliers, and standardizing the data format. A 
total of 24,958 different gene symbols were screened in 
the 24 samples. The expression profiles of the 24,958 
genes and the clinical features of the 24 samples are also 
shown in Additional file  2: Tables S1 and Additional 
file 3: Table S2.

Weighted gene co‑expression networks
After calculation, we found that when the correlation 
coefficient was greater than 0.8, the corresponding soft 
threshold was 18. Therefore, a soft threshold of 18 was 
selected to construct several gene modules (Fig.  2A). A 
topological overlap matrix was constructed by calculat-
ing the adjacency and correlation matrices of the gene 

http://www.string-db.org
http://www.string-db.org
http://www.wma.net/en/30publications/10policies/b3/
http://www.wma.net/en/30publications/10policies/b3/
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expression profiles. Figure  2B depicts the gene cluster 
tree. Then, hierarchical mean linkage clustering com-
bined with TOM were used to identify gene modules in 
each gene network. The heat map is shown in Fig.  2C. 
The dynamic tree cutting algorithm describes the 12 gene 
modules and is shown in Fig. 2D.

Identification of the modules of interest
Modules closely associated with disease characteristics 
are often found to maintain several specific and very 
important biological functions. As depicted in Fig.  3A, 
the midnightblue (r 2 = 0.67, p = 4e-04) and lightyellow (r 
2 = -0.67, p = 3e-04) modules appeared to be highly corre-
lated with AMI. Further in-depth calculations were per-
formed to calculate the correlation coefficient between 
the colour module and gene significance. The correlation 
coefficient between the midnightblue module and gene 
significance was 0.61 (p = 4.3e-130) (Fig.  3B), while the 
correlation coefficient between the lightyellow module 
and gene significance was 0.42 (p = 1.1e-74) (Fig.  3C). 

A total of 2,993 gene symbols in the midnightblue and 
lightyellow modules and their GS values as well as corre-
sponding p values are also shown in the Additional file 4: 
Tables S3.

Profile of the immune cell subtype distribution pattern
The CIBERSORT algorithm was used to evaluate the dif-
ferential expression of immune fractions between the 
control and AMI subjects. The cumulative histogram 
visually demonstrates the relative proportion of various 
immune cell subtypes (Fig. 4A). As shown in Fig. 4B, the 
heatmap showed that there were significant differences 
in the proportion of immune cells between the control 
and AMI samples. Using a correlation matrix, we found 
that neutrophils were positively correlated with M0 
macrophages; and negatively correlated with Tregs, γδ 
T cells, CD8 + T cells, and resting mast cells (Fig.  4C). 
Compared with normal subjects, AMI samples gener-
ally had decreased infiltration of CD8 + T cells, resting 
mast cells, and γδ T cells, and increased infiltration of 

Fig. 2  Weighted gene co-expression network analysis. A Analysis of network topology for various soft-thresholding powers. B Heatmap of 
the topological overlap in the gene network. C Relationship among all the modules. D Clustering dendrogram of genes. Gene clustering tree 
(dendrogram) obtained by hierarchical clustering of adjacency-based dissimilarity
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neutrophils and M0 macrophages (Fig.  4D). Due to the 
limitations of the CIBERSORT algorithm, the distribu-
tion of several immune cell subsets, including activated 
NK cells, follicular helper T cells (Tfhs), eosinophils, M1 
macrophages, and resting dendritic cells, that have a low 
level of expression in AMI have not been fully elucidated. 
In addition, the immune cell infiltration pattern in AMI 
is also shown in Additional file 5: Tables S4.

Identification of modules that are significantly associated 
with immune cells
Based on the expression profile of genes in the mid-
nightblue and lightyellow modules (Additional file  6: 
Tables S5) and the results of immune cell infiltration in 
the 24 samples, we identified that the salmon (r 2 = 0.64, 
p = 7E-04) module was highly correlated with memory 
B cells (Fig. 5A). Further in-depth calculations were per-
formed to calculate the correlation coefficient between 
the colour module and gene significance. Figure 5B dem-
onstrates that the correlation coefficient between the 
salmon module and gene significance was 0.66 (p = 2.2e-
147). A total of 1,171 gene symbols in the salmon module 
and their GS values and corresponding P values are also 
shown in Additional file 7: Tables S6.

Enrichment analysis of the salmon module
KEGG pathway and GO functional enrichment analysis 
of genes in the salmon module were conducted to explore 
their biological functions. Table 1 and Fig. 6A show the 
top 10 KEGG pathways. Table 2 shows the results of the 
GO enrichment analysis, meanwhile Fig.  6B–D show 
the top 8 biological processes, cellular components, and 
molecular functions, respectively. The details of these 
analyses are presented in Additional file 8: Tables S7 and 
Additional file 9: Table S8.

Construction of the PPI network and identification 
of hub‑genes
As shown in Additional file 1: Figure S1, a PPI network 
with 1,088 nodes and 5,960 edges was built using the 
STRING tool. The MCODE plug-in in Cytohubba soft-
ware was used to analyse the PPI network. Module-1 
(Fig.  7A) had a score of 10.44, the module-2 (Fig.  7B) 
score was 7.306, module-3 (Fig.  7C) score was 6.827, 
while module-4 (Fig.  7D) score was 6.263. In addition, 
the eukaryotic translation elongation factor 1 beta 2 
(EEF1B2) with a degree of 30 in module-1, the Rac family 
small GTPase 2 (RAC2) with a degree of 46 in module-2, 
SPI1 with a degree of 38 in module-3, and ITGAM with 
a degree of 40 in module-4 were identified as hub genes 
closely associated with AMI.

The correlation between key genes and immune cells
As shown in Fig.  8, a correlation matrix was used to 
determine the correlation between key genes and 
immune cells. EEF1B2 was found to be positively cor-
related with γδ T cells, CD8 + T cells, Tregs, and resting 
mast cells, but negatively correlated with neutrophils and 
M0 macrophages. RAC2 was negatively correlated with 
γδ T cells, CD8 + T cells and resting mast cells, while 
SPI1 and ITGAM were positively correlated with neutro-
phils and M0 macrophages but negatively correlated with 
γδ T cells, CD8 + T cells, resting mast cells, and Tregs.

RT‑qPCR
The results of the RT-qPCR indicated that the expression 
levels of SPI1 and ITGAM were significantly elevated in 
AMI patients compared with controls (Fig. 9A).

ROC curve for AMI patients
As shown in Fig. 9B, C, the ROC curve analysis was used 
to calculate the predictive values of SPI1 and ITGAM for 

Fig. 3  Module-feature associations. A Each row corresponds to a modulEigengene and the column to the clinical phenotype. Each cell contains 
the corresponding correlation in the first line and the p-value in the second line. The table is color-coded by correlation according to the color 
legend. Scatterplot shows a highly significant correlation between gene significant (GS) versus module membership (MM) with AMI in the 
midnightblue (B) and lightyellow (C) modules
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AMI patients. The AUC values of SPI1 and ITGAM were 
0.808 (95% CI 0.765–0.851; p < 0.001) and 0.764 (95% CI 
0.717–0.811; p < 0.001) for the prediction of AMI risk, 
respectively.

Demographic and biochemical characteristics
Several clinical features have no significant differences 
between AMI patients and controls, including heart rate, 
age, diastolic blood pressure, sex ratio, apolipoprotein 

Fig. 4  Infiltration pattern of immune cell subtypes in GSE61144 cohort. A The bar plot visualizing the relative percent of 22 immune cell in each 
sample. B Heatmap of the 22 immune cell proportions in each sample. C Correlation heatmap of all 22 immune cells. D Violin plot of all 22 immune 
cells differentially infiltrated fraction
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Fig. 5  Module-feature associations. A Each row corresponds to a modulEigengene and the column to the clinical phenotype. Each cell contains 
the corresponding correlation in the first line and the p-value in the second line. The table is color-coded by correlation according to the color 
legend. Scatterplot shows a highly significant correlation between gene significant (GS) versus module membership (MM) with memory B cells in 
the salmon (B) module

Table 1  KEGG analysis for genes (top 10 significantly enriched terms)

KEGG Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses

Item ID Description P.adjust geneID

KEGG hsa04666 Fc gamma R-mediated phagocytosis 3.28E-10 1785/5594/7454/3055/5595/10094/5337/6850/9846/5335/4082/589
4/4067/1398/10097/5293/10552/10451/5880/5058/3985/3635/5580
/5296

KEGG hsa05152 Tuberculosis 1.30E-08 4802/5868/5594/3684/7099/5595/51135/5534/26253/533/6850/3460/
7097/3459/5993/1378/5894/2033/1051/929/10333/535/1432/3117/71
32/818/9114/11151/1509/5603/3126

KEGG hsa04664 Fc epsilon RI signaling pathway 1.77E-08 5594/241/5595/6850/9846/5335/5894/4067/240/5293/10451/5880/14
32/6655/2205/3635/5603/5296

KEGG hsa05167 Kaposi sarcoma-associated herpesvirus infection 2.21E-08 5594/3055/2783/1147/5595/5534/6850/2787/7311/57580/5335/3459/
6774/3454/5894/2033/4067/6233/3661/5293/3455/7297/1432/7132/2
793/2932/5603/2790/4792/5296/7538/3133

KEGG hsa05164 Influenza A 6.29E-08 3836/5594/1147/7099/5595/51135/3460/3459/3454/5894/9021/2033/
5611/293/23633/3661/5293/10241/3455/7297/6041/3117/7132/29108
/3126/51284/896/4792/5296

KEGG hsa05417 Lipid and atherosclerosis 8.04E-08 4318/5594/1147/7099/3305/5595/51135/5534/3326/5335/7097/6774/
4067/4689/22926/3661/5293/6648/929/10333/10451/6256/1432/7132
/818/3310/29108/2932/19/5603/3304/4792/5296

KEGG hsa05135 Yersinia infection 1.07E-07 5594/7454/1147/7099/5595/10094/51135/391/5335/6195/1398/1009
7/3661/5293/10552/10451/5880/1432/3678/29108/2932/5603/920/4
792/5296

KEGG hsa04380 Osteoclast differentiation 1.14E-07 126014/5594/1147/5595/5534/6688/6850/11025/9846/3460/3459/730
5/3454/9021/4689/5293/3455/7297/1432/7132/5603/7048/4792/5296

KEGG hsa04620 Toll-like receptor signaling pathway 1.93E-07 5594/1147/51311/7099/5595/51135/7097/3454/7100/3661/5293/5447
2/3455/929/10333/1432/6696/5603/51284/4792/5296
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(Apo) B, height and the proportion of alcohol consumed 
(Table 3). However, compared with controls, AMI cases 
had a higher proportion of smoke, and had higher pulse 
pressure, uric acid, glucose levels, systolic blood pres-
sures, levels of triglyceride (TG), LDL-C and TC levels, 
weight, cardiac troponin T (cTnT) levels, creatinine lev-
els, creatine kinase (CK), CK-MB and body mass index 
(BMI). Moreover, the levels of serum ApoA1, high-den-
sity lipoprotein cholesterol (HDL-C), and the ApoA1/
ApoB ratio were remarkably higher in controls than in 
AMI patients.

Discussion
In the past, the formation of atherosclerotic plaque as 
a result of dyslipidemia it was considered as a major 
cause of arteriosclerosis. However, during recent years 
further research has shown that arteriosclerosis is actu-
ally a chronic inflammatory process that induces strong 
immune activity [28]. Previous studies have suggested 
that a variety of immune cells play a key part in athero-
sclerosis. Dounousi et  al. suggested that monocyte sub-
sets play a crucial role in atherogenesis and inflammatory 
cascades in cardiovascular disease. Increasing counts 
and activity of monocytes are closely related to the clini-
cal indexes of chronic kidney disease (CKD), atheroscle-
rosis, and heart failure [29]. T lymphocytes are the most 
critical immune cells found in  vivo. Based on their sur-
face markers and functions, T lymphocytes can be clas-
sified as CD4 + and CD8 + cell subgroups. CD8 + T cells 
play a dual role in atherosclerosis. A compelling study 
pointed out that CD8 + T cells could secrete a variety 
of inflammatory cytokines, which could aggravate the 
inflammatory response and increase the instability of ath-
erosclerotic plaques [30]. Inversely, cytotoxic activity that 

targets antigen presenting cells and regulatory CD8 + T 
cell subsets could effectively suppressed the progression 
of atherosclerosis by alleviating the immune reaction 
[30]. Other immune cell types, including neutrophils [31] 
and mast cells [32], also play a key part in the progres-
sion of cardiovascular disease. Notably, Han et  al. sug-
gested that the proportion of activated dendritic cells and 
Tfhs in CAD was remarkably higher and that the propor-
tion of Tregs, resting CD4 + T cells, and γδ T cells was 
remarkably lower than in the control group. In addition, 
Yang et al. also identified an increase in the infiltration of 
monocytes but a decrease in the infiltration of CD8 + T 
cells in CAD subjects [10]. This data indicates that CAD 
exhibits inflammatory microenvironment patterns. On 
the contrary, persistent T-cell responses induced by myo-
cardial infarction are significantly correlated with subse-
quent left ventricular remodelling, which ultimately leads 
to cardiac arrest and heart failure [33]. These results indi-
cate that the immune system plays a very complex role 
in the pathophysiology of CAD. However, the pattern of 
immune cell infiltration in AMI has not been fully elu-
cidated. To further explore the proportions and types of 
immune cells in AMI patients, the CIBERSORT pack-
age of R software was used to conduct a comprehensive 
assessment of 22 types of immune cell infiltration in 
AMI cases. We noticed that there was a decrease in the 
infiltration of CD8 + T cells, resting mast cells, and γδ T 
cells but an increase in the infiltration of neutrophils and 
M0 macrophages in AMI patients. These results indicate 
that there may be a difference in the immune cell infil-
tration pattern between AMI and CAD. These differ-
ences can better help us understand which immune cells 
play a vital part in processes from the deterioration of 
CAD to AMI. As previously mentioned, compared with 

Fig. 6  KEGG pathway and GO functional enrichment analyses for genes in the salmon module. The x-axis shows the number of genes and the 
y-axis shows the KEGG pathway and GO terms. The -log10 (p-value) of each term is colored according to the legend. A KEGG pathway. B Biological 
process. C Cytological components. D Molecular function



Page 10 of 18Zheng et al. Journal of Translational Medicine          (2022) 20:321 

Table 2  GO analysis for genes (top 8 significantly enriched terms)

Item ID Description GeneRatio P.adjust geneID

BP GO:0042119 neutrophil activation 95/816 1.32E-31 8993/55276/978/338339/79930/2548/10970/961/1
99675/51646/4318/126014/5594/11031/124583/10
555/51316/8694/6556/8972/5005/3101/3684/5171
9/5724/101/25797/27180/5337/391/1992/10533/6
850/11025/3326/57580/7097/9545/7305/5023/226
8/116844/3482/5236/383/64386/83716/2357/3531
89/201294/8876/53831/1378/84106/53917/5686/5
7153/5004/5611/240/6515/410/728/10097/8807/1
084/290/51382/54472/929/23200/5265/11010/158
747/4126/57126/535/1432/28988/2821/3310/5701
/2150/9961/966/51411/1509/29108/3614/10694/8
635/2219/5580/3304/7133

BP GO:0002446 neutrophil mediated immunity 94/816 3.20E-31 8993/55276/978/338339/79930/2548/10970/961/1
99675/51646/4318/126014/5594/11031/124583/10
555/51316/8694/6556/8972/5005/3101/3684/5171
9/5724/101/25797/27180/51135/5337/391/1992/1
0533/6850/11025/3326/7097/9545/7305/5023/226
8/116844/3482/5236/383/64386/83716/2357/3531
89/201294/8876/53831/1378/84106/53917/5686/5
7153/5004/5611/240/6515/410/728/10097/1084/2
90/51382/54472/929/23200/5265/11010/158747/4
126/57126/535/1432/28988/2821/3310/5701/2150
/9961/966/51411/1509/29108/3614/10694/8635/2
219/5580/3304/7133

BP GO:0043312 neutrophil degranulation 92/816 6.51E-31 8993/55276/978/338339/79930/2548/10970/961/1
99675/51646/4318/126014/5594/11031/124583/1
0555/51316/8694/6556/8972/5005/3101/3684/517
19/5724/101/25797/27180/5337/391/1992/10533/
6850/11025/3326/7097/9545/7305/5023/2268/116
844/3482/5236/383/64386/83716/2357/353189/2
01294/8876/53831/1378/84106/53917/5686/5715
3/5004/5611/240/6515/410/728/10097/1084/290/
51382/54472/929/23200/5265/11010/158747/412
6/57126/535/1432/28988/2821/3310/5701/9961/9
66/51411/1509/29108/3614/10694/8635/2219/55
80/3304/7133

BP GO:0002283 neutrophil activation involved in immune 
response

92/816 8.12E-31 8993/55276/978/338339/79930/2548/10970/961/1
99675/51646/4318/126014/5594/11031/124583/1
0555/51316/8694/6556/8972/5005/3101/3684/517
19/5724/101/25797/27180/5337/391/1992/10533/
6850/11025/3326/7097/9545/7305/5023/2268/116
844/3482/5236/383/64386/83716/2357/353189/2
01294/8876/53831/1378/84106/53917/5686/5715
3/5004/5611/240/6515/410/728/10097/1084/290/
51382/54472/929/23200/5265/11010/158747/412
6/57126/535/1432/28988/2821/3310/5701/9961/9
66/51411/1509/29108/3614/10694/8635/2219/55
80/3304/7133

BP GO:0045088 regulation of innate immune response 45/816 1.65E-09 338339/11213/8454/5721/149628/3055/1147/5131
1/7099/101/26253/6850/4068/3460/3326/3459/73
05/2268/383/3148/1378/5894/9021/2033/5686/56
99/4067/1398/3661/8807/11126/56339/3455/5591
/6041/7294/5058/10623/5701/29108/5691/2219/9
252/5580/3133

BP GO:0031349 positive regulation of defense response 47/816 1.26E-08 338339/961/8454/5721/149628/3055/1147/51311/
7099/101/5595/1050/26253/6850/4068/7097/7305
/383/3148/5894/2033/5686/5699/4067/1051/3661/
8807/11126/5591/63940/7132/7294/5058/10623/5
701/2150/29108/5008/64332/5691/5603/2219/925
2/5580/51284/4792/3133
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Table 2  (continued)

Item ID Description GeneRatio P.adjust geneID

BP GO:0002831 regulation of response to biotic stimulus 50/816 6.38E-08 338339/11213/8454/5721/149628/3055/1147/5131
1/10269/7099/101/5595/26253/6850/4068/3460/3
326/3459/7305/2268/383/3148/1378/5894/9021/2
033/5686/5699/4067/1398/3661/10221/8807/1112
6/56339/3455/5591/6041/7294/5058/10623/5701/
2150/29108/5691/2219/9252/5580/81545/3133

BP GO:0002833 positive regulation of response to biotic stimulus 36/816 3.08E-07 338339/8454/5721/149628/3055/1147/51311/709
9/101/26253/6850/4068/7305/383/3148/5894/203
3/5686/5699/4067/3661/8807/11126/5591/7294/5
058/10623/5701/2150/29108/5691/2219/9252/558
0/81545/3133

CC GO:0101002 ficolin-1-rich granule 40/836 5.86E-15 55276/978/338339/79930/2548/51646/4318/5594/
124583/6556/8972/3101/51719/101/25797/10533/
3326/116844/5236/83716/2357/1378/5686/240/65
15/10097/5265/535/1432/28988/2821/3310/5701/
9961/51411/1509/3614/10694/2219/3304

CC GO:1904813 ficolin-1-rich granule lumen 30/836 1.39E-12 55276/978/51646/4318/5594/124583/3101/51719/
25797/10533/3326/116844/5236/83716/5686/240/
10097/5265/1432/28988/2821/3310/5701/9961/51
411/1509/3614/10694/2219/3304

CC GO:0030667 secretory granule membrane 47/836 3.16E-12 338339/79930/2548/10970/961/199675/11031/134
957/10555/8694/6556/8972/3684/5724/101/27180
/5337/391/11025/762/7097/9545/7305/5023/3482/
64386/2357/353189/8876/53831/1378/53917/5715
3/6515/728/1084/290/51382/929/23200/11010/15
8747/4126/57126/535/966/7133

CC GO:0042581 specific granule 32/836 2.64E-11 8993/338339/10970/961/199675/126014/1
24583/10555/8694/5005/3684/101/25797/
5337/5023/116844/383/64386/353189/538
31/57153/5004/311/6515/1084/51382/544‑
72/158747/57126/966/1509/7133

CC GO:0005774 vacuolar membrane 53/836 4.34E-10 2548/10970/51296/2629/79901/528/206358/9842/
2783/55062/51311/5337/533/89849/9516/7311/33
26/9545/523/58528/8408/2357/353189/9043/8876
/6272/57153/51310/7805/11342/526/7056/10241/
290/51382/23200/11010/10211/23531/4126/535/3
117/7942/1175/4864/219931/9528/9114/1509/289
62/9583/3126/51284

CC GO:0034774 secretory granule lumen 44/836 7.37E-10 8993/55276/978/2153/126014/5594/124583/51316
/5005/3101/51719/25797/1992/10533/3326/2268/
116844/383/83716/201294/5686/5004/5611/240/4
10/10097/54472/81/5265/3959/1432/28988/2821/
3310/5701/9961/51411/1509/29108/3614/10694/8
635/2219/5580

CC GO:0070820 tertiary granule 30/836 8.41E-10 8993/978/338339/79930/2548/961/199675/51646/
4318/126014/124583/6556/8972/3684/5724/101/2
5797/5337/116844/5236/2357/53831/1378/5004/6
515/57126/535/28988/966/1509

CC GO:0060205 cytoplasmic vesicle lumen 44/836 8.41E-10 8993/55276/978/2153/126014/5594/124583/51316
/5005/3101/51719/25797/1992/10533/3326/2268/
116844/383/83716/201294/5686/5004/5611/240/4
10/10097/54472/81/5265/3959/1432/28988/2821/
3310/5701/9961/51411/1509/29108/3614/10694/8
635/2219/5580

MF GO:0004674 protein serine/threonine kinase activity 46/831 5.86E-15 55276/978/338339/79930/2548/51646/4318/5594/
124583/6556/8972/3101/51719/101/25797/10533/
3326/116844/5236/83716/2357/1378/5686/240/65
15/10097/5265/535/1432/28988/2821/3310/5701/
9961/51411/1509/3614/10694/2219/3304
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normal samples, the proportion of neutrophils, which 
are involved in ischemic injury after stroke in ischemic 
stroke (IS) samples is generally higher. Neutrophils may 
be a promising target for IS therapies [34]. In addition, 
CD8 + T cells have pleural effects on atherosclerosis, 
and our study showed that the proportion of neutro-
phils were higher and that the proportion of CD8 + T 
cells were lower in the AMI group than in the control 
group. This indicates that neutrophils can accelerate but 
CD8 + T cells inhibit the occurrence and progression of 
AMI. Nevertheless, it is not clear whether the number of 
CD8 + T cells and neutrophils in peripheral blood sam-
ples reflect their infiltration into the vascular wall. Addi-
tionally, the current study also revealed that there were 
several different interactions between different immune 
cells in AMI. We noticed that neutrophils were negatively 
related to Tregs, CD8 + T cells, γδ T cells, and resting 

mast cells, while CD8 T + cells were positively related to 
resting mast cells. The immune cells infiltration analysis 
suggested a complicated network in AMI. Nevertheless, 
the potential mechanism of these relationship between 
infiltrated immune cells needs to be verified using in vivo 
and in vitro studies.

To further identify immune-related key genes 
involved in AMI, we conducted WGCNA combined 
with CIBERSORT to screen key modules that were 
remarkably associated with immune cells, and it was 
indicated that the salmon module was remarkably 
related to the memory B cells. Then, KEGG and GO 
enrichment analyses were conducted to further con-
firm that the genes in the salmon module were mainly 
involved in immune related signalling pathways and 
biological processes. A PPI network was built based on 

Table 2  (continued)

Item ID Description GeneRatio P.adjust geneID

MF GO:0038187 pattern recognition receptor activity 9/831 1.39E-12 55276/978/51646/4318/5594/124583/3101/51719/
25797/10533/3326/116844/5236/83716/5686/240/
10097/5265/1432/28988/2821/3310/5701/9961/51
411/1509/3614/10694/2219/3304

MF GO:0004722 protein serine/threonine phosphatase activity 16/831 3.16E-12 338339/79930/2548/10970/961/199675/11031/134
957/10555/8694/6556/8972/3684/5724/101/27180
/5337/391/11025/762/7097/9545/7305/5023/3482/
64386/2357/353189/8876/53831/1378/53917/5715
3/6515/728/1084/290/51382/929/23200/11010/15
8747/4126/57126/535/966/7133

MF GO:0106306 protein serine phosphatase activity 13/831 2.64E-11 8993/338339/10970/961/199675/126014/1
24583/10555/8694/5005/3684/101/25797/
5337/5023/116844/383/64386/353189/538
31/57153/5004/311/6515/1084/51382/544‑
72/158747/57126/966/1509/7133

MF GO:0106307 protein threonine phosphatase activity 13/831 4.34E-10 2548/10970/51296/2629/79901/528/206358/9842/
2783/55062/51311/5337/533/89849/9516/7311/33
26/9545/523/58528/8408/2357/353189/9043/8876
/6272/57153/51310/7805/11342/526/7056/10241/
290/51382/23200/11010/10211/23531/4126/535/3
117/7942/1175/4864/219931/9528/9114/1509/289
62/9583/3126/51284

MF GO:0001784 phosphotyrosine residue binding 10/831 7.37E-10 8993/55276/978/2153/126014/5594/124583/51316
/5005/3101/51719/25797/1992/10533/3326/2268/
116844/383/83716/201294/5686/5004/5611/240/4
10/10097/54472/81/5265/3959/1432/28988/2821/
3310/5701/9961/51411/1509/29108/3614/10694/8
635/2219/5580

MF GO:0106310 protein serine kinase activity 27/831 8.41E-10 8993/978/338339/79930/2548/961/199675/51646/
4318/126014/124583/6556/8972/3684/5724/101/2
5797/5337/116844/5236/2357/53831/1378/5004/6
515/57126/535/28988/966/1509

MF GO:0004715 non-membrane spanning protein tyrosine kinase 
activity

10/831 8.41E-10 8993/55276/978/2153/126014/5594/124583/51316
/5005/3101/51719/25797/1992/10533/3326/2268/
116844/383/83716/201294/5686/5004/5611/240/4
10/10097/54472/81/5265/3959/1432/28988/2821/
3310/5701/9961/51411/1509/29108/3614/10694/8
635/2219/5580

BP biological processes, CC cellular components, MF molecular functions
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genes in the salmon module. Following the MCODE 
analysis, four different MCODE complexes were 
identified in the salmon module, and four hub genes 
(EEF1B2, RAC2, SPI1 and ITGAM) that were signifi-
cantly correlated with AMI were identified. External 
validation showed that the expression levels of ITGAM 
and SPI1 were significantly different between AMI and 
the control group, while the expression levels of the 
EEF1B2 and RAC2 genes were not significantly differ-
ent between the two groups. These results suggest that 

ITGAM and SPI1 genes may act as key immune-related 
genes involved in AMI.

Previous research has revealed that ITGAM is a mem-
ber of the β2 integrin family of adhesion molecules, 
and adhesion molecules play an indispensable role in 
the recruitment and activation of neutrophils, mac-
rophages, and monocytes during the process of inflam-
mation [35]. Zirlik et al. proved that ITGAM plays a key 
role in inflammatory processes, such as the neutrophils 
and monocytes adhesion to injured endothelial cells and 
trans-endothelial migration, and is also involved in CD40 

Fig. 7  MCODE analysis based on PPI network. A Module-1 with MCODE score = 10.44. B Module-2 with MCODE score = 7.306. C Module-3 with 
MCODE score = 6.827. D Module-4 with MCODE score = 6.263
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Fig. 8  The correlation between key genes and immune cells

Fig. 9  qRT-PCR validation and the ROC curves analysis. A The relative expression levels of EEF1B2, RAC2, SPI1 and ITGAM. The AUC value of SPI1 B 
was 0.808 (95% CI 0.765–0.851; P < 0.001) and ITGAM C was 0.764 (95% CI 0.717–0.811; P < 0.001) for prediction of AMI risk
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ligand-mediated atherosclerotic inflammation [36]. Pre-
vious studies have shown that the transcription profiles of 
monocytes following AMI in mice and human share com-
mon biological characteristics. ITGAM is one of the most 
common inflammation-related genes, has been shown 
to play a key role in monocyte inflammation, intercel-
lular signal transduction, and cell proliferation [37]. On 
the other hand, Wang et  al. found that ITGAM expres-
sion was correlated with various immune cells, includ-
ing Tregs, M2 Macrophages, and that ITGAM plays an 
important role in acute myeloid leukaemia (AML) related 
immune regulation. Elevated ITGAM expression levels 
could predict poor overall survival and poor initial treat-
ment response in patients with AML [38]. In addition, 
Ayari et al. found that ITGAM was significantly overex-
pressed in human carotid plaque [39]. Similarly, in our 
previous study, it was found that the expression levels of 
ITGAM were significantly upregulated in patients with 
CAD, and that high expression levels of ITGAM showed 
high diagnostic efficiency for the recognition ability of 

CAD [40]. However, to our knowledge, no reports have 
been published on the relationship between ITGAM and 
the immune microenvironment in AMI. In the current 
study, we noticed that ITGAM is positively correlated 
with neutrophils and negatively correlated with CD8 + T 
cells and resting mast cells. Meanwhile, we also noted 
that ITGAM was significantly overexpressed in patients 
with AMI. Based on these results, we speculated that the 
level of ITGAM overexpression is significantly correlated 
with the occurrence and development of AMI, and that 
ITGAM is expected to be a novel immune-related target 
for the prevention and treatment of AMI.

SPI1 encodes an ETS-domain transcription factor, 
PU.1, which is essential for the development of myeloid 
cells and B lymphocytes, and is the primary regulator 
of cell-to-cell communication in the immune system 
[41]. Pulugulla et  al. noticed that the expression level 
of SPI1 mRNA is upregulated in activated T cells, and 
it may play a role in regulating the expression of inter-
leukin 1 beta (IL1B) following the activation of CD4 T 

Table 3  Comparison of demographic, lifestyle characteristics and serum lipid levels of the participants

SBP Systolic blood pressure, DBP Diastolic blood pressure, PP Pulse pressure, Glu Glucose, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein 
cholesterol, Apo Apolipoprotein, TC Total cholesterol, TG Triglyceride
a Continuous data were presented as means ± SD and determined by two side t-test
b A chi-square analysis was used to evaluate the difference of the rate between the groups

Characteristic Control(n = 214) AMI
(n = 230)

Test‑statistic P

Male/female c 158/56 169/61 0.007 0.933

Age (years)a 57.51 ± 11.07 58.98 ± 11.87 0.002 0.195

Height (cm)a 162.68 ± 7.64 163.30 ± 7.82 1.110 0.394

Weight (kg)a 56.72 ± 8.17 62.62 ± 11.60 28.115  < 0.001

BMI (kg/m2)a 20.93 ± 3.09 23.39 ± 3.50 1.824  < 0.001

Smoking [n (%)]c 50(32.9) 79 (41.5) 6.488 0.011

Alcohol [n (%)]c 57(26.7) 67(26.2) 0.343 0.558

SBP (mmHg)a 121.51 ± 15.61 136.77 ± 20.34 24.528  < 0.001

DBP (mmHg)a 76.36 ± 9.32 77.85 ± 11.90 8.232 0.145

PP (mmHg)a 45.15 ± 11.10 58.92 ± 19.47 59.144  < 0.001

Glu (mmol/L)a 6.05 ± 1.57 6.45 ± 1.76 8.646 0.009

TC (mmol/L)a 4.36 ± 0.80 4.62 ± 0.92 6.716 0.002

TG (mmol/L)b 0.88(0.43) 1.23(0.66) -7.141  < 0.001

HDL-C (mmol/L)a 1.82 ± 0.45 1.24 ± 0.36 9.799  < 0.001

LDL-C (mmol/L)a 2.68 ± 0.68 3.14 ± 0.96 14.149  < 0.001

ApoA1 (g/L)a 1.41 ± 0.28 1.01 ± 0.23 1.654  < 0.001

ApoB (g/L)a 0.85 ± 0.18 0.84 ± 0.25 10.485 0.803

ApoA1/ApoBa 1.72 ± 0.46 1.30 ± 0.50 0.449  < 0.001

Heart rate (beats/minutes)a 73.08 ± 9.76 73.53 ± 7.61 7.097 0.582

Creatinine, (μmol/L)a 70.72 ± 11.39 74.32 ± 12.64 1.043 0.002

Uric acid, (μmol/L)a 258.57 ± 70.12 274.89 ± 80.99 7.625 0.024

Troponin T, (μg/L)a 0.06 ± 0.03 3.56 ± 1.90 216.138  < 0.001

CK, (U/L)a 72.40 ± 40.58 1055.62 ± 538.35 271.429  < 0.001

CK-MB, (U/L)a 12.11 ± 3.11 133.41 ± 37.74 824.115  < 0.001
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cells [42]. Yashiro et al. found that SPI1 could activate 
the C–C motif chemokine ligand 22 (CCL22) gene in 
dendritic cells and macrophages by directly binding to 
two key elements in the promoter, thereby mediating 
the migration of different subsets of leukocytes during 
the immune response [43]. The continuous overexpres-
sion of SPI1 in hematopoietic cells leads to the differ-
entiation of macrophages, and SPI1 is an important 
regulatory factor for all states of tumour-associated 
macrophages (TAMs). Inhibition of the expression of 
SPI1 can effectively reduce the maturation and polari-
zation of TAMs to play an anti-tumour role [44]. Pre-
vious studies have suggested that SPI1 acts as a key 
transcription factor that regulates the expression of 
several inflammatory genes, and has been found to be 
significantly overexpressed in advanced plaques. High 
expression levels of SPI1 showed modest efficiency in 
distinguishing the capacity of CAD [45]. Similarly, Qiao 
found that SPI1 plays a key role in the occurrence and 
development of ischemic cardiomyopathy and dilated 
cardiomyopathy by regulating apoptosis- and inflam-
mation-related genes [46]. In addition, SPI1 has been 
predicted to regulate the expression of key genes that 
lead to heart failure following AMI [47]. However, the 
correlation between SPI1 and the immune microenvi-
ronment of AMI has not been reported on. Fortunately, 
in this research study, we noted that SPI1 is positively 
correlated with ITGAM and neutrophils but negatively 
correlated with Tregs, CD8 + T cells, and resting mast 
cells. Meanwhile, the gene expression level of SPI1 in 
AMI patients was also significantly higher than those 
in the control group. This suggests that SPI1 may be a 
novel potential molecular target for the diagnosis and 
treatment of AMI.

The current research study has several limitations. 
First, the validation samples included in this study were 
recruited from a single centre and had a small sample 
size. It is not clear whether the findings of this study are 
similar among individuals in other regions and ethnic 
groups. Therefore, the validity of the results of this study 
need to be further tested using multi-centre and larger 
samples. Second, it is not clear whether SPI1 acts as a 
transcription factor to regulate the expression of ITGAM. 
Third, further in vivo and in vitro research is needed to 
clarify the underlying mechanism of the correlations 
between ITGAM and SPI1expression levels and the infil-
tration of immune cells in AMI.

Conclusions
Immune cell infiltration plays a crucial role in the occur-
rence and development of AMI. ITGAM and SPI1 are 
the key immune-related genes that have the potential to 
become targets for the prevention and treatment of AMI.
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