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Abstract 

Background:  Although eukaryotic initiation factor 6 (eIF6) is a novel therapeutic target, data on its importance in 
the development of esophageal carcinoma (ESCA) remains limited. This study evaluated the correlation between eIF6 
expression and metabolic analysis using fluorine-18 fluorodeoxyglucose (18F-FDG) -Positron emission tomography 
(PET) and immune gene signatures in ESCA.

Methods:  This study employed The Cancer Genome Atlas (TCGA) to analyze the expression and prognostic value 
of eIF6, as well as its relationship with the immune gene signatures in ESCA patients. The qRT-PCR and Western blot 
analyses were used to profile the expression of eIF6 in ESCA tissues and different ESCA cell lines. The expression of 
tumor eIF6 and glucose transporter 1 (GLUT1) was examined using immunohistochemical tools in fifty-two ESCA 
patients undergoing routine 18F-FDG PET/CT before surgery. In addition, the cellular responses to eIF6 knockdown in 
human ESCA cells were assessed via the MTS, EdU, flow cytometry and wound healing assays.

Results:  Our data demonstrated that compared with the normal esophageal tissues, eIF6 expression was upregu-
lated in ESCA tumor tissues and showed a high diagnostic value with an area under curve of 0.825 for predicting 
ESCA. High eIF6 expression was significantly correlated with shorter overall survival of patients with esophagus 
adenocarcinoma (p = 0.038), but not in squamous cell carcinoma of the esophagus (p = 0.078). In addition, tumor 
eIF6 was significantly associated with 18F-FDG PET/CT parameters: maximal and mean standardized uptake values 
(SUVmax and SUVmean) and total lesion glycolysis (TLG) (rho = 0.458, 0.460, and 0.300, respectively, p < 0.01) as well as 
GLUT1 expression (rho = 0.453, p < 0.001). A SUVmax cutoff of 18.2 led to prediction of tumor eIF6 expression with an 
accuracy of 0.755. Functional analysis studies demonstrated that knockdown of eIF6 inhibited ESCA cell growth and 
migration, and fueled cell apoptosis. Moreover, the Bulk RNA gene analysis revealed a significant inverse association 
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Introduction
Esophageal carcinoma (ESCA) is a common type of 
malignant tumors, which is divided into two main sub-
types: esophageal squamous cell carcinoma (ESCC) 
which accounts for 90% of the ESCA, while the remain-
ing is esophageal adenocarcinoma (EA) [1]. Due to lack 
of specific treatment for ESCC and methods for its early 
diagnosis, five-year survival rate remain below 15% [2]. 
18F-fludeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT) is a noninva-
sive and preferred early diagnostic tool, which is widely 
employed in the assessment of response to therapy, by 
simultaneous assessment of tumor morphology and 
metabolism over time [3]. Tumor FDG uptake is deter-
mined by the expression of glucose transporter fam-
ily (GLUT1, 3 and 4) and glycolytic enzymes [4]. The 
PET-related parameters include the maximal and mean 
standardized uptake values (SUVmax and SUVmean), 
metabolic tumor volume (MTV), and total lesion glycoly-
sis (TLG), which correlates with biological factors in the 
tumor microenvironment (TME) [5, 6]. Significant corre-
lation was found between PET imaging parameters and 
the in  vivo biological characterization of cancer lesions 
[7–9]. Our previous data also demonstrated that 18F-
FDG PET/CT parameters have important clinical value 
in predicting novel molecular and clinical phenotypes of 
malignant tumors. The phenotypes include nucleophos-
min 1 (NPM1) expression in lung cancer [10], eukaryotic 
translation initiation factor 2 Subunit β (EIF2S2) expres-
sion in colorectal cancer [11], and methyltransferase 3 
(METTL3) expression in ESCA [12].

Eukaryotic initiation factor 6 (eIF6) is the first eIF 
associated with large 60S subunit in the nucleus, which 
is involved in translation initiation [13–15]. Previous 
studies demonstrated that eIF6 is highly expressed in 
human cancers such as colorectal cancer, hepatocellular 
carcinoma, ovarian serous carcinoma, acute promye-
locytic leukemia, non-small cell lung cancer, and affect 
lymphoma genesis and tumor progression [16–20]. In 
addition, eIF6 translational activity regulate fatty acid 
synthesis and glycolysis through upregulation of lipo-
genic and glycolytic enzymes [21]. Scagliola et  al. [22] 
showed that eIF6 induces a metabolic rewiring during 
progression from non-alcoholic fatty liver to hepatocel-
lular carcinoma. However, the functions and molecular 

mechanisms of eIF6 in ESCA remain unclear. FDG 
uptake reflects glucose metabolism in malignant cells 
[6]. This study evaluated the relationship between eIF6 
expression and glucose metabolism using FDG-PET and 
examined the prognostic significance in ESCA patients.

Both metabolic and immune-mediated syndrome in 
the TME have been associated with malignant tumor 
progression and metastasis [23, 24]. Recent studies have 
shown that there is overexpression of eIF6 mRNA in acti-
vated T cells and lymphoid cells [16, 25]. Besides, eIF6 
was shown to be essential in overall immune system, 
particularly for metabolic switch in CD4+ T cell activa-
tion [26]. On the other hand, potential of immune check-
point inhibition (ICI), such as blockage of programmed 
cell death-1 (PD-1)/ PD-1 ligand 1 (PD-L1) pathway, has 
been established in several tumors [27, 28]. However, this 
treatment option has not been applied to all patients, 
thus the need to find new targets.

In this study, we correlated the eIF6 expression with 
patient survival using public database [29], as well as 18F-
FDG PET parameters in ESCA patients. We then used 
ESCA cell lines to elucidate the functions of eIF6. In addi-
tion, we attempted to investigate the association between 
the eIF6 expression and gene signatures of immune cells 
in ESCA. Our data showed that eIF6 might be a potential 
diagnostic and prognostic biomarker in ESCA patients.

Materials and methods
Patient samples
The study respectively reviewed fifty-five patients who 
were surgically treated and had pathologically confirmed 
ESCC in Taihe Hospital from January 2018 to July 2020. 
This study included patients who underwent 18F-FDG 
PET/CT imaging and were analyzed using immunohisto-
chemistry (IHC) tests. The patients had available clinico-
pathological data, and none of them received chemo- or 
radiotherapy prior to the 18F-FDG PET/CT imaging. In 
this study, we used thirteen paired surgically obtained 
samples from patients with ESCA. The fresh-frozen 
ESCA tissues and matched non-tumor tissues were ana-
lyzed by qRT-PCR and Western blot.

18F‑FDG PET/CT imaging and data analysis
Glucose metabolism was assessed by 18F-FDG PET/CT 
imaging using the Biograph mCT (64) system (Siemens 

between eIF6 and the tumor-infiltrating immune cells (macrophages, T cells, or Th1 cells) and immunomodulators in 
the ESCA microenvironment.

Conclusion:  Our study suggested that eIF6 might serve as a potential prognostic biomarker associated with meta-
bolic variability and immune gene signatures in ESCA tumor microenvironment.
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Healthcare, Germany). As described [10, 12], the patients 
fasted for at least 6 h but had free access to water until the 
start of the imaging process. Whole-body position was 
monitored 50  min after intravenous administration of 
FDG (3.7–4.1 MBq/kg) and lasted for about 15 min. The 
PET/CT images were acquired following the manufactur-
er’s protocol. The metabolic parameters of the 18F-FDG 
PET images were evaluated by two experienced nuclear 
medicine physicians who were blinded to the final clinical 
diagnosis. Briefly, a region of interest (ROI) was placed 
around the primary tumor, and then FDG uptake in the 
lesions was determined from the PET images to calculate 
the maximum and mean SUV (SUVmax and SUVmean). 
SUV is defined as tissue concentration (Bq/g) × lean body 
mass (g)/injected dose (MBq)). A SUVmax threshold of 2.5 
was used to define the metabolic tumor volume (MTV) 
(cm3), while total lesion glycolysis (TLG) is obtained by 
multiplying SUVmean by MTV (TLG = ΣMTV × SUVmean) 
[30, 31]. In addition, the MTV and TLG were defined 
semi-automatically using an SUV-based platform as pre-
viously described [12].

Quantitative real time PCR
Total RNA was isolated from frozen tissues and cell lines 
using TRIzol reagent (Thermo Fisher Scientific, USA). 
The RNA was used to synthesize cDNA with RT Master 
Mix kit (TaKara, China). The qRT-PCR experiment was 
performed using a TB Green Premix Ex Taq Kit (TaKaRa, 
China) in the Applied Biosystems ViiA TM 7 Real-time 
PCR system (Life Technologies, CA). We used β-actin 
as an internal control for normalization. The following 
primers were used:

eIF6, Forward: 5′-GGC​CGA​CCA​GGT​GCT​AGT​
AGG-3′; Reverse: 5′- CACAC-CAG​TCA​TTC​ACC​
ACC​ATC​C-3′.
β-actin, Forward: 5′-TCT​TCC​AGC​CTT​CCT​TCC​
T-3′; Reverse: 5′- AGC​ACT​G-TGT​TGG​CGT​ACA​G 
-3′.

Western blot
As previously described [19], fresh tissues or cells were 
collected and digested with RIPA buffer containing 1% 
protease inhibitor on ice. The protein concentrations 
were measured by BCA method (Beyotime Biotechnol-
ogy) and then resolved in SDS-PAGE gel. The protein 
samples were transferred onto PVDF membranes (Mil-
lipore, USA), followed by incubation with primary anti-
bodies; anti-eIF6 (Thermofisher, Waltham, MA, USA), 
anti-GLUT1 (Abcam, Cambridge, UK), anti-Ecadherin 
(BD Pharmigen, USA), anti-Vimentin (Abcam), anti-
Cytochrome c (Cyt c, Abcam), anti-CD45 (Proteintech, 

China), anti-CD11b (Abcam), anti-PD-L1 (Proteintech) 
or anti-GAPDH (Cell Signaling Technology, USA) at 4 °C 
overnight. The membranes were washed with TBST, and 
then incubated with secondary antibodies (Cell Signaling 
Technology, USA) for 1  h at room temperature. Finally, 
the proteins were visualized by an enhanced chemilumi-
nescence (ECL) detection kit.

Immunohistochemical (IHC) assay
IHC staining was performed following a previously 
described protocol [10]. Briefly, the samples were dis-
sected on 5-μm-thick tissue sections embedded in par-
affin, and then incubated with antibodies against eIF6 
(1:400), GLUT1 (1:200), followed by secondary anti-
bodies. Two pathologists who were blinded to clinical 
data independently analyzed the IHC data. The protein 
expression was profiled based on the staining intensity 
score, from 0 (negative), 1 + (weakly positive), 2 + (mod-
erately positive) to 3 + (strongly positive). High- or low-
expression was defined with scores equal to or above, and 
below the final IHC staining score 2, respectively.

Gene expression pattern and patient prognosis in public 
datasets
We downloaded the mRNA expression (HTSeq counts) 
and associated clinical data for different human cancers 
from the TCGA (https://​portal.​gdc.​cancer.​gov/). The 
expression profiles were plotted in the ggplot2 R (https://​
github.​com/​tidyv​erse/​ggplo​t2). On the other hand, sur-
vival curve was demonstrated using Kaplan–Meier 
plots [32]. To evaluate the predictive accuracy of eIF6 in 
TCGA cancers, “pROC” in R package was used to gener-
ate the time-dependent receiver operating characteristic 
(ROC) curve and then the area under curve (AUC) was 
calculated.

Enrichment analysis and functional networks in ESCA
The eIF6 co-expression genes in the TCGA-ESCA were 
analyzed by DESeq2 R package. We then performed 
correlation analysis of the different variables using the 
Spearman’s or Pearson’s correlation test and Fisher’s 
exact test. Gene ontology (GO) biological process and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis were performed using the 
clusterProfiler in R package (p.adj < 0.1 & qvalue < 0.2). 
Thereafter, top 200 protein coding genes significantly 
correlated with eIF6 were screened out for construction 
of PPI networks. Each network node was determined and 
visualized with CytoHubba plugin in Cytoscape. The top 
10 genes with most connections were selected and con-
sidered to be ‘hub’ genes.

Next, the TCGA-ESCA samples were classified into two 
groups based on the eIF6A expression status. The edgeR 

https://portal.gdc.cancer.gov/
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2
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package in Bioconductor was used to define differentially 
expressed genes (DEGs) between the eIF6 high and low 
ESCA samples (|log2FC|> 1.5, p value < 0.05). In addi-
tion, we used the GSEA to investigate meaningful bio-
logical processes. The hallmark gene sets and glycolysis 
signatures (REACTOME_GLYCOLYSIS, KEGG_GLYC-
OLYSIS_GKYCIBEIGENES, and HALLMARK_GLYCO-
LYSIS) were downloaded from the Molecular Signatures 
Database (MSigDB). The false discovery rate (FDR) cut-
off of 0.25, and an adjusted p < 0.05 were considered sig-
nificance. Besides, 282 glycolytic genes in three glycolysis 
signatures were downloaded from the MSigDB database. 
Pearson correlation coefficients of the eIF6 expression 
and glycolytic genes were calculated using TIMER data-
base and DESeq2 R package in the TCGA database.

Cell culture and transfection
Human epithelial cell line (HET1A cells) and ESCA cell 
lines (Eca109, KYSE30, KYSE150, CEC2) were obtained 
from the Cell Bank of Chinese Academy of Sciences 
(Shanghai, China). The cells were transfected with eIF6 
siRNA using Lipofectamine 8000 transfection reagent 
(Beyotime, China), following the manufacturer’s instruc-
tions. The target sequences were: 5ʹ-CTG​CTT​TGC​CAA​
GCT​CAC​CAA-3ʹ for siRNA-1 (sieIF6-1) and 5ʹ-CTG​
GTG​CAT​CCC​AAG​ACT​TCA-3ʹ for siRNA-2 (sieIF6-2).

Cell viability analysis using MTS assay and EdU 
proliferation assay
The ESCA cells were seeded into 96-well plates and 
transfected with siRNA. After transfection for 0, 24, 48 
or 72 h, we added MTS (CellTiter 96 Aqueous One Solu-
tion Cell Proliferation Assay, Promega) to each well and 
then incubated for 2 h. The optical density (OD) was then 
measured at 490  nm using a microplate reader (Spec-
traMax M3). Another proliferation assay was performed 
with the usage of an EdU kit (ClickTM, EDU 488, Bey-
otime) according to the manufacturers instruction. In 
brief, the transfected cells were incubated with diluted 
EdU (10 uM) for 2 h. Subsequently, cells were fixed and 
stained by Click Reaction Mixture and DAPI. Images 
were captured from five random fields under a fluores-
cent microscope. Finally, percentage of EdU positive cells 
was quantitated using Image J software.

Flow cytometry analysis of apoptosis
Cell apoptosis was quantified by an Annexin V-FITC 
Apoptosis Detection Kit (BD Pharmigen, USA). The 
treated cells were harvested and washed twice with PBS. 
Afterwards, the cells were resuspended and then 3  µl 

FITC-conjugated annexin V and 10 µl propidium iodide 
staining solution were added. The rate of apoptosis was 
immediately measured using a FACS Calibur flow cytom-
eter (BD Bioscience, USA).

Wound healing assay
The cells were plated overnight and scratched by a 10 
μL pipette tip. Subsequently, the cells were washed with 
sterile PBS and then refilled with complete medium. 
After transfection with siRNA, the wounded cells were 
analyzed every day by a microscope and then analyzed 
using Image J software.

Estimation of immune cell characteristics
TCGA-ESCA patients were classified into low-expression 
or high-expression group based on the eIF6 expression. 
The xCell in R package was employed to evaluate immune 
and stroma cell abundance in the two groups. The rela-
tive immune signature score was estimated using the R 
GSVA package [33, 34]. In addition, the Tumor Immune 
System Interactions (TISIDB) database was used to study 
immune-related gens and immune subtypes, based on 
the eIF6 expression [35]. On the other hand, the Tumor 
Immune Estimation Resource (TIMER, https://​cistr​ome.​
shiny​apps.​io/​timer/) was used to define the correlation 
using the spearman correlation coefficient of a pair of 
genes and then estimated statistical significance, as well 
as tumor purity in ESCA. In addition, the correlation 
between the eIF6 expression and different immune signa-
tures in ESCA samples in the GEPIA2 databases (http://​
gepia2.​cancer-​pku.​cn) was calculated using Pearson’s 
correlation test.

Statistical analysis
SPSS package (version 16.0, SPSS for Windows, 2007) 
and R package version (4.0.3) were used for statistical 
analyses. A p < 0.05 was used to define statistical signifi-
cance. In this study, the survival and ROC analysis were 
carried out in R or corresponding R packages which 
included survival, survminer and pROC. For bivariate 
analysis, χ2 test, χ2 test or Fishers exact test were used. 
Spearman’s rho test was used to evaluate the correlation 
between the PET parameters and eIF6 expression levels 
in the ESCA patients. In addition, we used the greatest 
Youden index (sensitivity + specificity – 1) to define opti-
mal cutoff value for the ROC curve. The T-test and Wil-
cox tests were used to compare differences between two 
groups, while comparisons among multiple groups were 
performed using the Tukey and the Wilcox tests. Statisti-
cal analysis and visualization were performed using the R 
Statistical Package and ggplot2 package.

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://gepia2.cancer-pku.cn
http://gepia2.cancer-pku.cn
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Results
Upregulation of eIF6 is associated with ESCA patient 
prognosis
The eIF6 mRNA expression was analyzed in pan cancers 
in the TCGA database. The data demonstrated signifi-
cantly higher expression of eIF6 mRNA in several can-
cer types, including bladder, breast, colorectal, ESCA, 
head and neck squamous cell, liver, lung, pancreatic, 

stomach, thyroid, and uterine corpus endometrial can-
cers, compared with normal tissues, while lower expres-
sion was observed in kidney cancer (Fig. 1A). In addition, 
a higher level of eIF6 expression was observed in ESCA 
and EA compared to normal tissues in the TCGA cohort 
(Fig.  1B). Thereafter, the eIF6 expression pattern was 
validated by qRT-PCR (Fig. 1C) and Western blot analy-
ses (Fig.  1D) in fresh paired ESCC and adjacent patient 

Fig. 1  eIF6 is upregulated in ESCA tumor tissues and correlates with the prognosis of ESCA patients. A Expression patterns of human eIF6 mRNA 
across multiple types of tumor tissues and normal tissues. B eIF6 mRNA expression levels in EA (n = 80), ESCC tumor tissues (n = 82), and normal 
tissues (n = 11) from the TCGA-ESCA cohort. C The expression level of eIF6 was determined by qRT-PCR and Western blotting (D) in 13 paired ESCC 
tissues and adjacent tissues. T, ESCA tissues; N, paired adjacent normal tissues. E Representative IHC images and scores F of eIF6 in adjacent normal 
tissues and ESCC tissues (normal = 38, tumor = 52). G ROC curve showing the diagnostic value of eIF6 patients with ESCA (n = 162). H Kaplan–Meier 
curves showing the OS in EA and ESCC I patients based on the eIF6 mRNA expression level. *p < 0.05, **p < 0.01, ***p < 0.001
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tissues. Our data showed that eIF6 was significantly 
upregulated in ESCC tissues. We then performed IHC 
analysis in fifty-two patients and showed that the tumor 
tissues had higher expression of eIF6 compared with nor-
mal epithelia tissues (p < 0.05, Fig. 1E, F).

The 52 ESCC patients were divided into the eIF6-low 
(n = 35) and eIF6-high (n = 17) expression group. Sub-
sequent analyses revealed that there was significant 
correlation between the eIF6 expression and SUVmax 
(p = 0.010) or SUVmean (p = 0.018), but not with gender, 
age, differential status, lymph node metastasis, p stage, 
TLG or MTV (Table  1). Finally, the ROC curve analy-
ses demonstrated that eIF6 displayed superior diagnos-
tic accuracy (AUC = 0.825, 95% CI, 0.662–0.988) which 
could distinguish the ESCA patients from healthy con-
trols (Fig. 1G). Notably, higher eIF6 expression was nega-
tively associated with survival time of patients with EA 
(n = 80, p = 0.038), but not with ESCC Kaplan-merrier 
plot (n = 81, p = 0.078) (Fig. 1H, I).

Metabolic pathway enrichment analysis of eIF6 in ESCA
To evaluate the biological interaction network and 
related signaling pathways associated with eIF6, the top 
10 genes most positively or negatively correlated with 
eIF6 were analyzed in the heat map (Fig.  2A). ESCA 
eIF6 expression was positively correlated with ROMO1 
expression (r = 0.64, p = 3.53E−20), but negatively asso-
ciated with AL021368.2 (r = − 0.50, p = 1.16E−11). 
Our enriched GO terms analysis demonstrated that the 
genes that encode proteins correlated with eIF6 might 
be participating in membrane depolarization during 
action potential, constitute the extracellular structural 
matrix, alpha-actin in binding, and ion channel bind-
ing processes. The KEGG enrichment analysis showed 
that eIF6 is involved in cGMP-PKG signaling and plate-
let activation pathways (Fig.  2B). In addition, to iden-
tify top hub genes, we constructed a protein–protein 
interaction (PPI) network and showed that RPS21 and 
PSMA7 play key roles (Fig.  2C). On the other hand, a 
total of 2814 DEGs were screened upon eIF6 expression 
in 181 ESCA patients (Fig. 2D). GSEA was used to per-
form hallmark analysis for eIF6 and showed that most 
significant pathways in high- eIF6 group included HALL-
MARK_MYC_TARGETS (NES = 3.05, p.adjust = 0.017) 
and HALLMARK_OXIDATIVE_PHOSPHORYLATION 
(NES = 2.97, p.adjust = 0.018) (Fig.  2E). In addition, 
the functional analyses showed that glycolytic path-
ways such as KEGG_GLYCOLYSIS_GKYCIBEIGENES 

Table 1  Clinicopathological characteristics of 52 patients

Variables eIF6—low (N, %) eIF6—high (N, %) p

Total 35(67.3%) 17 (32.7%)

Clinical parameters

 Gender 1.000

  Male 28 (53.8%) 14 (26.9%)

  Female 7 (13.5%) 3 (5.8%)

 Age ( years) 0.854

  < 60 21 (40.4%) 9 (17.3%)

  ≥ 60 14 (26.9%) 8 (15.4%)

 Differential 0.662

  Poorly 14 (26.9%) 5 (9.6%)

  High/Moderately 21 (40.4%) 12 (23.1%)

 Lymph node 
metastasis

1.000

  Negative 20 (38.5%) 9 (17.3%)

  Positive 15 (28.8%) 8 (15.4%)

 p Stage 0.098

  1 12 (23.1%) 1 (1.9%)

  2 5 (9.6%) 4 (7.7%)

  3 18 (34.6%) 12 (23.1%)

PET metabolic param-
eters

(median)

 SUVmax 0.010*

  Low 21 (40.4%) 3 (5.8%)

  High 14 (26.9%) 14 (26.9%)

 SUVmean 0.018*

  Low 22 (42.3%) 4 (7.7%)

  High 13 (25%) 13 (25%)

 TLG 0.237

  Low 20 (38.5%) 6 (11.5%)

  High 15 (28.8%) 11 (21.2%)

 MTV 1.000

  Low 18 (34.6%) 8 (15.4%)

  High 17 (32.7%) 9 (17.3%)

(See figure on next page.)
Fig. 2  Functional analysis of the genes correlated or regulated by eIF6 in TCGA database. A A heat map of the top 10 genes correlated with eIF6 
in the TCGA-ESCA patients. B Bubble diagrams showing the enrichment results of the top 200 genes correlated with eIF6 in ESCA. C The top 10 
hub genes with the most connected degrees determined using the cytoHubba plugin in Cytoscape. D Volcano plots displaying the differentially 
expressed genes correlated with eIF6. E The HALLMARK pathways and glycolysis signatures that were significantly in patients with high or low eIF6 
expression as determined with GSEA. F Venn diagram of the glycolytic genes that significantly correlated with eIF6 in TIMER database and TCGA 
database, and differentially expressed in high and low eIF6 expressing ESCA groups. G The expression of eight glycolytic genes identified from the 
Venn diagram in tumor tissues and normal tissues in TCGA-ESCA database. *p < 0.05, **p < 0.01, ***p < 0.001. H Overall survival curve of patients with 
ESCC according to their GPC1 or GOT1 expression in Kaplan–Meier plot database
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and REACTOME_GLYCOLYSIS were associated with 
eIF6 expression (p.adjust < 0.05) (Fig.  2E). Moreover, we 
employed correlation analysis to screen glycolytic genes 

that are differentially expressed in eIF6 high and low 
expression groups, including GALK1, GOT1, GPC1, 
ENO2, GALM, G6PC, HK1, and GNPDA2 (Fig. 2F). We 

Fig. 2  (See legend on previous page.)
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further profiled the transcriptional expression and sur-
vival of the 8 significant genes in TCGA ESCA samples. 
Both GPC1 and GOT1 genes were upregulated in tumor 
tissues, and were implicated in poor ESCA prognosis 
(Fig. 2G, H, p < 0.05).

Overexpression of eIF6 is associated with glucose 
metabolism in ESCA patients based on.18F‑FDG PET‑CT 
imaging
To further investigate whether eIF6 influences tumor 
metabolism in ESCA, 18F-FDG PET/CT metabolic 
parameters were analyzed based on the eIF6 expression 
in 52 ESCC patients (Table 2). The SUVmax and SUVmean 
were larger in ESCC patients with high eIF6 expression 
than in the low eIF6 expression group (p < 0.05). There 
was no significant statistical differences in TLG and 
MTV according to the eIF6 expression. Representative 
PET/CT images of ESCA patients with high (Fig. 3A) or 
low (Fig. 3B) SUVmax are displayed. Patients with higher 
values of the primary lesion SUVmax had higher expres-
sion of eIF6 and GLUT1, compared to those with lower 
SUVmax values (p < 0.05, Fig.  3C, D). Besides, there was 
significant correlation between eIF6 protein levels and 
SUVmax, SUVmean or TLG (rho = 0.458, 0.460, and 
0.300, respectively, p < 0.01, Fig. 4A, B, D). However, eIF6 
intensity score showed no statistical correlation with 
MTV (Fig. 4C). These results demonstrated that eIF6 is 
associated with glucose metabolism in ESCA.

Predictors of eIF6 expression in ESCA patients
We next sought to determine the threshold of PET 
parameters that would predict tumor eIF6 status in pri-
mary ESCA. ROC curve analysis revealed a SUVmax and 
SUVmean cutoff values of 18.2 and 10.52, respectively, 
which were related to AUC of 0.755 (sensitivity 76.5%, 
specificity 80.0%) and 0.736 (sensitivity 70.6%, specific-
ity 77.1%) (Fig.  4E). Next, we analyzed the relationship 
between eIF6 and GLUT1 expression. The data showed 
a positive correlation between the immunohistochem-
istry scores of eIF6 and GLUT1 (rho = 0.453, p < 0.001, 
Fig. 4F).

Suppression of eIF6 inhibits the ESCA cell proliferation 
and migration
To explore the anti-tumor effect of eIF6 on human ESCA, 
we evaluated the eIF6 protein expression in four ESCA 
cell lines and a human epithelial cell line (HET1A). Com-
pared with HET1A, there was higher expression of eIF6 
in KYSE30, KYSE150, and Eca109 cells (Fig. 5A). Specific 
siRNAs were used to silence eIF6 in Eca109 and KYSE30 
cells, and interfering efficiency was confirmed by qRT-
PCR and Western blot analysis (Fig. 5B). We determined 
cell viability using both MTS assay (Fig.  5C) and EdU 
proliferation assay (Fig. 5D). The results showed that the 
cell viability of both siRNA (sieIF6) group was signifi-
cantly lower than that of scramble siRNA control (siCtrl) 
group (p < 0.05).

It was evident from the FCM assay that treatment with 
eIF6 siRNA#1 induced a higher percentage of apoptotic 
cells as compared to those treated with control siRNA 
(Fig. 6A). In addition, wound healing assay demonstrated 
that treatment with eIF6 siRNA significantly inhibited 
migration of ESCA cell lines (Fig. 6B). To understand the 
potential mechanisms, we performed Western blot anal-
ysis. Unlike the siCtrl results in the Eca109 and KYSE30 
cells, the eIF6 knockdown suppressed the expression 
of GLUT1 and Vimentin, a mesenchymal cytoskeletal 
marker, but promoted the expression of E-cadherin, an 
epithelial regulator, and Cyt c, which is a biochemical 
marker for apoptosis (Fig.  6C). These data suggest that 
eIF6 promotes ESCA cell proliferation and motility.

The association between eIF6 and Tumor Immune 
Infiltration in ESCA
We then assessed whether eIF6 expression was corre-
lated with the characteristics of immune cells in ESCA. 
The xCell analysis revealed that the abundance of dif-
ferent types of lymphocytes such as, CD4+ T cells (non-
regulatory), CD4+ T cells (Th1), Hematopoietic stem cell, 
NK cell, and stroma score was statistically different in 
the eIF6 high group and low group (p < 0 0.05, Fig. 7A). 
In sync, the lollipop plot of ssGSEA analysis showed 
that eIF6 expression was negatively correlated with the 
intensity of immunocytes, such as Tcm (r = − 0.388, 
p < 0.001), NK cells (r = − 0.386, p < 0.001), T helper 
cells (r = − 0.368, p < 0.001), Macrophages (r = − 0.208, 

Table 2  Comparison of PET metabolic parameter according to eIF6 expression

PET metabolic parameter eIF6—low (n = 35) eIF6—high (n = 17) p

SUVmax (mean ± SD) 14.46 ± 7.69 20.3 ± 7.45 0.012*

SUVmean (mean ± SD) 8.18 ± 4.06 11.59 ± 4.47 0.008*

TLG (median, range) 21.98 (9.64–79.68) 32.81 (18.59–163.81) 0.095

MTV (median, range) 3.57 (1.9–8.63) 3.74 (2.06–14.18) 0.619
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p = 0.008), T cells, Th2 cells, Th1 cells or iDCs, while pos-
itively correlated with the abundance of NK CD56 bright 
cells (r = 0.232, p = 0.003) and Th17 cells (r = 0.198, 
p = 0.011) (Fig. 7B). Besides, the violin plot indicated that 
the eIF6 high expression group had significantly lower B 
cells, T cells, NK cells, cytotoxic cells, mast cells, T helper 
cells, Th1 cells, and Th2 cells (p < 0 0.05, Fig. 7C).

Association between eIF6 expression and immune marker 
sets in ESCA
Further correlation analysis suggested that about half 
of the immunomodulators (chemokines, MHC-s, and 

immune stimulators) were negatively correlated with 
eIF6 in ESCA (Fig.  8A). There were no obvious differ-
ences in the correlation regardless of the tumor purity 
adjustment. Most marker sets of monocytes, TAMs 
and M2 macrophages exhibited significant correla-
tion with eIF6 expression in both TIMER and GEPIA2 
databases (p < 0.05, Table  3). Moreover, CD3E and CD2 
of T cells, TBX21 and STAT4 of Th1 phenotype, BCL6, 
CD278 (ICOS) or CXCL13 of follicular T helper (Tfh) 
were negatively correlated with eIF6 expression in ESCA 
(p < 0.05, Table  4). According to the ssGSEA score of 
the gene sets, there was a negative correlation between 

Fig. 3  The expression of eIF6 and GLUT1 in ESCA patients with high and low 18F-FDG levels. A, B Representative PET/CT images for ESCC patients 
with different SUVmax values. C IHC staining for eIF6 and GLUT1 (D) in ESCC patients with high (n = 28) and low (n = 24) SUVmax values. *p < 0.05, 
**p < 0.01
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eIF6 and various immune checkpoints, such as TGFBR1 
(r = − 0.300), CSF1R (r = − 0.274), PD-L2 (PDCD1LG2, 
r = − 0.238), BTLA, CTLA4, CD96, TIGIT, HAVCR2, 
IL10, and VTCN1 in ESCA (p < 0.05, Fig.  8B). TIMER 
and GEPIA2 correlation analyses demonstrated that the 
immune marker genes of Treg and T cell exhaustion, such 
as CD25 (IL2RA), CTLA4, LAG3 and TIM-3 (HAVCR2) 
were significantly correlated with eIF6 expression in 
ESCA (Table  4). These findings were also observed in 
the GEPIA2 database. Similarly, eIF6 was negatively cor-
related with the immune signature of effector T cells 
(r = − 0.3), exhausted T cells (r = − 0.23), effector Treg T 
cells (r = − 0.22), and Th1 like cells (r = − 0.22) in ESCA 
(Fig.  8D). As illustrated in Fig.  8C, the protein level of 
CD45 and CD11b were enhanced in Eca109 cells after 
eIF6 knockdown, whereas the PD-L1 expression was not 
obviously affected as evident by the immunoblot analysis. 
Taken together, these findings suggested that eIF6 might 
participate in the immune responses and immune escape 
within the TME in ESCA.

Discussion
The eukaryotic translation initiation factor eIF6 plays an 
essential role in cell growth and transformation, apop-
tosis, mitochondrial respiration, as well as lipogenic and 
glycolytic process [15, 21, 22, 36]. Although overexpres-
sion and oncogenic functions of eIF6 have been docu-
mented in other cancers, the role and biological functions 
of eIF6 in ESCA remains poorly understood. Herein, our 
results demonstrated that eIF6 was up regulated both in 
ESCA tissues and cell lines, and high eIF6 expression led 
to poor prognosis in EA patients, with a favorable diag-
nostic reference value in ESCA. Moreover, knockdown 
of eIF6 significantly suppressed cell proliferation and 
migration, and induced cell apoptosis in the ESCA cells. 
The PET parameters have previously shown a remark-
able potential for predicting gene expression status in 
cancers [37–39]. Our IHC analysis revealed that tumor 
eIF6 expression was positively correlated with FDG PET 
parameters in ESCA tissues. In addition, SUVmax and 
SUVmean might act as suitable predictors of eIF6 expres-
sion in patients with ESCA. On the other hand, the bio-
informatics analyses suggested that eIF6 is involved in 
metabolic pathways and tumor immune infiltration in 

Fig. 4  eIF6 is positively correlated with FDG accumulation in ESCA patients. A Scatter plots showing the correlation of SUVmax, SUVmean (B), MTV 
(C), and TLG (D) with the protein level of eIF6. E Determination of the cutoff value of SUVmax, SUVmean, TLG, and MTV from the ROC curve showing 
the prediction performance of eIF6. The area under the SUVmax, SUVmean, TLG and MTV ROC curve was 0.755, 0.736, 0.644, and 0.543, respectively. 
F The expression of eIF6 protein was significantly positively correlated with GLUT1, r = 0.453
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ESCA. These findings emphasize the oncogenic role of 
eIF6 and its therapeutic potential in the ESCA.

Our bioinformatics analyses demonstrated that high 
eIF6 expression predicted worse prognosis in ESCA 
patients. This was in sync with observations for human 
colorectal cancer, biliary tract cancer, hepatocellular car-
cinoma and lung adenocarcinoma [17, 19, 20, 40]. A pre-
vious study showed that eIF6 knockout mice impacted 
Myc-induced lymphomagenesis and tumor progression 
by modulating p53 [15]. Another study showed that high 
eIF6 expression is significantly associated with clinico-
pathological features, such as lymph node metastases in 
ovarian serous carcinoma [18]. Through IHC staining 
analysis, Gantenbein et  al. [17] demonstrated signifi-
cant differences in the eIF6 expression between higher 
and lower grade lung adenocarcinoma, but not in lung 
squamous cell carcinoma. In our study, eIF6 knockdown 
in ESCA cells inhibited cell migration via regulation of 
EMT marker genes. However, our data showed that eIF6 
expression was not significantly associated with lymph 

node metastasis and p stages in ESCA tumors, prob-
ably due to different tumor-specific roles of eIF6 or small 
sample size.

Previously, Scagliola et  al. [22] postulated that eIF6 
depletion delays the liver disease progression from 
non-alcoholic fatty liver disease to hepatocellular 
carcinoma in  vivo. Mechanistically, eIF6 depletion 
regulated mitochondrial respiration by targeting the 
mTORC1-eIF4F-YY1 translational axons. Cancer cells 
preferentially use aerobic glycolysis for stimulate ATP 
generation and lactate production (Warburg effect) 
[41]. Interestingly, inhibition of eIF6 could reduce cell 
growth by impairing lactate and ATP production in 
Malignant Pleural Mesothelioma [42]. Moreover, a 
previous systematic review demonstrated that eIF6 
promoted glycolytic flux and fatty acid synthesis and 
increased tumor viability. But the mechanism through 
which mTOR or Myc regulate the activity of eIF6 need 
to be further investigated [43]. Our GSEA results 

Fig. 5  Silencing eIF6 expression inhibited the proliferation of ESCA cells. A Western blot analysis of eIF6 protein in normal epithelial cells (HET1A) 
and different ESCA cell lines. B qRT-PCR and Western blot analysis confirming the success of eIF6-siRNAs transfection. C Silencing of eIF6 expression 
reduced the growth of Eca109 and KYSE30 cells as revealed by MTS assays at 24, 48, and 72 h after transfection. D Cell proliferation decreased after 
eIF6-siRNAs treatment as detected by EdU staining. *p < 0.05, **p < 0.01, ***p < 0.001
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demonstrated that the highly expressed eIF6 in ESCA 
patients regulated several metabolic pathways such as 
HALLMARK_MYC_TARGETS, HALLMARK_OXIDA-
TIVE_PHOSPHORYLATION, REACTOME_GLYCOL-
YSIS, and KEGG_GLYCOLYSIS_GKYCIBEIGENES. In 
recent years, 18F-FDG PET/CT has emerged as a non-
invasive diagnostic tool for evaluating tumor glycolytic 
activity, diagnosing and staging of various malignant 

tumors [44, 45]. Molecular imaging can be applied to 
reveal the molecular profile of cancers [38, 46, 47]. This 
study found that high eIF6 expression was positively 
correlated with FDG uptake (in terms of SUVmax and 
SUVmean) and the expression of GLUT1 in ESCA tissue. 
These results are in agreement with data from previous 
studies [12]. In addition, it was found that the SUVmax 
cutoff for PET/CT parameter was 18.2, which was more 

Fig. 6  Knockdown eIF6 induced apoptosis and inhibited cell migration in ESCA. A The effect of eIF6 knockdown on apoptosis of Eca109 and 
KYSE30 cells as detected by flow cytometry. B Representative images and quantification showing results of the wound healing assay in ESCA cells. C 
Western blotting displayed the protein expression following eIF6 siRNA transfection in Eca109 and KYSE30 cells. *p < 0.05, **p < 0.01, ***p < 0.001
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effective compared to the SUVmean, TLG, and MTV in 
predicting eIF6 expression. For these reasons, noninva-
sive methods, such as molecular imaging, could be used 
for predicting eIF6 status have great clinical relevance.

Evidence from previous studies has shown that immune 
cells or immune-related biomarkers in the TME can pre-
dict the survival outcomes and influence response to 
immune checkpoint therapy [48, 49]. By combining con-
trast-enhanced CT images and RNA-seq genomic data 
from tumour biopsies, Roger et  al. demonstrated that 
imaging biomarker could be useful in estimating CD8 cell 
count and predicting clinical outcomes of patients treated 

with anti-PD-1 and PD-L1[49]. The dual roles of mutation 
burden and MS-indels was identified in predicting out-
comes of central nervous system and synchronous cancers 
following immune checkpoint inhibitors (ICIs) treatment 
[50]. Thus, analysis of the cancer-specific immune bio-
markers may reveal novel molecular targets for ESCA 
treatment. Here, using the xCell algorithm analysis, eIF6 
was found to be negatively correlated with CD4 + T cells, 
hematopoietic stem cell, NK cell, T helper cells, mac-
rophages, T cells, Th2 cells, Th1 cells, iDCs, among oth-
ers. Moreover, the expression of eIF6 were negatively 
correlated with immune marker genes, such as genes of 

Fig. 7  Immune characteristics between eIF6 high and low expression groups. A Tumor immune status of the high (n = 81) and low eIF6 expression 
groups (n = 81) using xCell microenvironment scores in the TCGA datasets. B Lollipop plot showing the correlation between the relative abundance 
of immune cells and eIF6 gene expression levels in the TCGA-ESCA samples determined using the ssGSEA method. C Violin plot displaying 
differences in 13 immune cell types between low and high eIF6 expression groups. *p < 0.05, **p < 0.01, ***p < 0.001
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monocytes, TAMs, M2 macrophages, T cell, Th1, and Tfh 
phenotype. These result demonstrate that eIF6 expression 
may be negatively correlated with immune cells includ-
ing macrophages, T cells, and Th1 cells. We subsequently 
verified that showed that eIF6 silencing increased the 
expression of macrophage markers CD45 and CD11b in 
ESCA cells. Previous studies suggested that cancer cells 
also acquired immune regulatory membrane proteins 
such as PD-L1, CD4, CD45, CTLA4 and Tim3 expressed 

in lymphocytes, which in turn contribute to the develop-
ment of the immunosuppressive tumor microenviron-
ment [51–53]. Whether CD45 or CD11b -positive cancer 
cells could regulate the ESCA tumor microenvironment 
remains further exploration. Consistently, a previous study 
revealed that eIF6 overexpression increase the number 
of activated T cells [16, 25]. Moreover, eIF6 overexpres-
sion induced the metabolic switch in CD4+ T cells [26], 

Fig. 8  Correlation between eIF6 expression and immune-related genes in human ESCA. A A heatmap showing the spearman’s rank correlation 
between eIF6 expression level and immunostimulators, MHC genes, chemokines, and immunoinhibitors B based on the TISIDB database. Positive 
and negative correlation are indicated by red and blue, respectively. C Western blot analysis for CD45, CD11b, and PD-L1 in Eca109 cells with eIF6 
knockdown. D Scatter plots showing the correlation between immune cells infiltrations and the eIF6 expression using GEPIA2 database. *p < 0.05, 
**p < 0.01
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and was negatively correlated with most immunomodula-
tors (chemokines, MHC-s, immune stimulators) in ESCA. 
Similarly, we found a negative correlation between eIF6 
expression and immune checkpoints, including CTLA4, 
and HAVCR2, in ESCA. It has been reported that CTLA4 
activates CD4 + and CD8 + T cells, whereas TIM-3 func-
tions as a negative regulator of T cell activation and also 
involved in exhaustion, Th1 responses [54, 55]. Inhibitors 
of CTLA4 and TIM-3 can be applied as immunotherapeu-
tic targets in the treatment of cancer patients [56, 57]. This 
suggests that eIF6 might serve as a potential biomarker of 
immune cell infiltration in ESCA.

There are several limitations to this study. First, 
although we found that high expression of eIF6 was 
associated with poor prognosis of ESCA patients, this 
finding was not experimentally validated using clini-
cal samples. Second, although metabolic and genomic 
signatures were combined to investigate potential bio-
markers and mechanisms, more samples and additional 
validation studies were needed. Third, further in-depth 
clinical research should be conducted to clarify the 
functional role of eIF6 in the tumor immunosuppres-
sive microenvironment.

Table 3  Correlation analysis between eIF6 and relate genes and markers of innate immunity cells in ESCA

TAM, tumor associated macrophage; Cor, R value of Spearman’s correlation. Purity, correlation adjusted by purity. *p < 0.05. None, correlation without adjustment

Description Genemarkers TIMER (n = 184) GEPIA2 (n = 181)

Purity None

Cor p Cor p Cor p

Monocyte CD14  − 0.154 *  − 0.132 0.073  − 0.094 0.210

CD86  − 0.286 *  − 0.262 *  − 0.230 *

CD16 (FCGR3A)  − 0.238 *  − 0.223 *  − 0.190 *

TAM CD68 0.139 0.062 0.156 * 0.140 0.061

CCL2  − 0.266 *  − 0.262 *  − 0.130 0.077

CCL5  − 0.117 0.116  − 0.125 0.090  − 0.081 0.280

M1 Macrophage INOS (NOS2) 0.137 0.066 0.129 0.080 0.160 *

CXCL10  − 0.129 0.083  − 0.121 0.101  − 0.018 0.800

TNF-α (TNF)  − 0.029 0.695  − 0.008 0.913  − 0.028 0.710

M2 Macrophage CD206 (MRC1)  − 0.203 *  − 0.200 *  − 0.150 *

CD163  − 0.208 *  − 0.199 *  − 0.094 0.210

IL10  − 0.177 *  − 0.182 *  − 0.150 *

Neutrophils CD66b (CEACAM8) 0.142 0.057 0.113 0.127 0.001 0.980

CD11b (ITGAM)  − 0.189 *  − 0.166 *  − 0.170 *

CCR7  − 0.039 0.601  − 0.059 0.427  − 0.180 *

CD15 (FUT4) 0.085 0.256 0.071 0.340 0.110 0.160

Natural killer cell KIR2DL1 0.052 0.486 0.041 0.584  − 0.090 0.230

KIR2DL3  − 0.167 *  − 0.159 *  − 0.091 0.220

KIR2DL4 0.037 0.625 0.035 0.633  − 0.025 0.740

KIR3DL1 0.022 0.766 0.013 0.858  − 0.095 0.200

KIR3DL2  − 0.107 0.153  − 0.107 0.147  − 0.029 0.700

KIR3DL3  − 0.001 0.993 0.003 0.963  − 0.048 0.520

KIR2DS4 0.041 0.586 0.053 0.470  − 0.095 0.200

Dendritic cell HLA-DPB1  − 0.163 *  − 0.165 *  − 0.210 *

HLA-DQB1  − 0.078 0.294  − 0.093 0.210  − 0.096 0.200

HLA-DRA  − 0.129 0.083  − 0.136 0.065  − 0.110 0.130

HLA-DPA1  − 0.137 0.065  − 0.138 0.061  − 0.130 0.070

BDCA-1 (CD1C)  − 0.250 *  − 0.249 *  − 0.250 *

BDCA-4 (NRP1)  − 0.213 *  − 0.215 *  − 0.100 0.170

CD11c (ITGAX)  − 0.178 *  − 0.168 *  − 0.210 *

NKp46 (NCR1)  − 0.031 0.681  − 0.045 0.547  − 0.100 0.170
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Conclusions
In conclusion, this study shows that eIF6 is highly 
expressed in ESCA tumor tissues and could predicted 
worse prognosis. Regarding biological functions, we 
demonstrated that eIF6 expression influenced preop-
erative FDG uptake and involved in immune cell infil-
tration in ESCA, which provides novel insights to the 
tumor biology. eIF6 is likely to be prognostic biomarker 
for ESCA. Further prospective experiments should be 

carried out to verify the expression and function of 
eIF6 in ESCA.
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IL17A 0.226 * 0.205 * 0.053 0.480
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