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Abstract 

Background:  Sepsis is a life-threatening syndrome eliciting highly heterogeneous host responses. Current prognos-
tic evaluation methods used in clinical practice are characterized by an inadequate effectiveness in predicting sepsis 
mortality. Rapid identification of patients with high mortality risk is urgently needed. The phenotyping of patients will 
assistant invaluably in tailoring treatments.

Methods:  Machine learning and deep learning technology are used to characterize the patients’ phenotype and 
determine the sepsis severity. The database used in this study is MIMIC-III and MIMIC-IV (‘Medical information Mart 
for intensive care’) which is a large, public, and freely available database. The K-means clustering is used to classify 
the sepsis phenotype. Convolutional neural network (CNN) was used to predict the 28-day survival rate based on 
35 blood test variables of the sepsis patients, whereas a double coefficient quadratic multivariate fitting function 
(DCQMFF) is utilized to predict the 28-day survival rate with only 11 features of sepsis patients.

Results:  The patients were grouped into four clusters with a clear survival nomogram. The first cluster (C_1) was 
characterized by low white blood cell count, low neutrophil, and the highest lymphocyte proportion. C_2 obtained 
the lowest Sequential Organ Failure Assessment (SOFA) score and the highest survival rate. C_3 was characterized by 
significantly prolonged PTT, high SIC, and a higher proportion of patients using heparin than the patients in other 
clusters. The early mortality rate of patients in C_3 was high but with a better long-term survival rate than that in 
C_4. C_4 contained septic coagulation patients with the worst prognosis, characterized by slightly prolonged partial 
thromboplastin time (PTT), significantly prolonged prothrombin time (PT), and high septic coagulation disease score 
(SIC). The survival rate prediction accuracy of CNN and DCQMFF models reached 92% and 82%, respectively. The 
models were tested on an external dataset (MIMIC-IV) and achieved good performance. A DCQMFF-based application 
platform was established for fast prediction of the 28-day survival rate.

Conclusion:  CNN and DCQMFF accurately predicted the sepsis patients’ survival, while K-means successfully identi-
fied the phenotype groups. The distinct phenotypes associated with survival, and significant features correlated with 
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Introduction
According to the Global Burden of Diseases, Injuries, 
and Risk Factors Study published in 2020 [1], sepsis is 
one of the leading causes of morbidity and mortality 
worldwide. In 2017, the age-standardized mortality due 
to sepsis equaled 148.1 deaths per 100,000 population 
[1]. The number of patients with sepsis is estimated to be 
between 18 and 31.5 million per year, and the mortality 
is as high as 20% [2–5]. Due to sepsis’ high heterogeneity 
and complexity [6–8], its unified treatments are impracti-
cal. A delay in treatment initiation and support measures 
increases the mortality of sepsis patients [9–11]. There-
fore, enabling physicians to forecast the survival, clas-
sify, and characterize sepsis victims in a timely manner is 
important for obtaining a favorable outcome.

Several prognostic methods in clinical practice have 
been established as standards for benchmark studies, 
including APACHE II score [12], SOFA [13], qSOFA, and 
SIRS [14, 15]. In addition, researchers have been incor-
porating clinical features such as the dynamic pulse pres-
sure and vasopressor, the delta pulse pressure [16], and 
the sepsis hospital mortality score [17] into the scoring 
system to promote quicker and more accurate sepsis 
diagnosis. However, there is limited evidence of their 
effectiveness in improving patient outcomes [18].

Machine learning (ML)- based clinical decision support 
systems for accurate sepsis recognition have received 
increasing attention in the latest decade [19–22], with 
many emerging algorithms for prediction [23–35] and 
classification [36] of the sepsis risk. For example, the 
existing works utilized Recent Temporal Patterns mining 
with support vector machine (SVM) classifier[37], con-
gruent cluster analysis [38], K-means clustering method 
[39], logistic regression, SVM, random forest, deci-
sion tree, and extreme gradient boosting machine [40] 
for sepsis classification or prediction. Chicco et  al. [41] 
used radial SVM, gradient boosting, Naïve Bayes, linear 
regression, and linear SVM methods to predict the sep-
sis patients’ survival. Good performance was achieved 
for positive data instances but poor for negative ones. 
Although traditional ML algorithms perform well in clus-
ter analysis, the prediction accuracy remains insufficient. 
As pointed out by Liu and Walkey, more work is required 
to improve the ML prediction performance [42–44]. 
Finally, several studies were limited by a lack of external 
validation and insufficient generalizability.

Various deep learning techniques exhibit excellent 
learning ability in the existing studies. For example, Kam 
and Kim [45] trained a long short-term memory and a 
deep feed-forward network for early detection of sepsis. 
Scherpf and colleagues [46] proposed a recurrent neural 
network architecture to predict sepsis using the Medical 
Information Mart for Intensive Care version 3 (MIMIC-
III) dataset. Tom et  al.[47] employed a temporal deep 
learning method to predict the blood culture outcomes 
in the intensive care unit (ICU). A combination of Con-
volutional neural network (CNN) features, random forest 
algorithm, and SOFA score were applied to monitor sep-
sis patients in [48]. The mentioned studies achieved good 
performances in disease prediction, but the features’ 
scale or the number of sepsis cases were relatively small. 
In particular, the relationships among features were not 
seriously considered. These limitations are likely to result 
in overfit and poor generalization.

In the present study, we leveraged the advantages of 
both deep learning and traditional ML to characterize 
the sepsis patients’ phenotype. Deep learning models 
were generated to predict the patients’ survival rate and 
detect the patients with high mortality. Firstly, the tradi-
tional K-means [49] algorithm was used for the distance 
calculation between the features and for automatic aggre-
gations for the classification of sepsis patients. The opti-
mal number of groups (K) was determined by comparing 
between the elbow [50, 51] and the silhouette score [52, 
53] methods. Principal component analysis (PCA) is 
used to reduce the dimension of clustering results. The 
original random vector was transformed by orthogonal 
transformation to determine the components related 
or unrelated into a new random vector, and then fewer 
dimensions were selected. Here, three dimensions are 
selected to map the futures into three-dimensional space. 
And then, the survival nomogram was established to 
determine the significant features with respect to the sur-
vival of patients from each phenotype.

A CNN [54, 55] model was selected for its superior 
representation learning ability. There were two parts in 
the CNN architecture: a fully connected classifier and 
the conventional layers. The features extracted by the 
convolutional layers were classified by the classifier and 
the efficiency of the classification was ensured by the 
multi-parameter classifier. The current work established 
an application platform using only 11 routine blood test 

mortality were identified. The findings suggest that sepsis patients with abnormal coagulation had poor outcomes, 
abnormal coagulation increase mortality during sepsis. The anticoagulation effects of appropriate heparin sodium 
treatment may improve extensive micro thrombosis-caused organ failure.
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variables to enable quick prediction of the 28-day sur-
vival rate.

The information from the 11 blood tests (such as the 
blood cell classification count, blood coagulation func-
tion test, arterial blood gas analysis, and liver and kid-
ney function teats) enables physicians from primary 
hospitals, emergency units, or ICUs to quickly evaluate 
patients’ risks and tailor the treatments accordingly. The 
platform was constructed with a multivariate double 
coefficient fitting function. With the 11 blood test results 
and the products of any two of the 11 results used as the 
independent variables, the coefficients of the fitting func-
tion were obtained using the full connection network 
training of deep learning. The proposed method can be 
helpful even when faced equipment shortage in primary 
hospitals or emergency units and ICUs or other limita-
tions caused by patient’s condition.

Methods
This work uses K-means to determine the phenotypes of 
patients with sepsis, and a deep learning algorithm and a 
double coefficient quadratic multivariate fitting function 
(DCQMFF) model to predict the 28-day survival rate of 
sepsis patients and detect patients with high mortality. 
The features of the corresponding cases in the phenotype 
were further analyzed based on the survival prediction 
results to identify high-risk features leading to death. The 
flow chart of data processing is shown in Fig. 1A.

Data collection
This retrospective cohort study was carried out based on 
MIMIC-III and MIMIC-IV, a large database comprising 
deidentified health-related data associated with patients 
who stay in critical care units of the Beth Israel Deacon-
ess Medical Center between 2001–2012 and 2008–2018. 
The databases include information such as demograph-
ics, vital sign measurements made at the bedside (about 
one data point per hour), laboratory test results, proce-
dures, medications, caregiver notes, imaging reports, and 
mortality (both in and out of hospital). MIMIC-IV was 
built upon the success of MIMIC-III and incorporated 
multiple improvements over its predecessor. Fan Zhang 
(Record ID 36181465) is certified to get access to the 
database and is responsible for data extraction. This anal-
ysis complied with the Reporting of Studies Conducted 
Using Observational Routinely Collected Health Data 
guidelines for administrative claims data [56].

Statistical analysis
Nonparametric methods were utilized to test the 
differences in features among subgroups when the 
data violated the assumptions of normal distribu-
tion and homoscedasticity. Two nonparametric tests, 

Kruskal–Wallis and Jonckheere-Terpstra were both uti-
lized, and the higher p value was selected with respect 
to each comparison. Otherwise, T-test, F-test, and one-
way analysis  of  variance (ANOVA) were conducted 
accordingly. Additional clinical and laboratory test 
results are shown in Additional file  1: Table  S1 in the 
Supplemental Material. The p values for the association 
between features and survival were calculated using 
nonparametric tests on k-independent samples.

K‑means clustering of sepsis subgroups and F (PCA)
As an unsupervised ML technique, the K-means clus-
tering method was applied to identify the sepsis clus-
ters in MIMIC datasets [57]. The advantages of this 
clustering method are its fast speed and less parameters 
needed. To realize the calculation, the acquired features 
were taken as direct input and the data were automati-
cally aggregated by the distance calculation. An optimal 
number of groups (k) was determined by compromising 
between the methods of elbow [58] and the silhouette 
score [52, 59]. Upon data clustering, PCA was utilized 
to reduce the data dimensionality to three dimensions 
to facilitate visualization. Nonparametric tests were 
used to test the differences among the detected groups.

Survival rate prediction model based on convolutional 
neural network (CNN)
Since Hinton and Salakhutdinov [60] proposed a multi-
level Boltzmann machine based on a probability graph 
model in 2006, deep learning has gradually become the 
leading tool in the field of image processing and com-
puter vision. CNN [54, 61] is one of the prominent deep 
learning algorithms, with a wide range of applications in 
various fields and an excellent performance in classifica-
tion tasks [62]. In addition, advancements in numerical 
computing equipment further promoted CNN’s repre-
sentational learning ability.

This work proposes a CNN-based survival rate pre-
diction model to predict sepsis patients’ survival rate. 
The CNN model contains seven convolutional layers, 
of which the first six layers use the rectified linear unit 
(ReLU) as the activation function, and the last one uti-
lizes Sigmoid. Convolution layers extract features extrac-
tion, and the activation function adds nonlinear factors. 
ReLU largely solves the gradient vanishing problem when 
the model optimizes the deep neural network [63]. The 
Sigmoid activation function serves to transform the 
probabilities into the output suitable for binary classifi-
cation problems. The feature map size for each layer is 
shown in Fig. 1B.
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Survival rate predication based on a double coefficient 
quadratic multivariate fitting function (DCQMFF) model
Quadratic fitting function method [64, 65], also known 
as function simulation or interpolation function method, 
is recognized as a classical and effective optimization 
method. To adapt to complex environments, a multidi-
mensional quadratic fitting function [66, 67] was pro-
posed. However, the fitting effect is poor for nonlinear 

data. To solve this problem, a multivariate quadratic fit-
ting function with double coefficients was proposed to 
adapt to multi-dimensional nonlinear data for prediction 
of the survival probability in the current work.

This model considers eleven features, including the 
most valuable parameters in the SOFA score system that 
indicate the organ function and two features acquired in 
Blood Gas Analysis (pH and lactate) critical to estimating 

Fig. 1  The flow chart of data processing (A) and the feature maps of CNN based survival rate (B)
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the septic shock. More precisely, the considered futures 
are Creatinine, Hemoglobin, the International standard-
ized ratio of prothrombin time (INR-PT), Lymphocytes, 
Neutrophils, Platelet Count, Partial Thromboplastin 
Time (PTT), White Blood Cells, Lactate, Bilirubin, and 
pH. These features indicate the sepsis severity, with sev-
eral of them correlating.

First, the data were normalized. To avoid zero mini-
mum values in the normalization process, the formula 
x∗ = x−min∗0.99

max−min
 is selected. In this formula, x is the ele-

ment before normalization, x* is the normalized element, 
and max and min are the maximum and minimum values 
of a feature, respectively. The values of the 11 features are 
regarded as independent variables xi, i ∈ {1, 2, . . . , 11} . 
Survival and death probabilities are considered as a two-
dimensional dependent variable, i.e., y = (0,1) or (1,0). 
The DCQMFF model is defined as:

where ey1
ey1+ey2 ,

ey2
ey1+ey2  represents the probability of sur-

vival and death, respectively (note, ey1
ey1+ey2 + ey2

ey1+ey2 = 1 ). 
Double the coefficients can help avoid over fitting caused 
by a fast dimensionality reduction, thus improving the 
model’s generalization ability.

The processed data were divided into training data and 
test data according to a 7:3 ratio. To prevent class imbal-
ance, negative cases were up-sampled by means of rep-
lication, random generation according to the median 
of negative cases features, and adding random noise to 
the cases to keep the proportion of positive and nega-
tive cases nearly equal [68]. Then, the model was trained 
on the training data and verified using the test data. This 
procedure processes only the 11 aforementioned features 
to predict the survival probability. Receiver operating 
characteristic curve (ROC) [69] was used to evaluate the 
effectiveness of the CNN and DCQMFF prediction mod-
els. The ROC curve is created by plotting the true positive 
rate (TPR) with respect to the false positive rate (FPR) at 
various threshold settings and depicts a trade-off between 
sensitivity and specificity. Thus, the curve summarizes the 
binary classifier’s performance by combining the confusion 
matrices at all threshold values. The area under the ROC 
curve (AUC) measures the classifier’s ability to distinguish 
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between positive and negative classes. The closer the AUC 
to 1, the better the model at distinguishing the two classes. 
Finally, accuracy, precision, recall, and F1-score are four 
popular metrics for evaluating the performance of classifi-
cation methods. The CNN and DCQMFF models’ predic-
tion results are compared to those of the random forest, 
logistic regression, lasso regression, and other methods 
considered by Chicco et al. [41] (Table 1).

Nomograms
The survival rate curves were calculated, and the statis-
tical analysis of different phenotypes was performed for 
dataset. Nomograms are prediction models that estimate 
an individual’s survival by considering multiple clinical 
variables and their interdependence. Thus, nomograms 
can provide an overall probability of a specific outcome 
for an individual patient, offer a more accurate predic-
tion than conventional staging or scoring systems, and, 
accordingly, improve personalized decision-making in 
sepsis therapy. The survival nomogram was established 
using R software by integrating age and other features.

Hardware environment
The proposed models were run in a hardware environ-
ment comprising Intel(R) Core (TM) i5-6200U CPU 
@2.40 GHz, with 8 GB memory. The workstation’s oper-
ating system was Windows 10. The integrated devel-
opment environment and the deep learning symbolic 
library were PyCharm-Python 3.8 and PyTorch 1.6.0, 
respectively.

Results
Data description
In MIMIC-III, there were totally 2902 cases of sepsis, 
531 sepsis patients were excluded due to the lack of some 
blood test results. The rest were divided randomly into a 
training set and a test set at a ratio of 7:3. One thousand 
six hundred and sixty-one cases were assigned into the 
training set and 710 into the test set. The 35 blood tests 
were used in K-means and CNN methods. Length of hos-
pital stay was omitted. In MIMIC-IV, there were 12657 
cases of sepsis. To balance the number of dead and sur-
viving cases, more than 3000 cases with the 35 blood test 
results were extracted and served as validation data set 
for the two proposed prediction models.

Identification of the subgroup phenotype and high‑risk 
patients
Survival prediction enable detect cases of high mortal-
ity probability. However, it is difficult to determine the 
features which lead to death with the survival predic-
tion tools. Thus, the sepsis population was clustered 
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using K-means clustering, and the obtained groups’ 
phenotype features were analyzed. The elbow and sil-
houette score methods (Fig. 2A, B) indicated the pres-
ence of four clusters, i.e., K = 4 was selected. Upon the 
K-means classification, a 3D PCA plot was generated 
(Fig. 2C). The data set was phenotyped by the K-means 
method into four clusters including C_1 with 211 cases 
in the training set and 90 in the test set, C_2 with 1215 
and 520, C_3 with 46 and 19, and C_ 4 with 189 and 81.

Among the four clusters, Cluster C_2 has the highest 
survival rate (Fig. 2D). In accordance, this cluster exhib-
ited the lowest SIC and SOFA score (Fig.  2E ,F), fur-
ther validating the prediction method. C_1 also has a 
high survival rate. Patients in this cluster are character-
ized by a low white blood cell count (Fig. 3A) and neu-
trophil proportion (Fig. 3B) but the highest lymphocyte 
proportion (Fig. 3C). C_4 is identified as septic patients 
with abnormal coagulation and had the worse prognosis, 

characterized by slightly prolonged PTT. C_3 is identi-
fied by significantly prolonged PTT (Fig.  3D), high SIC, 
and higher heparin-using proportion (Fig. 3E) among its 
patients than those from other clusters. The early mortal-
ity rate of patients in C_3 is high but with a better long-
term survival rate than those in C_4. Other features of 
the 4 clusters were plotted in Additional file 1: Figure S1 
and S2. The nomograms of each cluster are also estab-
lished for reference (see Additional file 1: Figure S3).

Table  2, 3 list the features for which the nonparamet-
ric tests found the most significant differences in train-
ing and test sets respectively. The top ten heterogeneous 
features shared in the training and test datasets are PTT, 
neutrophil percentage, PT, INR-PT, lymphocyte percent-
age, white blood cell count, platelet count, mean cor-
puscular hemoglobin concentration (MCHC), albumin, 
and red blood cell count. The survival nomograms were 
generated for all cases to clarify the relationship between 

Table 1  | Comparison of the performance of multiple prediction models

Methods Accuracy Precision Recall F1 AUC​

Random Forest  Training 0.851 1.000 0.238 0.384 0.619

 Test 0.808 0.909 0.068 0.127 0.533

Logistic Regression  Training 0.825 0.629 0.256 0.364 0.610

 Test 0.808 0.567 0.260 0.357 0.605

Lasso Regression  Training 0.825 0.762 0.148 0.248 0.568

 Test 0.813 0.710 0.151 0.249 0.567

Radial SVM [40]  Training 0.515 0.970 0.491 0.652 0.701

 Test 0.337 0.896 0.204 0.333 0.586

 Val 0.806 0.849 0.920 0.883 0.642

Gradient boosting [40]  Training 0.851 0.934 0.899 0.916 0.690

 test 0.718 0.822 0.816 0.819 0.574

 Val 0.828 0.885 0.905 0.895 0.682

Bayes [40]  Training 0.567 0.965 0.553 0.703 0.649

 Test 0.465 0.861 0.405 0.551 0.562

 Val 0.828 0.891 0.895 0.893 0.713

Linear regression [40]  Training 0.801 0.943 0.835 0.886 0.599

 Test 0.679 0.828 0.763 0.794 0.541

 Val 0.788 0.885 0.842 0.863 0.689

Linear SVM [40]  Training 0.337 0.896 0.205 0.333 0.586

 Test 0.467 0.861 0.407 0.553 0.586

 Val 0.818 0.873 0.906 0.889 0.676

Sofa Score [13] DCQMFF 
(proposed)

 All data 0.752 0.371 0.327 0.348 0.807

 Training 0.822 0.822 0.821 0.822 0.896
 Test 0.821 0.812 0.812 0.812 0.885
 Val 0.775 0.764 0.754 0.759 0.849

CNN (Proposed)  Training 0.928 0.924 0.856 0.888 0.953
 Test 0.924 0.887 0.845 0.865 0.947
 Val 0.834 0.825 0.818 0.821 0.909
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Fig. 2  Identification of the subgroup phenotype with k-means clustering. The K value was optimized by compromising between the elbow 
method (A) and the silhouette coefficient method (B); C. The 3D PCA plot visualizes the 4 clusters; D. Survival curves; E. SIC score; F. SOFA score. * 
P < 0.05, ****P < 0.0001 analyzed by log-rank test of Mantel or Gehan-Breslow Wilcoxon test with the higher P value presented
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Fig. 3  Major features of the four clusters. A White blood cell counts (K/µL); B Neutrophil proportion (%); C Lymphocytes proportion (%); D PTT (sec.); 
E. Low-molecular Heparin usage proportion within patients from each cluster (%)
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features and death risk using the 35 features and survival 
information of all 2371 patients in MIMIC-III (Fig. 4).

Survival predictions with CNN based and DCQMFF model 
with external cohort validation
A multivariate approach to predict mortality outcomes of 
sepsis patients was utilized. The CNN based model was 
tested using all 35 blood tests, whereas the DCQMFF 
prediction model used only 11 blood tests. The obtained 
ROC curves for CNN (Fig. 5A) and DCQMFF (Fig. 5B) 
models on training, test, and validation sets are shown. 
The ROC curves for training, test, and validation sets are 
virtually smooth, suggesting that an overfit is unlikely, the 

predictive partition analysis verified that the blood tests 
are strong predictors of sepsis patients’ status. For the 
CNN model, the AUC scores for the training, test, and 
validation sets are 0.953, 0.947, and 0.909, respectively. 
All of the AUCs are close to 1, indicating that the pro-
posed survival prediction model has a good performance 
in distinguishing the 28-day survivals of sepsis patients. 
Figure  5B shows the results for the DCQMFF predic-
tion model. While not as good as CNN, DCQMFF per-
forms well using 11 features, with the AUC values for the 
training, test, and validation sets equal to 0.896, 0.885, 
and 0.849, respectively. A demo analysis with DCQMFF-
based application platform is shown in Fig. 5C.

Table 2  The heterogeneous features for training set (1661 cases) according to blood tests

Features Cluster one Cluster two Cluster three Cluster four P value

number of each cluster 211 1215 46 189

survival (%) 165 (78.2%) 1005 (82.7%) 35 (76.1%) 132 (69.8%) 0.020

Age, median (IQR), year 66 (54–76) 66 (54–76.5) 67.5 (55–80) 66 (57–77) 0.933

Male, no. (%) 102 (48.3%) 663 (54.6%) 17 (37.0%) 110 (58.2%) 0.023

Top ten blood test varies, median (IQR), unit

 PTT, sec 30.6 (26.5–36.3) 29.6 (26.2–34.3) 150 (122.9–150) 51.6 (43.5–60.6) 0.000

 Neutrophils, % 51 (33–61.7) 84 (77–89.9) 81.8 (77.2–86) 83 (76.4–89) 0.000

 PT, sec 14.3 (13.1–16.4) 14.2 (13.1–16.0) 17.7 (15.3–23.8) 30.2 (21.9–43.1) 0.000

 INR(PT), NULL % 1.3 (1.1–1.5) 1.3 (1.1–1.5) 1.9 (1.5–3.2) 3.4 (2.2–5.2) 0.000

 Lymphocytes, % 26 (15.5–34.3) 7 (4–11.3) 7 (4.6–14.0) 8 (4–13) 0.000

 White blood cells, K/μL 6.1 (3.4–10.8) 13.2 (8.9–8.1) 10.7 (7.0–8.4) 12.1(8.5–17.4) 0.000

 Platelet count, K/μL 2.3 (2.0–2.5) 2.4 (2.2–2.5) 2.3 (2.2–2.4) 2.3 (2.1–2.5) 0.000

 MCHC, % 33.3 (32.3–34.3) 33 (32–34.1) 32.5 (32.2–34) 32 (31–33.3) 0.000

 Albumin, % 2.9 (2.5–3.3) 2.9 (2.5–3.4) 2.9 (2.5–3.4) 2.9 (2.4–3.2) 0.000

 Red blood cells, K/μL 3.5 (3.1–4.0) 3.7 (3.3–4.2) 3.7 (3.2–4.0) 3.7 (3.1–4.0) 0.000

Table 3  The heterogeneous features for test data (710 cases) according to blood tests

Features Cluster one Cluster two Cluster three Cluster four P value

Number of clusters 90 520 19 81

survival (%) 68 (75.56%) 416 (80%) 13 (68.42%) 57 (70.37%) 0.152

Age, median (IQR), y 64 (51.5–77.5) 66 (54–77) 60 (51.3–69.3) 65 (54–74) 0.364

Male, no. (%) 55 (61.11%) 296 (56.92%) 12 (63.16%) 49 (60.49%) 0.797

Top ten blood test varies, median (IQR), unit

 PTT, sec 31.7 (27.7–36.5) 30.1 (26.6–34.2) 150 (119.0–150) 50.5(43.6–57.7) 0.000

 Neutrophils, % 52 (36.3–61.7) 83 (77–88.7) 81 (70.2–87.5) 81 (76.9–88.6) 0.000

 PT, sec 14.4 (13.3–17.1) 14.3 (13.1–16.3) 19.5 (15.4–23.1) 28 (19.6–39) 0.000

 INR(PT), NULL % 1.3 (1.2–1.7) 1.3 (1.1–1.6) 1.9 (1.6–2.7) 3 (2–4.3) 0.000

 Lymphocytes, % 27.1 (18.5–35.3) 7.1 (4–11.9) 9.7 (3.7–11) 7.2 (3–12) 0.000

 White blood cells, K/μL 4.7 (2.8–10.3) 13.0 (8.4–18.4) 9.6 (7.4–18.2) 12.4 (8.2–19.2) 0.000

 Platelet count, K/μL 2.2 (1.9–2.5) 2.4 (2.2–2.5) 2.4 (2.1–2.6) 2.3 (2.2–2.5) 0.000

 MCHC, % 33.4 (32.3–34.6) 33 (32–34) 32.7 (30.5–33.6) 32.5 (31.2–33.6) 0.000

 Albumin, % 2.9 (2.6–3.4) 2.9 (2.6–3.4) 2.9 (2.8–2.9) 2.6 (2.3–3) 0.000

 Red blood cells, K/μL 3.4 (3.0–4.0) 3.7 (3.3–4.3) 3.8 (3.4–4.0) 3.5 (2.9–3.9) 0.000
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The traditional survival prediction methods utilized the 
same 35 features, and the obtained AUC values for the 
test data are 0.533, 0.604, and 0.567 for Random Forest, 
Logistic Regression, and Lasso, respectively. The SOFA 
score is generally applied in the ICU to access multi-
organ dysfunction or failure, which is calculated based 
on PaO2/FiO2, platelets count, bilirubin level, cardio-
vascular hypotension, Glasgow Coma Scale (GCS), and 
creatinine level. When the SOFA score exceeds 12, the 
mortality surpasses 50% [13]. As shown in Fig.  5D, the 
prediction SOFA score reached an AUC of 0.807, with 

the lower and upper bounds equal to 0.783 and 0.823, 
respectively.

Next, the survival prediction performance of the 
methods proposed by Chicco et  al. [41] with age, sex, 
and septic episode number alone was compared using 
MIMIC-III as training and test data and MIMIC-IV 
as validation data. The AUC values for the test data are 
0.586, 0.574, 0.562, 0.541, 0.586 and for the validation 
data 0.642, 0.574, 0.713, 0.689, 0.676 for radial SVM, Gra-
dient boosting, Bayes, Linear regression, and Linear SVM 
methods, respectively. Although the proposed methods 

Fig. 4  The nomograms predict 28-day survival using 35 clinical features. The nomograms were generated from all the 2371 sepsis cases from 
MIMIC-III. To use the nomograms, locate patient’s variable on the corresponding axis, draw a line to obtain the point’s axis, sum the points, and draw 
a line from the total point’s axis to the 28-day survival probability
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achieved good results regarding major indicators, the 
true negative rate (TNR) and AUC were low. This issue 
was likely caused by the class imbalance. Both the CNN 
and DCQMFF models exhibited outperformed these 
methods, with an accuracy of 83.37% and AUC of 0.908 
for the CNN model and an accuracy of 77.5% and AUC of 
0.849 for the DCQMFF on the validation data (Table 1).

Discussions
Due to the sepsis patients’ heterogeneity and the need to 
understand features leading to death, this work clustered 
the sepsis populations and studied the phenotypes. The 
sepsis patients were divided into four groups accord-
ing to the Elbow and silhouette score methods analysis 
on the MIMIC-III datasets. Obtained groups differed in 
their survival rates, and the phenotypes leading to certain 
outcomes were analyzed.

Besides, each group was further characterized, and 
patients in C_4 were detected as those who had compli-
cated septic coagulopathy and a significantly prolonged 
PT time. These findings indicate that sepsis patients with 
coagulation disorder are often faced with a poor out-
come, which agrees with previous studies [70, 71]. How-
ever, patients grouped in C_3 had high early mortality, 
which can be related to extended prolongation of early 
PTT. In addition, the proportion of heparin sodium usage 
in this cluster was significantly higher than in other clus-
ters. However, the long-term survival rate of C_3 patients 
was significantly better than that of C_4, suggesting anti-
coagulation effects of heparin sodium improved organ 
failure caused by extensive micro thrombosis [72, 73] and 

that abnormal coagulation resulting in micro thrombo-
embolism can aggravate organ failure and increase mor-
tality during sepsis.

The findings on heparin therapy in septic patients 
have generated many controversies in clinical literature. 
Several studies and meta-analyses support the adminis-
tration of heparin as safe and has been associated with 
decreased mortality in sepstic patients [74–77]. However, 
Yamakawa et  al. found that anticoagulant treatment is 
associated with reduced mortality only in subgroups of 
patients with sepsis-induced coagulopathy and/or those 
who were very severely ill [78]. Current research on 
therapeutic anticoagulation in patients with COVID-19 
shows that prophylactically administered therapeutically 
dosed heparin does not improve the critically ill patients’ 
outcome or mortality rate. In fact, the studies found it 
could be harmful [79]. In contrast, in patients with mod-
erate COVID-19, therapeutic anticoagulation may reduce 
the need for organ support [79]. Another randomized 
clinical trial found prophylactically administered ther-
apeutic-dose anticoagulation reduced death compared 
with institutional standard thromboprophylaxis only 
among patients with COVID-19 with extremely elevated 
D-dimer levels [80].

The results obtained herein suggest that heparin 
therapy improves prognosis in patients with abnormal 
coagulation, but prolonged PTT due to excessive antico-
agulation and bleeding complications should be avoided. 
These results may guide futures studies looking at which 
patients may benefit from therapeutic anticoagulation. 
One of the main concerns is the potential risk of major 

Fig. 5  Survival prediction with CNN based and DCQMFF model. ROC curve of the CNN based model (A), and DCQMFF model (B); C. a demo 
analysis with DCQMFF-based application platform; D. ROC curve of the SOFA score
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hemorrhage. Besides bleeding, the main adverse effect 
of heparin is heparin-induced thrombocytopenia (HIT). 
Furthermore, as most septic patients had hypoperfu-
sion, the subcutaneous route is less suitable due to poor 
absorption. This might have attenuated the efficacy of 
heparin because of poor bioavailability.

A 7-layer CNN and a DCQMFF model were presented 
for the survival prediction of sepsis patients based on 
indicators obtained from routine blood tests. The ReLU 
function applied in the CNN model mitigates the gradi-
ent vanishing problem when optimizing the deep neural 
network. A set of methods has been generated as base-
line survival prediction tools. The SOFA score has been 
widely validated across healthcare settings and environ-
ments. Compared with other promising ML algorithms 
including random forest, logistic regression, and LASSO 
methods, the proposed models show better perfor-
mance in terms of accuracy, precision (random forest 
as an exception), recall and AUC for the test datasets. 
Especially, both the DCQMFF and CNN based models 
performed well in the verification set from MIMIC-IV 
(Table 3).

The DCQMFF model was proposed to incorporate the 
relationship between 11 features of sepsis patients into 
the prediction system and predict the patients’ 28-day 
survival rate. These 11 features were closely related to 
the patients’ survival state. DCQMFF enables obtaining 
the patients’ survival probability using a comprehensive 
weighted value of 11 features. An application platform 
based on DCQMFF was established to quickly pre-
dict the 28-day survival rate. Combining the prediction 
results with clinical experience, physicians can stratify 
septic patients into risk categories, which can guide man-
agement and discussions surrounding prognosis.

SOFA score is a mortality prediction tool based on six 
organ systems and has been widely validated as a tool 
for assessment of the acute morbidity across healthcare 
settings and environments. However, SOFA score is not 
a specific tool for predicting prognosis of sepsis [29]. 
CNN model is capable to learn the internal laws and rep-
resentation levels of sample data automatically, and it is 
purposed of learning the mapping relationship between 
sample data and corresponding class labels of the data. 
By using CNN model, the survival rate prediction accu-
racy reached 92% in the current work. To establish an 
APP, we chose 11 features reflecting the patient’s physi-
cal characteristics to feed DCQMFF model. DCQMFF is 
an improved quadratic fitting function. To further solve 
the nonlinear problems, we applied a double coefficient 
quadratic multivariate fitting function.

Previous studies have shown that traditional machine 
learning methods have high requirements for input fea-
tures. For high noise data, over-fitting phenomenon is 

prone to occur in random forest model. For nonlinear 
data, the logistic regression model shows worse experi-
mental performance. To solve nonlinear problems, SVM 
model needs to choose kernel function carefully. For 
high-dimensional sparse feature data, Gradient boosting 
model is unsuitable. And if the input features are depend-
ent and relevant, Bayesian model will barely be a good 
choice. To sum up, traditional ML methods have strict 
requirements for the input data, which requires a manual 
and careful selection of input features. Therefore, CNN 
and DCQMFF perform better than traditional ML.

To provide additional insight into the effectiveness 
of CNN and DCQMFF within each phenotype (gener-
ated by K-means clustering), we applied the two classifi-
ers on each cluster (phenotype) individually. The results 
were shown in Additional file 1: Table S2. Due to the data 
imbalance, especially in C_3, only 65 cases (46 in train-
ing set and 19 in test set) assigned, under-fitting or over-
fitting occurred in the performance. As we know deep 
learning works poor with small-sized data set, larger 
prediction error would be expected with respect to the 
small amount of data in this case. For example, in both 
the test and verification set of C_3, the performance of 
both CNN and DCQMFF was not satisfactory.

Using the proposed deep-learning methods, the death 
risk of sepsis patients can be accurately predicted using 
routine blood tests. The DCQMFF model can help opti-
mize medical resources and eliminate the need to con-
duct additional tests, thereby reducing the associated 
risks. The model can be implemented in medical insti-
tutions of different levels. However, although the con-
sidered models are promising, they are limited by their 
retrospective nature. Prospective cohort studies are 
needed to validate their effectiveness further.

Conclusion
The K-means clustering model successfully identified 
the distinct sepsis phenotypes associated with survival, 
and significant features correlated with mortality were 
identified. The findings suggest that sepsis patients with 
abnormal coagulation had poor outcomes. The anticoag-
ulation effects of appropriate heparin sodium treatment 
may improve organ failure caused by extensive micro 
thrombosis. The proposed CNN and DCQMFF models 
performed well in predicting the survival rate of sepsis 
patients. Furthermore, the DCQMFF-based application 
platform is generated to fast and accurately predict the 
28-day survival rate using only 11 blood test variables 
from patients. In the future, prospective cohort studies 
will be conducted to validate the proposed models’ effec-
tiveness further.
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