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Abstract 

Background:  Senescent cells have been identified in the aging prostate, and the senescence-associated secretory 
phenotype might be linked to prostate cancer (PCa). Thus, we established a cellular senescence-related gene prog-
nostic index (CSGPI) to predict metastasis and radioresistance in PCa.

Methods:  We used Lasso and Cox regression analysis to establish the CSGPI. Clinical correlation, external validation, 
functional enrichment analysis, drug and cell line analysis, and tumor immune environment analysis were conducted. 
All analyses were conducted with R version 3.6.3 and its suitable packages.

Results:  We used ALCAM and ALDH2 to establish the CSGPI risk score. High-risk patients experienced a higher risk 
of metastasis than their counterparts (HR: 10.37, 95% CI 4.50–23.93, p < 0.001), consistent with the results in the TCGA 
database (HR: 1.60, 95% CI 1.03–2.47, p = 0.038). Furthermore, CSGPI had high diagnostic accuracy distinguishing 
radioresistance from no radioresistance (AUC: 0.938, 95% CI 0.834–1.000). GSEA showed that high-risk patients were 
highly associated with apoptosis, cell cycle, ribosome, base excision repair, aminoacyl-tRNA biosynthesis, and mis-
match repair. For immune checkpoint analysis, we found that PDCD1LG2 and CD226 were expressed at significantly 
higher levels in patients with metastasis than in those without metastasis. In addition, higher expression of CD226 
significantly increased the risk of metastasis (HR: 3.65, 95% CI 1.58–8.42, p = 0.006). We observed that AZD7762, PHA-
793887, PI-103, and SNX-2112 might be sensitive to ALDH2 and ALCAM, and PC3 could be the potential cell line used 
to investigate the interaction among ALDH2, ALCAM, and the above drugs.

Conclusions:  We found that CSGPI might serve as an effective biomarker predicting metastasis probability and radi-
oresistance for PCa and proposed that immune evasion was involved in the process of PCa metastasis.

Keywords:  Cellular senescence, Prognostic index, Prostate cancer, Tumor immune microenvironment, Metastasis-free 
survival, Radioresistance, Immune checkpoint
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Introduction
The world is now in an era of an aging population, which 

contributed 16% of cancer cases between 2005 and 2015 
[1]. By 2030, approximately 20% of the world’s population 
will be aged 65 or older, with an exponential augmenta-
tion in the prevalence of prostate cancer (PCa) because 
this disease is most common in men 65 and older [2, 3]. 
Moreover, the prevalence of metabolic disorders appar-
ently increases and further facilitates the morbidity and 
mortality of PCa [4, 5]. PCa has the highest morbidity 
and mortality among urothelial malignancies, with an 
estimated 1.4 million new male cases and 375,000 deaths 
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worldwide in 2020 [6]. Thus, with population aging and 
increased life expectancy globally, the improvement 
of prognosis is an increasingly important area for PCa 
patients.

PCa could be a pernicious disease for patients with 
intermediate- or high-risk localized and locally advanced 
cancer who ask for local curative treatment in most cases 
[7]. The curative treatments of PCa include radical pros-
tatectomy, intensity-modulated radiotherapy, and proton 
beam therapy with or without hormone therapy [8, 9]. 
Unfortunately, approximately one-third of such patients 
develop this disease due to metastasis and radiotherapy 
resistance [10]. Cellular senescence is a predominant trait 
of aged organisms, and excessive accumulation of senes-
cent cells in tissues can contribute to the onset and pro-
gression of various age-related diseases, including cancer 
[11, 12]. The features of the senescence phenotype usu-
ally consist of the activation of a chronic DNA damage 
response, the involvement of various cyclin-dependent 
kinase inhibitors, increased secretion of proinflamma-
tory and tissue-remodeling factors, induction of antia-
poptotic genes, altered metabolic rates, and endoplasmic 
reticulum stress [13]. To date, the extent to which cellular 
senescence contributes to PCa remains elusive. In view 
of this, we developed and validated a cellular senescence-
related gene prognostic index (CSGPI) to predict metas-
tasis and tumor radioresistance and explored the related 
changes in the tumor immune microenvironment (TME) 
for PCa patients undergoing radical radiotherapy.

Methods
Data sources and clinical analysis
Our study has been registered in the ISRCTN registry 
(No. ISRCTN11560295). In total, we obtained GSE32571 
[14], GSE62872 [15], GSE79021 [16], and GSE116918 
[17] from the Gene Expression Omnibus (http://​www.​
ncibi.​nlm.​nih.​gov/​geo/) [18] to develop CSGPIs related 
to metastasis. The specific  process of combing GEO 
datasets could be seen in our previous study [19]. The 
R package “inSilicoMerging” and the “removeBatchEf-
fect” function of R pachkage “limma” were adopted to 
merge the four datasets and to further remove the batch 
effect, respectively [20]. Prostate adenocarcinoma data 
in the TCGA database and GSE21034 [21] were used for 
external validation of the prognostic value of the CSGPI. 
Seventy percent of patients in GSE116918 [17] were 
extracted randomly to internally validate the prognos-
tic value of the CSGPI. Moreover, radiotherapy resist-
ance was tested using GSE53902 [22]. GSE32571 [14], 
GSE62872 [15], and GSE79021 [16] were used to iden-
tify differentially expressed genes (DEGs) and tumor-
related genes using weighted gene coexpression network 
analysis (WGCNA). DEGs were defined by llogFCl ≥ 0.4 

and p.adj. < 0.05. Tumor-related genes were defined by a 
coefficient ≥ 0.3 and p.adj. < 0.001. Cellular senescence-
related genes were obtained from the GeneCards data-
base [23]. Subsequently, we performed an intersection 
of tumor-related genes, DEGs, and cellular senescence-
related genes to determine the candidate genes (Fig.  1). 
A total of 248 samples with complete clinical data in 
GSE116918 [17] were used to determine the definitive 
genes through Lasso and Cox regression analysis (Fig. 1). 
Thereafter, we established a formula for risk stratification: 
CSGPI risk score = 0.97428*ALCAM-0.85073*ALDH2. 
We divided the patients into high- and low-risk groups 
based on the median CSGPI risk score and tested its clin-
ical correlation and prognostic value for metastasis-free 
survival (MFS) in GSE116918 [17]. External validation 
using the TCGA database, GSE21034 [21] and GSE53902 
[22], and internal validation were also conducted (Fig. 1). 
In addition, to further determine the prognostic role of 
the CSGPI risk score for PCa patients, we stratified the 
248 patients according to the latest European Association 
of Urology (EAU) and National Comprehensive Cancer 
Network (NCCN) guidelines [24, 25] and compared these 
factors using Cox regression analysis in terms of MFS.

Protein–protein interaction and competing endogenous 
RNA (ceRNA) network
We used the GeneMANIA [26] database to explore the 
possible links of gene interactions. In addition, we deter-
mined the long noncoding RNAs (lncRNAs) that were 
differentially expressed and associated with MFS, and 
we further established the ceRNA network according to 
LncBase [27] and the miWalk database [28].

Functional enrichment analysis
Gene Ontology (GO) referred to three aspects as fol-
lows: biological process, cell composition, and molecu-
lar function. We conducted GO and Kyoto Encyclopedia 
of Genes and Genome (KEGG) analyses to explore the 
potential biological functions and signaling pathways of 
the candidate genes using the package R “clusterProfiler”. 
We divided the patients in GSE116918 [17] into high- and 
low-risk groups based on the median CSGPI risk score. 
Subsequently, gene set enrichment analysis (GSEA) was 
performed using GSEA software (version 3.0) (http://​
www.​gsea-​msigdb.​org) [29]. “h.all.v7.4.symbols.gmt” and 
“c2.cp.kegg.v7.4.symbols.gmt” from the molecular sig-
nature database [30] were used to detect pathways and 
molecular mechanisms. Considering the gene expres-
sion profile and risk groups, the minimum gene set was 5, 
and the maximum was 5000. p < 0.05 and false discovery 
rate < 0.25 were considered statistically significant.

http://www.ncibi.nlm.nih.gov/geo/
http://www.ncibi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org
http://www.gsea-msigdb.org
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Fig. 1  The flowchart of this study. WGCNA weighted gene coexpression network analysis; GO gene ontology; KEGG Kyoto Encyclopedia of Genes 
and Genome; GSEA gene set enrichment analysis; CSGPI cellular senescence-related gene prognostic index; mRNA message RNA; lncRNA long 
noncoding RNA
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DNA mismatch repair (MMR) gene mutation and DNA 
methylation analysis
The MMR genes and methyltransferases were obtained 
from a previous study [31]. We analyzed the correlation 
between these genes and the CSGPI score through Spear-
man analysis.

TME, drug, and cell line analysis
Seventeen common immune checkpoint genes were 
used for the analysis in this study. In addition, we used 
the Xcell [32] algorithm to analyze the TME through 
the package R “IOBR” [33]. Differential expression and 
Spearman analyses of these parameters were performed. 
We analyzed the drug sensitivity of ALCAM and ALDH2 
through GSCALite [34]. Subsequently, we analyzed PCa-
related cell lines of ALCAM and ALDH2 and the possible 
sensitive drugs through the canSAR database [35].

Statistical analysis
All analyses were conducted with R version 3.6.3 and its 
suitable packages. Cytoscape 3.8.2 [36] was used to estab-
lish the ceRNA network. Normality tests were performed 
using the Shapiro–Wilk method, and when the sample 
did not conform to a normal distribution, Spearman’s 
correlation analysis was conducted to describe the cor-
relation between quantitative variables. The significance 
of two groups of samples was tested by the Wilcoxon test 
and Kruskal–Wallis test for three or more groups. We 
also carried out survival analysis using the log rank test. 
Only variables that were statistically significant in the 
univariable Cox regression analysis were included in the 
multivariable Cox regression models. ROC curves were 
generated using the R packages “timeROC” and “pROC”. 
Each outcome was regarded as statistically significant 
with a two-sided p value of < 0.05. Significant mark: ns, 
p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Results
Development of CSGPI and its clinical value
We detected 64 candidate genes through the intersection 
of tumor-related genes, DEGs, and cellular senescence-
related genes (Fig.  2A–C). A total of 248 tumor sam-
ples in GSE116918 [17] were used to identify prognostic 
genes. Subsequently, we identified ALCAM and ALDH2 
as independent prognostic genes through Lasso and Cox 
regression analyses (Fig.  2D, E) and further established 

the CSGPI score based on the following formula: CSGPI 
risk score = 0.97428*ALCAM-0.85073*ALDH2. The 
Sanky plot showed clinical indicators and CSGPI scores. 
We divided the patients into high- and low-risk groups 
according to the median CSGPI score. We confirmed 
that the CSGPI score could be used as an independ-
ent risk factor for metastasis-free survival (MFS) (HR: 
9.787, 95% CI 2.213–43.286, p = 0.003; Fig. 2F) and MFS 
after biochemical recurrence (BCR) (HR: 6.334, 95% 
CI 1.479–27.139, p = 0.013; Fig.  2G). Furthermore, the 
prognostic role of the CSGPI was confirmed again when 
compared to the EAU and NCCN risk groups. In addi-
tion, we observed an increasing trend in the CSGPI score 
with increasing Gleason score (Fig. 2H), T stage (Fig. 2I), 
and the presence of BCR (Fig. 2J). Furthermore, patients 
in the high-risk group had a higher risk of BCR than 
those in the low-risk group (HR: 2.20, 95% CI 1.30–3.72, 
p = 0.004; Fig. 2K).

We observed that high-risk patients experienced a 
higher risk of metastasis than their counterparts regard-
less of MFS (HR: 10.37, 95% CI 4.50–23.93, p < 0.001; 
Fig. 3A) or MFS after BCR (HR: 6.26, 95% CI 2.65–14.77, 
p = 0.004; Fig. 3B). The CSGPI score had better diagnos-
tic accuracy for MFS (Fig.  3C, D) and MFS after BCR 
(Fig. 3E, F). In terms of internal validation, we observed 
a similar result for MFS (HR: 16.61, 95% CI 6.42–43.00, 
p < 0.001; Fig.  3G). For external validation of diagnosis, 
we also detected a consistent outcome using GSE21034 
[21] (AUC: 0.823, 95% CI 0.698–0.947; Fig. 3H). For pros-
tate adenocarcinoma in the TCGA database, high-risk 
patients had a higher risk of metastasis than low-risk 
patients (HR: 1.60, 95% CI 1.03–2.47, p = 0.038; Fig. 3I). 
Furthermore, CSGPI had high diagnostic accuracy dis-
tinguishing radioresistance from no radioresistance 
(AUC: 0.938, 95% CI 0.834–1.000; Fig. 3J). We detected 
that the long noncoding RNA (lncRNA) PART1 was 
closely related to MFS in the high- and low-risk groups 
(HR: 0.28, 95% CI 0.12–0.65%; Fig.  3K). Subsequently, 
we found that lncRNA PART1 might modulate the 
expression of ALCAM and ALDH2 through interaction 
with 75 possible miRNAs (Fig.  3L) and further estab-
lished the ceRNA network (Fig. 3M). Moreover, ALDH2 
and ALCAM might interact through coexpression and 
genetic interactions (Fig. 3N).

Fig. 2  The screening process of definitive genes and baseline features. A modules and phenotype; B volcano plot; C venn diagram; D gene 
screening of Lasso regression; E univariate and multivariate Cox analysis of candidate genes; F univariate and multivariate Cox analysis of CSGPI 
score and clinical parameters for metastasis-free survival; G univariate and multivariate Cox analysis of CSGPI score and clinical parameters for 
metastasis-free survival after biochemical recurrence; H comparison between Gleason score and CSGPI score; I comparison between T stage and 
CSGPI score; J comparison between biochemical recurrence and no biochemical recurrence for CSGP score; K Kaplan–Meier curve of probability of 
biochemical recurrence. CSGPI cellular senescence-related gene prognostic index

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Functional analysis
GO analysis showed that the 64 candidate genes might 
engage in the process of negative regulation of epithe-
lial cell proliferation, reproductive system development, 

tissue remodeling, focal adhesion, collagen-containing 
extracellular matrix, endoplasmic reticulum chaper-
one complex, actin binding, scaffold protein binding, 
and cell adhesion molecule binding (Fig.  4A). KEGG 

Fig. 3  Clinical values and interaction networks. A Kaplan–Meier curve of metastasis-free survival; B Kaplan–Meier curve of metastasis-free survival 
after biochemical recurrence; C ROC curve of CSGPI score for metastasis; D time-dependent ROC curve of CSGPI score for metastasis; E ROC curve of 
CSGPI score for metastasis after biochemical recurrence; F time-dependent ROC curve of CSGPI score for metastasis after biochemical recurrence; G 
Kaplan–Meier curve of metastasis-free survival in internal validation; H ROC curve of CSGPI score for metastasis using GSE21034 [21]; I Kaplan–Meier 
curve of metastasis-free survival in TCGA database; J ROC curve of CSGPI score for radioresistance; K Kaplan–Meier curve of metastasis-free survival 
in terms of lncRNA PART1; L Venn plot of miRNA intersection of ALCAM, ALDH2, and PART1; M interaction network of competing endogenous RNAs; 
N protein–protein interaction network. ROC receiver operating characteristic; CSGPI cellular senescence-related gene prognostic index
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Fig. 4  Functional enrichment analysis. A GO analysis; B KEGG analysis; C GSEA C2 analysis; D GSEA hallmark analysis. GO Gene Ontology; KEGG 
Kyoto Encyclopedia of Genes and Genome; GSEA gene set enrichment analysis
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analysis indicated that these genes might be involved 
in glutathione metabolism, focal adhesion, the MAPK 
signaling pathway, vascular smooth muscle contrac-
tion, drug metabolism, proteoglycans in cancer, pyru-
vate metabolism, the oxytocin signaling pathway, and 
PCa (Fig.  4B). GSEA showed that high-risk patients 
were highly associated with apoptosis, cell cycle, ribo-
some, base excision repair, aminoacyl-tRNA biosynthe-
sis, and mismatch repair, while low-risk patients were 
closely associated with glutathione metabolism, arginine 
and proline metabolism, drug metabolism cytochrome 
P450, focal adhesion, fatty acid metabolism, arachidonic 
acid metabolism, regulation of actin cytoskeleton, and so 
on (Fig.  4C). For the hallmarks, high-risk patients were 
closely associated with E2F targets (genes encoding cell 
cycle-related targets of E2F transcription factors), mitotic 
spindle (genes important for mitotic spindle assembly), 
MYC targets V1, G2 M checkpoint (genes involved in the 
G2/M checkpoint, as in progression through the cell divi-
sion cycle), and MYC targets V2, whereas the low-risk 
patients were enriched in myogenesis and apical junc-
tion (genes encoding components of apical junction com-
plex.), xenobiotic metabolism (genes encoding proteins 
involved in the processing of drugs and other xenobiot-
ics), estrogen response late, and estrogen response early 
(Fig. 4D).

TME, drug, and cell line analysis
The MMR gene and methyltransferase analyses showed 
that the CSGPI score was positively related to MSH2 
(r: 0.18), EPCAM (r: 0.27), and DNMT3B (r: 0.13) 
(Fig.  5A). For immune checkpoint analysis, we found 
that PDCD1LG2 and CD226 were expressed at signifi-
cantly higher levels in patients with metastasis than in 
those without metastasis (Fig.  5B). In addition, higher 
expression of CD226 significantly increased the risk 
of metastasis (HR: 3.65, 95% CI 1.58–8.42, p = 0.006; 
Fig.  5C). Spearman analysis showed a negative correla-
tion between the CSGPI score and CD274 (r: −  0.13), 
CD47 (r: −  0.16) and CD200 (−  0.21) (Fig.  5D). Com-
pared to patients in the no metastasis group, patients in 
the metastasis group scored significantly higher for natu-
ral killer T cells (p = 0.046) and plasmacytoid dendritic 
cells (p = 0.041) but scored lower for mast cells (p = 0.03) 
(Fig. 5E). Spearman analysis showed that CSGPI was pos-
itively associated with immature dendritic cells (r: 0.13, 
p = 0.045), gamma delta T cells (Tgd) (r: 0.17, p = 0.008), 
and macrophages (r: 0.14, p = 0.030) but negatively 
related to endothelial cells (r: − 0.14, p = 0.032), preadi-
pocytes (r: −  0.14, p = 0.030), skeletal muscle cells (r: 
− 0.15, p = 0.012), stromal score (r: − 0.24, p < 0.001), and 
microenvironment score (r: −  0.15, p = 0.019) (Fig.  5F). 
In addition, patients aged and over 65  years scored 

significantly higher in terms of immature dendritic cells 
(p = 0.01) and mast cells (p = 0.019) than their counter-
parts (Fig.  5G). Spearman analysis showed that age was 
significantly associated with immature dendritic cells (r: 
0.14, p = 0.02), mast cells (r: 0.13, p = 0.04), and pericytes 
(r: 0.16, p = 0.11) (Fig. 5H). We observed that AZD7762, 
PHA-793887, PI-103, and SNX-2112 might be sensi-
tive to ALDH2 and ALCAM (Fig. 5I), and PC3 could be 
the potential cell line used to investigate the interaction 
among ALDH2, ALCAM, and the above drugs (Fig. 5J).

Discussion
PCa has long been a question of great interest in the 
field of urology. It is well known that metastatic castra-
tion-resistant PCa is the leading cause of death, and the 
prevalence of metastasis is increasing [37]. With an aging 
population worldwide, the problem will only grow worse. 
Prior studies have noted that a doubling time of prostate-
specific antigen (PSA) ≤ 7.5  months or PSA ≥ 0.5  ng/
mL are independent risk factors for MFS [38]; however, 
BCR is not a specific indicator of overall survival and 
PCa-related mortality because a subset of patients only 
undergo rising PSA levels and will not progress [39].

PCa is an age-related disease, and senescent cells accu-
mulate with age in all tissues. Although senescent cells 
cannot replicate, these cells are metabolically active and 
form an inflammatory microenvironment through the 
senescence-associated secretory phenotype (SASP) [40]. 
SASP consists of various proinflammatory mediators, 
including cytokines, chemokines, growth factors and 
proteases, and enables senescence of adjacent nonse-
nescent cells through paracrine pathways and further 
contributes to the inflammatory microenvironment 
[41]. Many age-related diseases, such as osteoarthritis 
and atherosclerosis, have been demonstrated to be cor-
related with cellular senescence and the accumulation of 
senescent cells [42]. Senescent cells have also been found 
in the aging prostate, and previous studies indicate that 
SASP plays an important role in tumorigenesis despite 
the tumor suppression of senescence [40, 43, 44]. How-
ever, few previous studies have developed a simple and 
practical genetic biomarker to predict metastasis for 
patients undergoing radical radiotherapy. In this study, 
we established and validated a CSGPI score with two 
genes to predict MFS for PCa patients undergoing radi-
cal prostatectomy or radiotherapy. The origins of senes-
cence-triggering mechanisms consist of therapy-induced, 
oncogene-induced and age-induced senescence [40]. In 
this study, the high diagnostic accuracy of the CSGPI 
indirectly demonstrated the link between cellular senes-
cence and radioresistance. The proinflammatory process 
of senescence derives from DNA damage caused by vari-
ous stimuli and amplifying effects of SASP [40, 45], which 
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Fig. 5  Drug, cell line, and TME analysis. A Radar plot showing the correlation between the CSGPI score and mismatch repair genes and 
methyltransferases; B comparison between the metastasis and no metastasis groups concerning immune checkpoint genes; C Kaplan–Meier curve 
of metastasis-free survival for CD226; D radar plot showing the correlation between the CSGPI score and immune checkpoint genes; E comparison 
between the metastasis and no metastasis groups for TME parameters; F radar plot showing the correlation between the CSGPI score and TME 
parameters; G comparison between the ≥ 65 and < 65 groups for TME parameters; H radar plot showing the correlation between age and TME 
parameters; I upset plot of commonly sensitive drugs of ALCAM and ALDH2; B upset plot of common cell lines of ALCAM, ALDH2, and sensitive 
drugs. GDSC genomics of drug sensitivity in cancer; CTRP the cancer therapeutics response portal; TME tumor immune microenvironment; CSGPI 
cellular senescence-related gene prognostic index
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was consistent with our findings that high-risk patients 
were highly enriched in cell cycle and MMR. MSH2 and 
EPCAM might be involved in the process of metastasis 
and radioresistance in patients undergoing radiotherapy. 
Previous studies have reported that several miRNAs, 
such as miR-30 families, are dysregulated in PCa and 
interact with the p16INK4A/Rb pathway, which is associ-
ated with cellular senescence [40, 46]. Our ceRNA net-
work indicated that hsa-miR-30a-3p, hsa-miR-30d-3p, 
and hsa-miR-30e-3p might contribute to the process of 
cellular senescence.

PDCD1LG2 and CD226 showed significantly higher 
expression in patients with metastasis, and patients with 
higher expression levels of CD226 had susceptibility to 
metastasis. In addition, natural killer T cells and plas-
macytoid dendritic cells scored significantly higher in 
the metastasis group than in their counterparts. In the 
human body, CD226 is highly expressed on the surface 
of NK cells and CD8 + T cells and can activate the func-
tion of these cells [47]. Thus, we proposed that immune 
evasion might be involved in the process of metastasis, 
and the positive correlation between macrophages and 
CSGPI score supported this opinion as well. Immunose-
nescence, defined as the changes in the immune system 
associated with age, has been sought to produce a pro-
gressive deterioration in the ability to respond to infec-
tions and to develop immunity after vaccination, both of 
which are associated with a higher mortality rate in the 
elderly [48]. However, our findings indicated that immu-
nosenescence was not necessarily correlated with age in 
patients with metastatic PCa. Moreover, we must admit 
the following limitations. First, gene expression signa-
tures are subject to sampling bias caused by intratumor 
genetic heterogeneity. In addition, the microenvironment 
features might be distinct in different tumor regions, 
such as the tumor core and invasive margin. More impor-
tantly, all findings, such as the ceRNA network in this 
study, still warrant further confirmation.

Conclusions
We found that CSGPI might serve as an effective bio-
marker predicting metastasis probability and radiore-
sistance for PCa and proposed that immune evasion was 
involved in the process of PCa metastasis.
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