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Abstract 

Background: We established a radiogenomic model to predict pathological complete response (pCR) in triple‑nega‑
tive breast cancer (TNBC) and explored the association between high‑frequency mutations and drug resistance.

Methods: From April 2018 to September 2019, 112 patients who had received neoadjuvant chemotherapy were 
included. We randomly split the study population into training and validation sets (2:1 ratio). Contrast‑enhanced 
magnetic resonance imaging scans were obtained at baseline and after two cycles of treatment and were used to 
extract quantitative radiomic features and to construct two radiomics‑only models using a light gradient boosting 
machine. By incorporating the variant allele frequency features obtained from baseline core tissues, a radiogenomic 
model was constructed to predict pCR. Additionally, we explored the association between recurrent mutations and 
drug resistance.

Results: The two radiomics‑only models showed similar performance with AUCs of 0.71 and 0.73 (p = 0.55). The 
radiogenomic model had a higher predictive ability than the radiomics‑only model in the validation set (p = 0.04), 
with a corresponding AUC of 0.87 (0.73–0.91).

Two highly frequent mutations were selected after comparing the mutation sites of pCR and non‑pCR populations. 
The MED23 mutation p.P394H caused epirubicin resistance in vitro (p < 0.01). The expression levels of γ‑H2A.X, p‑ATM 
and p‑CHK2 in MED23 p.P394H cells were significantly lower than those in wild type cells (p < 0.01). In the HR repair 
system, the GFP positivity rate of MED23 p.P394H cells was higher than that in wild‑type cells (p < 0.01).

Conclusions: The proposed radiogenomic model has the potential to accurately predict pCR in TNBC patients. Epi‑
rubicin resistance after MED23 p.P394H mutation might be affected by HR repair through regulation of the p‑ATM‑γ‑
H2A.X‑p‑CHK2 pathway.
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Introduction
Triple-negative breast cancer (TNBC) is characterized 
by the negative expression of estrogen receptor, proges-
terone receptor, and human epidermal growth factor 
2 [1]. Neoadjuvant chemotherapy (NAC) serves as the 
main therapy for TNBC patients. Patients who achieve 
pathological complete response (pCR) have a better 
prognosis than non-pCR patients [2, 3]. However, less 
than 40% of TNBC patients achieve pCR after the com-
pletion of a standard NAC regimen [4]. Therefore, early 
response prediction is valuable for clinical decisions 
regarding whether treatment modification is needed to 
obtain an improved response.

To date, neither traditional clinicopathological nor 
radiologic features can accurately predict the NAC 
response. The accuracy of ultrasonography for pCR is 
only approximately 70% [5]. The change in the maxi-
mum standardized uptake value of PET scans before 
the first two cycles of NAC has been used to pre-
dict treatment response, but the area under the curve 
(AUC) values were less than 0.70 [6]. MRI serves as 
the standard tool for the surveillance of breast cancer 
response, but none of the traditional radiologic meth-
ods can predict the treatment response with sufficient 
accuracy [7]. Thus, early and accurate predictions to 
NAC response remain challenging.

In recent years, the application of radiomics 
approaches, which are less invasive, has contributed 
to both cancer diagnosis [8] and response prediction 
[9–11]. However, most studies have focused on baseline 
predictions; data on the predictive ability of radiomic 
features mid-treatment are still lacking. Radiogenom-
ics links imaging features with the genetic profiles of 
tumors [12, 13]. The integration of complementary data 
generated from radiomics and genomics might further 
improve the performance of predictive models [13]. 
Studies have also expanded to include multiple genetic 
markers, which has helped to stratify TNBC patients 
for more tailored therapy [14, 15].

In this study, we attempted to establish a new model 
based on the light gradient boosting machine (Light-
GBM) method [16], which combines both radiomic and 
genomic data for the early prediction of the response to 
NAC in TNBC patients. Additionally, we explored the 
relationships between two potential mutation targets 
and drug resistance in vitro.

Methods
Patients and neoadjuvant treatment
All patients were participants in the previously reported 
Precision Oncology Program [17] at Fudan Univer-
sity Shanghai Cancer Center and were prospectively 
recruited. From April 2018 to September 2019, consecu-
tive patients diagnosed with invasive TNBC undergoing 
NAC who signed an informed consent form for sample 
collection and clinical sequencing were identified and 
included in the analysis (Fig.  1). Patients with carci-
noma in situ, microinvasive cancer, occult breast cancer, 
metastatic disease, a prior history of other malignancies 
and incomplete CE-MRI imaging data were excluded. 
Patients who had a confirmed TNBC diagnosis through 
open biopsy and those who were lost to follow-up were 
ineligible. A triple-negative phenotype was defined as 
ER/PR negativity (cutoff point: < 1%) and an immunohis-
tochemistry score of 0 or 1 or lack of HER2 amplification 
by fluorescence in situ hybridization [18].

Four to eight cycles of NAC (taxane-based, anthracy-
cline-based or taxane-and-anthracycline-based regi-
mens) were applied according to NCCN guidelines and 
clinical trial protocols (NCT02628613 and 04,215,003). 
The regimens included dose dense (dd) EC-T (epirubicin/
cyclophosphamide followed by docetaxel), ddEC-ddP 
(epirubicin/cyclophosphamide followed by paclitaxel), 
wPC (paclitaxel/carboplatin), wP (paclitaxel), wPE (pacli-
taxel/epirubicin) and wNE (vinorelbine/epirubicin). All 
patients underwent core-needle biopsy and CE-MRI at 
baseline and were further monitored by CE-MRI every 
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Exclusion factors:
Denied surgery after NAC (n= 2)
Lost follow-up (n= 4)
Insufficient MRI imagings (n= 2)
Rejected clinical sequencing (n= 4)
Stage IV disease (n= 3)
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Triple-negative Breast Cancer Patients Receiving NAC 
and Signed Informed Consent for Clinical Sequencing

(n= 127)

Whole Population (n= 112)

Fig. 1 Flow chart
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two cycles. PCR was defined as free of invasive cancer 
burden in either the breast or associated axillary lymph 
nodes (ypT0/is ypN0).

All tissue samples in this study were obtained after 
approval by the Fudan University Shanghai Cancer Cen-
tre Institutional Review Board (No. 090977–1), and each 
patient provided written informed consent.

Radiomic data source
CE-MR scans were performed using 3 types of machines: 
1.5-T MRI scanners (Aurora Imaging Technology, Aurora 
Systems, Inc., Canada and GE, Signa HDx) and a 3.0-T 
MRI scanner (Siemens Healthineers, Erlangen, Germany) 
with a 16-channel body coil. All patients were scanned 
in the supine position. The sequences and MR scanning 
parameters are listed in the Additional file 1.

Regions of interest (ROIs) were placed semiautomati-
cally on the peak enhanced phase of CE-MRI by 3D Slicer 
software (https:// www. slicer. org/) by one radiologist 
with 15 years of experience in breast imaging. ROIs were 
placed on all slices that contained the whole tumor and 
the largest lesion (in the case of multicentric or multifo-
cal tumors). The radiologist was blinded to the patients’ 
clinical and pathological information.

Radiomic feature extraction
This study extracted the radiomic features of the con-
trast-enhanced phase using the PyRadiomics version 
2.1.2 (https:// pyrad iomics. readt hedocs. io/ en/ latest/ 
featu res. html). Feature extraction was performed in the 
tumoral and peritumoral regions. The peritumoral region 
was delineated by expanding the tumor outward with 
a 2-pixel width and subtracting the tumor area. Three 

groups of radiomics features were extracted in this study: 
first order features, wavelet features and texture features 
including gray-level dependence matrix (GLDM) fea-
tures, gray-level cooccurrence matrix (GLCM) features, 
gray-level size-zone matrix (GLSZM) features, gray-level 
run-length matrix (GLRLM) features, and neighborhood 
gray tone difference matrix (NGTDM) features.

Radiomic features were extracted from baseline and 
follow-up images after 2 NAC cycles and were used to 
build the baseline radiomic (radiomics-baseline) model 
and radiomic model after 2 cycles (radiomics after 2 
cycles). The features were used as attributes for the Light-
GBM classifier, and the extracted features remained the 
same across the three types of MRI machines used.

Radiomic data analyses
After Z-score standardization, we concatenated the fea-
tures of the three types of MRI machines. Principal com-
ponent analysis was first performed to ensure that all the 
radiomic features were distributed evenly among the 3 
machine types (Additional file 1: Figure S1) and could be 
used in further analyses. Then, we randomly divided the 
dataset into a training set and a validation set at a ratio 
of 2:1. Finally, we recorded the user_id of the patients to 
split the genomic data into the same datasets.

After all the preprocessing steps of pretreatment men-
tioned above, least absolute shrinkage and selection oper-
ator (LASSO) regression and XGBoost were used in turn 
to screen the radiomics features both at baseline and after 
2 cycles. Variables with a high coefficient were associated 
with the response to NAC by using LASSO (Fig. 2a and 
Additional file 1: Figure S2a). Next, XGBoost was applied 
to further select features for model establishment. Finally, 

a b

Wavelet-LHH_glszm_GrayLevelVariance

Wavelet-LLH_glszm_GrayLevelVariance

Wavelet-LLL_firstorder_Variance

Original_firstorder_Variance

Wavelet-HHH_glcm_JointEntrophy

Original_gldm_DependenceVariance_around

original_glrlm_ShortRunEmphasis_around
original_glszm_SizeZoneNonUniformityNormalized_around

original_gldm_DependenceVariance_around
original_gldm_SmallDependenceLowGrayLevelEmphasis_around

original_glszm_GrayLevelVariance_around
original_glszm_LargeAreaLowGrayLevelEmphasis_around

original_glcm_MaximumProbability_around
original_glszm_LowGrayLevelZoneEmphasis_around

wavelet-LLH_glszm_GrayLevelVariance
wavelet-LHH_glszm_GrayLevelVariance
wavelet-LLL_glrlm_GrayLevelVariance

wavelet-LLL_firstorder_Variance
original_glrlm_GrayLevelVariance
wavelet-HHH_glcm_JointEntropy

original_firstorder_Variance
original_glrlm_RunPercentage_around

wavelet-HLH_gldm_LowGrayLevelEmphasis
original_glrlm_GrayLevelNonUniformity_around

wavelet-LHH_glcm_SumAverage
wavelet-LHH_glcm_JointEntropy

original_glszm_ZoneEntropy_around
wavelet-HLH_firstorder_Range

wavelet-LHH_gldm_LowGrayLevelEmphasis
original_gldm_LowGrayLevelEmphasis_around

wavelet-LHH_glrlm_GrayLevelVariance

0 0.1 0.2 0.3 0.4 0.5 0 50 100 150 200 250 300

Fig. 2 Details of radiomic feature extraction using LASSO (a) and XGBoost (b) at baseline. Two feature selection steps were applied to the extracted 
radiomic features with the least absolute shrinkage and selection operator (LASSO) and XGBoost. a The LASSO model is a linear combination of the 
selected features weighted by their respective coefficients. The x‑axis denotes LASSO coefficients. Features with nonzero coefficients denote greater 
contributions to the model and were selected. b Feature importance evaluates how valuable each feature is in the construction of the gradient 
boosted decision trees within the XGBoost model and is calculated by information gain. The x‑axis measures the information gain
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we selected 6 radiomic features from the data obtained at 
baseline and after 2 cycles (Fig. 2b and Additional file 1: 
Figure S2b).

LightGBM models were built to predict pCR in the 
training set, and hyperparameters were selected, includ-
ing the number of leaves, minimum data in leaves, 
maximum depth and learning rate via fivefold cross-vali-
dation. We identified the optimal parameter combination 
according to the performance during cross-validation 
and applied this to the final model using the best param-
eter combination in the validation set. Receiver operating 
characteristic (ROC) curves were constructed.

Genomic feature extraction
Both fresh tumor tissues (obtained using baseline core-
needle biopsy) and peripheral blood samples were col-
lected. Total DNA was isolated, quantified and processed 
as previously reported [17]. Qualified genomic DNA 
from both tissues and the matched white blood cell sam-
ples was sequenced using the FUSCC-BC panel,.

Data were collected using Illumina Real Time Analysis 
(RTA) and assembled into FASTQ files using Illumina 
Bcl2Fastq2. The high-quality reads were mapped to the 
hg19 version of the human reference genome (GRCh37) 
using the BWA aligner with the BWA-MEM algorithm 
and default parameters. The Genome Analysis Toolkit 
(GATK) was used to locally realign the BAM files at 
intervals with mismatched indels and recalibrate the 
base quality scores of the reads in the BAM files. Somatic 
mutations were called from the tissue and blood BAM 
files using GATK4 Mutect2 with the default parameters. 
The VCF files were annotated using ANNOVAR. To 
improve specificity, a panel of normal sample filters was 
used to filter the expected germline variations and arti-
facts [15]. Each alteration identified by the pipeline was 
manually reviewed to ensure that no false positives were 
reported. The sequencing quality statistics were obtained 
using SAMtools and GATK. The FACETS algorithm [19] 
was utilized to detect gene-level amplification and dele-
tion. Characterization of Germline Variants (CharGer) 
[20] was used to further classify germline variants. Fur-
ther details on sample preparation and sequencing data 
generation can be found in our previous work [17].

Radiogenomic data analyses
The somatic mutation data included in this study were 
annotated and visualized using Maftools in R version 
3.6.2 Pearson’s chi-square test was employed for compar-
ison of unordered categorical variables.

For model prediction, we first summed the variant 
allele frequency (VAF) values of the nonsynonymous 
mutation sites in each gene. The Z-score was used to 

standardize these features and the features were selected 
by XGBoost. All features with an information gain over 
75 were selected. The selected 5 genomic features and the 
6 abovementioned radiomic features were used for the 
radiogenomic model. The training and validation datasets 
were the same as those in the radiomic analyses. Fivefold 
cross-validation was utilized to obtain the best hyperpa-
rameters with the highest AUC as the final model, and we 
tested this model on the validation set.

Framework of drug sensitivity validation for the two 
recurrent mutations
The mutation profiles of pCR and non-pCR populations 
were compared. Among them, the REL and MED23 
mutations were significantly different between the 
groups, and all the mutations were present in the non-
pCR population. Each of these two genes had one high-
frequency mutation, MED23 p.P394H and REL p.D268E. 
Thus, we further explored the two recurrent mutations 
with in vitro drug assays. Epirubicin and paclitaxel, two 
well-accepted and widely-used drugs for TNBC were 
applied to assess drug resistance after mutation.

The detailed methods for the in  vitro experiments, 
including the cell lines used and culture conditions, plas-
mid construction, western blot analysis, IC50 assays, 
colony formation survival, apoptosis analysis, immu-
nofluorescence and homologous recombination (HR) 
DNA repair assay are included in the Additional file  1. 
All experiments were repeated three times under the 
same conditions. Detailed information on the expression 
constructs and primers is provided in Additional file  1: 
Table S1. Detailed information on the antibodies used in 
this study is summarized in Additional file 1: Table S2.

Statistical analysis
Continuous variables are reported as the median and 
interquartile range (IQR) and were compared using the 
Wilcoxon signed-rank test. Statistical significance was 
defined as p < 0.05. Genomics and radiomics analyses 
were performed using the LightGBM 2.2 package, Python 
version 3.7.0 (https:// www. python. org/ downl oads/), 
whereas comparisons of basic benchwork data were per-
formed using SPSS 22.0 software. The DeLong test was 
applied to compare the area under the curve (AUC) val-
ues between different predictive models.

For experimental results, all data are presented as the 
means ± SDs and represent at least three independ-
ent experiments. The unpaired two-tailed Student’s t 
test was used to compare data between two groups. 
One-way analysis of variance was used to compare the 
means between treatment groups. The Mann–Whitney 

https://www.python.org/downloads/
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Wilcoxon test and the Kruskal–Wallis test were utilized 
to compare ordered categorical variables. A p value < 0.05 
was considered statistically significant.

Results
Patient characteristics
From April 2018 to September 2019, 127 consecu-
tive women with TNBC who underwent NAC and par-
ticipated in the Precision Oncology Program for Exome 
Sequencing were included. Among them, 112 met the eli-
gibility criteria and had complete endpoint data (Fig. 1). 
The baseline patient characteristics according to pCR sta-
tus are listed in Table 1.

In total, 25.0% of the patients achieved pCR after com-
pleting all NAC cycles. The proportions of patients with 
pCR and non-pCR were balanced between the training 
and validation sets. Approximately 52% of the population 
was premenopausal, and the median age was 50.5 years. 
Most patients (98.2%) presented with stage II-III disease. 
A total of 87.5% of the patients received NAC regimens 
containing anthracyclines, whereas the remaining 12.5% 
were administered taxane-based regimens only.

Baseline radiomic features predict pCR
The top ranked radiomic features in the training set with 
reliability based on multiple-sequences are shown in Fig. 2 

(baseline) and Additional file  1: Figure S2 (after 2 cycles). 
Furthermore, 6 baseline radiomic features and 6 features 
after 2 cycles were selected for the classifier.

The baseline radiomic model predicted pCR well, with an 
AUC of 0.71 (95% CI 0.61–0.81). In the validation set, the 
performance was still stable, with an AUC of 0.73 (95% CI 
0.66–0.82).

Compared with that of the baseline model, the AUC value 
of the radiomic model after 2 cycles was not significantly dif-
ferent (training set: AUC 0.71 vs. 0.73, p = 0.89; validation 
set: AUC 0.73 vs. 0.69, p = 0.55. See Additional file 1: Figure 
S3). The predictive value of the baseline MR radiomic model 
was not significantly worse than that of the model after 2 
cycles, which illustrates the early and accurate predictive 
ability of baseline MR radiomic features.

Somatic genomic alterations in the study population
In the study population, 5880 somatic mutations were identi-
fied, comprising 5442 single-nucleotide variants (SNVs) and 
438 insertions or deletions (INDELs). These tumors har-
bored a median of 45 nonsynonymous SNVs and 4 INDELs. 
The mutation profile is shown in Additional file 1: Figure S4. 
The most prominent cancer-related variations observed in 
this cohort were TP53 mutations (66%), followed by PIK3CA 
mutations (21%), whereas other mutations occurred in 
less than 10% of the cohort. Comparing the mutation pro-
file of pCR and non-pCR populations, the top 8 mutations 
are listed in Table 2. Among them, the REL (p = 0.035) and 
MED23 (p = 0.036) mutations were significantly different 
between the two groups, and all mutations were present in 
the non-pCR population.

Radiogenomic model predicts pcr better than the radiomic 
model
XGBoost was used to select 5 VAF features that might 
help to determine pCR status, namely, TEC, PIK3CA, 
REL, MAPK10 and MED23 (Additional file 1: Figure S5). 
The radiogenomic model was overwhelmingly superior 
to the baseline radiomic model in differentiating pCR 

Table 1 Characteristics of the study population

pCR (%) Non-pCR (%) Whole 
population 
(%)

N 28 (25.0) 84 (75.0) 112

Median age 47.0 51.5 50.5

  IQR 39.0–55.0 39.0–59.0 39.0–58.0

Menopausal status [n (%)]

  Premenopausal 17 (60.7) 41 (48.8) 58 (51.8)

  Postmenopausal 11 (39.3) 43 (51.2) 54 (48.2)

Baseline clinical staging [n (%)]

  Stage I 1 (3.6) 1 (1.2) 2 (1.8)

  Stage II 13 (46.4) 34 (40.5) 47 (42.0)

 Stage III 14 (50.0) 49 (58.3) 63 (56.3)

Median overall NAC cycles (IQR) 8.0–8.0 5.0–8.0 6.0–8.0

NAC regimens [n (%)]

  Anthracycline‑and‑Taxane‑
based

25 (89.3) 65 (77.4) 90 (80.4)

  Anthracycline‑based only 0 (0) 8 (9.5) 8 (7.1)

  Taxane‑based only 3 (10.7) 11 (13.1) 14 (12.5)

Breast surgery

  Breast conserving surgery 5 (17.9) 12 (14.3) 17 (15.2)

  Mastectomy 23 (82.1) 72 (85.7) 95 (84.8)

Axillary surgery

  SLNB 5 (17.9) 10 (11.9) 15 (13.4)

  ALND 23 (82.1) 74 (88.1) 97 (86.6)

Table 2 Different mutations between the pCR and non‑pCR 
populations (top 8 ranking genes)

p values < 0.05 are shown in bold

Gene pCR (n = 28) Non-pCR (n = 84) p

REL 0 9 0.035
MED23 0 8 0.036
PIK3CA 3 20 0.182

PTEN 4 5 0.219

AKT1 1 7 0.677

TP53 19 55 0.815

ATR 1 5 1.000

KMT2C 2 9 1.000
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from non-pCR, with an AUC of 0.89 (95% CI 0.74–0.95) 
vs. 0.71 (95% CI 0.61–0.81, p = 0.024). This finding was 
further supported by the results from the validation set 
[radiogenomic versus radiomic model: 0.87 (95% CI 
0.73–0.91) vs. 0.73 (95% CI 0.66–0.82), respectively; 
p = 0.039] (Fig. 3).

MED23 p.P394H weakened epirubicin sensitivity 
through HR repair
Mutations in MED23 and REL were significantly more 
common in the non-pCR population. Each of these 
two genes had one high-frequency mutation (recurrent 
spot) in our cohort, namely, MED23 p.P394H and REL 
p.D268E, which occurred in 3 and 2 patients, respectively 
(Fig. 4a and Additional file 1: Figure S6a). Thus, we fur-
ther explored whether the two high-frequency mutations 
play a role in drug resistance.

We first generated stable cell lines carrying wild-type 
(WT) MED23 and MED23 p.P394H in MED23 knock-
down SUM-159 and BT-549 cells (Fig. 4b and Additional 
file 1: Figure S7). The cell lines were treated with increas-
ing doses of epirubicin and paclitaxel and subjected to 
functional assays. Compared with MED23-WT cells, cells 
expressing the P394H mutant protein showed stronger 
viability in the colony formation assay after treatment with 
epirubicin, indicating that P394H-mutant cells may be 
resistant to epirubicin (Fig. 4c–f). As expected, the IC50 of 
the mutant cells was also higher than that of the wild-type 
cells (WT vs. p.P394H: SUM-159 208.7 vs. 51.52  nmol, 
p < 0.05; BT-549 94.56 vs. 37.64 nmol, p < 0.05, Fig. 4g and 

h). In contrast, neither the cell viability nor IC50 of these 
two cell lines were significantly different when the cells 
were treated with paclitaxel (Additional file 1: Figure S8). 
Thus, we infer that the drug resistance related to MED23 
p.P394H might be anthracycline-specific. The results of 
further apoptosis analysis showed a similar trend (Addi-
tional file 1: Figure S9).

Next, we treated the cells with 100  nM epirubicin for 
0, 15, 30  min and 1  h and found that the expression of 
the DNA damage marker γ-H2A.X was significantly 
downregulated in P394H mutant cells (Fig.  5a). Mean-
while, its upstream protein p-ATM and downstream 
protein p-CHK2 presented the same trend. Moreover, 
the results of the immunofluorescence assay were con-
sistent with those of western blot analysis (Fig.  5b-e).
To further explain the epirubicin resistance induced by 
P394H mutation, we investigated whether HR repair was 
involved. In the DR-GFP reporter assay [21], P394H-
mutant U2OS cells exhibited a significant increase (3.0% 
vs. 2.4%, p < 0.01) in the percentage of GFP-positive cells 
compared with WT cells, demonstrating that MED23 
p.P394H mutation enhanced HR (Additional file  1: Fig-
ure S10a and c). These results collectively indicated that 
P394H may lead to epirubicin resistance by enhancing 
HR repair via the p-ATM- γ-H2A.X- p-CHK2 pathway.

The other high-frequency mutation, REL p.D268E 
showed no significant effects on cell viability or IC50 val-
ues, regardless of whether the cells were treated with epi-
rubicin or paclitaxel (Additional file 1: Figure S6).

Fig. 3 ROC curves of the radiogenomic (red) and radiomic models (green). a Training set. b Validation set
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Discussion
TNBC is characterized by its high rate of early recur-
rence and poor survival, with limited treatment options 
available [22]. In the neoadjuvant setting, pCR remains 
the most convincing substitute indicator of survival [2]. 
For potential non-pCR patients with an increased risk of 
chemoresistance, treatment modification (e.g., the addi-
tion of immunotherapy [23], nab-paclitaxel [24, 25] or 
nanoparticles for codelivery of antitumoral agents [26]) 
might be an option to increase the possibility of pCR. In 
this study, we aimed to establish a radiogenomic model 

using LightGBM to predict the treatment response as 
early as possible.

Quantitative imaging features that can be used to pre-
dict the response to treatment can expand the appli-
cation of radiomics in routine clinical settings [11]. 
Braman et  al. [27] proposed that both intratumoral and 
peritumoral features can contribute to response predic-
tions, and that peritumoral features cannot be replaced 
by tumoral features. Therefore, we also included peri-
tumoral radiomic features to avoid missing information 
from the surrounding microenvironment. The selected 
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radiomic features, including first-order_variance, GLDM 
and GLCM parameters were consistent with those in 
other studies [10, 28–30]. Here we newly identified a 
series of wavelet-related features that also contributed to 
pCR prediction. Wavelet features have been previously 

mentioned in the response prediction of colorectal can-
cer [31], but their application in breast cancer treatment 
response remain unexplored., which is worthy of further 
investigation. Moreover, the addition of clinicopatho-
logical data has been reported to increase the predictive 
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ability compared to that of the model alone [32], but 
external validation has failed to confirm the superiority 
of the radiomic model over the clinical model [29]. In 
our study, we also failed to show a significant improve-
ment in pCR prediction with the addition of clinical fac-
tors. Studies with larger sample sizes are needed to justify 
the addition of clinicopathological features into a radi-
omic/radiogenomic model. In the ACRIN 6657/I-SPY 
study [33], prediction based on changes in tumor vol-
ume showed the greatest relative benefit after 1 cycle of 
anthracycline-based NAC, with an AUC of 0.70. Another 
recent study [30] revealed excellent predictive power for 
3-year recurrence (AUC = 0.93) in TNBC, but both pre- 
and post-NAC features were used. Our radiogenomic 
model enabled the prediction of pCR even before the 
start of NAC (at baseline), with a high AUC value of 0.87 
in the validation set, thus potentially supporting earlier 
treatment modification. Patients with a poor response 
might not need to complete additional cycles prior to 
treatment alteration.

In addition to the macroscopic and high-throughput 
characteristics from radiology, we tried to add genomic 
data to enhance the predictive value, discover novel 
biomarkers and identify potential genomic mecha-
nisms associated with the drug-resistant phenotype. 
For response predictions, our results revealed the excel-
lent performance of the radiogenomic model after the 
addition of 5 VAF features, with an AUC of To identify 
potentially actionable targets, we tested whether the two 
high-frequency mutation spots (MED23 p.P394H and 
REL p.D268E) were associated with chemotherapy resist-
ance. Mediator (MED) is a multisubunit complex that 
conveys signals to the basal transcription machinery [34]. 
Mediator complex subunit 23 (MED23) is a subunit that 
plays a crucial role in alternative mRNA processing [35], 
cell differentiation [36] and tumorigenesis [37]. Over-
expression of MED23 was confirmed to promote tumo-
rigenesis in NSCLC [38] and hepatocellular carcinoma 
[39]. Conversely, overexpression of MED23 in esopha-
geal squamous cell carcinoma dramatically inhibited cell 
growth [40]. However, few studies have investigated the 
role of MED23 in breast cancer. We found that the cell 
viability and IC50 values of MED23 p.P394H-mutant 
cells increased after epirubicin treatment. This trend 
was opposite to that observed after MED23 was knocked 
down, indicating that P394H might be a pathogenic 
mutation.

Epirubicin forms complexes with DNA by intercala-
tion between base pairs, which leads to the formation of 
free radicals and inhibits the catalytic activity of DNA 
topoisomerase II [41]. Conversely, DNA damage repair 
is an important contributor to epirubicin resistance [42]. 

Significantly reduced levels of p-ATM and γ-H2A.X and 
p-CHK2 were observed at multiple time points post-
mutation, indicating that epirubicin resistance after 
P394H mutation might manifest through regulation of 
the p-ATM- γ-H2A.X- p-CHK2 pathway. HR is one of 
the most important mechanisms for the repair of anthra-
cycline-DNA adducts [43]. Our results showed that the 
P394H mutation might affect HR repair, thus further 
inducing epirubicin resistance. Cancer cells with efficient 
DNA damage repair machinery might be able to over-
come the cytotoxicity of anthracyclines. Further experi-
ments are needed to explain the underlying mechanisms 
and verify whether MED23 p.P394H or HR inhibitors 
could help to reverse epirubicin resistance. Another high-
frequency mutation, REL p.D268E, failed to elicit any 
significant effect on drug resistance, possibly because of 
the limited sample size. The relatively high-frequency (2 
patients) of this mutation in this cohort might not reflect 
its true frequency in the general TNBC population.

Despite the excellent predictive value of the radiog-
enomic model, several limitations still need to be consid-
ered. First, actionable somatic mutations are not frequent 
events in TNBC patients, so bias existed in this relatively 
small cohort. Further validation in external populations is 
needed. Additionally, the epirubicin-resistant phenotype 
caused by MED23 P394H and its underlying mechanisms 
need to be fully explored in clinical samples in the future. 
Second, this was a single-institution study, the chemo-
therapy regimens were not unified, and heterogeneity 
existed due to the use of different MRI machines. Third, 
the genomic data were sequenced using core-needle 
biopsy tissue, which might be affected by paracancerous 
tissue. Finally, the genomic analyses only covered muta-
tion data; other aspects, including copy number variation 
and quantitative expression, were not included.

Despite these limitations, in this work, an excellent 
radiogenomic model was constructed, with an AUC as 
high as 0.87, that could predict pCR in the TNBC popu-
lation prior to NAC administration. Furthermore, we are 
the first to propose that the MED23 p.P394H mutation 
might cause epirubicin resistance and to explore this 
phenotype. The underlying mechanisms will be investi-
gated and validated in future experiments.

Conclusions
The proposed radiogenomic model has the potential to 
accurately predict pCR before NAC in TNBC patients. 
The resistance to epirubicin observed after MED23 
p.P394H mutation occurs might be associated with HR 
repair through regulation of the p-ATM-γ-H2A.X-p-
CHK2 pathway.
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Additional file 1: Figure S1. Principal component analyses of radiomic 
features from 3 types of MRI machines. Figure S2. Details of radiomic fea‑
ture extraction using LASSO (a) and XGBoost (b) after 2 cycles. Two feature 
selection steps were applied to the extracted radiomic features with the 
least absolute shrinkage and selection operator (LASSO) and XGBoost. 
(a) The LASSO model is a linear combination of the selected features 
weighted by their respective coefficients. The x‑axis denotes LASSO coeffi‑
cients. Features with nonzero coefficients denote greater contributions to 
the model and are selected. (b) Feature importance evaluates how valua‑
ble each feature was in the construction of the gradient boosted decision 
trees within the XGBoost model and is calculated by information gain. 
The x‑axis measures the information gain. Figure S3. ROC curves of the 
radiomic model at baseline (green) and after 2 cycles (yellow). Figure S4. 
Mutation profile oncoplot of the study population. Figure S5. Selection 
of genomic features using XGBoost. For genomic feature selection, vari‑
ables including mutation status (positive or negative), detected mutation 
counts and VAF of each gene were input. After standardization, feature 
importance evaluates how valuable each feature was in the construction 
of the gradient boosted decision trees within the XGBoost model and is 
calculated by information gain. The x‑axis measures the information gain. 
Features with the top 10 information gain rankings are presented. The 
selection criterion was defined as an information gain over 75. Therefore, 
5 VAF features were selected. Figure S6. IC50 and colony formation assay 
with epirubicin and paclitaxel treatment in stable cells expressing wild‑
type REL and D268E mutation. (a) REL mutations discovered in this cohort. 
REL p.D268E was identified as a recurrent mutation. (b) Stable shREL 
SUM‑159 and MDA‑MB‑231 cells were further r transfected with wild‑type 
REL or p.D268E mutation, respectively, and subjected to immunoblotting. 
(c‑f ) SUM‑159 and MDA‑MB‑231 cells stably expressing wild‑type REL and 
the D268E mutation were treated with increasing doses of epirubicin and 
subjected to colony formation survival assays. Representative images of 
the surviving colonies are shown in C and D, and the corresponding quan‑
titative results are shown in E and F. (g‑h) SUM‑159 and MDA‑MB‑231 cells 
stably expressing wild‑type REL and the D268E mutation were treated 
with increasing doses of epirubicin and subjected to IC50 assays. *p< 
0.05, **p< 0.01, ***p< 0.001 (i‑l) SUM‑159 and MDA‑MB‑231 cells stably 
expressing wild‑type REL and D268E mutation were treated with increas‑
ing doses of paclitaxel and subjected to colony formation survival assays. 
Representative images of surviving colonies are shown in I and J, and the 
corresponding quantitative results are shown in K and L. (m‑n) SUM‑159 
and MDA‑MB‑231 cells stably expressing wild‑type REL and the D268E 
mutation were treated with increasing doses of paclitaxel and subjected 
to IC50 assays. *p< 0.05, **p< 0.01, ***p< 0.001 Figure S7. Construction of 
MED23 (a) and REL (b) knockdown cell lines. (a) SUM‑159 and BT‑549 cells 
were transfected with shMED23 and shNC. After selection by puromycin, 
the cells were collected and subjected to immunoblotting. (b) SUM‑159 
and MDA‑MB‑231 cells were transfected with shREL and shNC. After 48 h 
of transfection, the cells were treated with puromycin for 7‑10 days at a 
concentration of 5 μg/ml and then subjected to immunoblotting. Figure 
S8. IC50 and colony formation assay with paclitaxel treatment in stable 

cells expressing wild‑type MED23 and P394H mutation. (a‑d) MED23 was 
knocked down via shRNA. SUM‑159 and BT‑549 cells stably express‑
ing wildtype MED23 and P394H mutation were treated with increasing 
doses of paclitaxel and subjected to colony formation survival assays. 
Representative images of surviving colonies are shown in A and C, and the 
corresponding quantitative results are shown in B and D. (e‑f ) SUM‑159 
and BT‑549 cells stably expressing shNC, shMED23, wild‑type MED23 and 
P394H mutation were treated with increasing doses of paclitaxel and sub‑
jected to IC50 assays. *p< 0.05, **p< 0.01, ***p< 0.001. Figure S9. Apop‑
tosis of SUM‑159 and BT‑549 cells stably expressing wild‑type MED23 and 
p.P394H mutation after epirubicin treatment. The upper right quadrant 
represents dead/late apoptotic cells, whereas the lower right quadrant 
represents early apoptotic cells. After treatment with epirubicin (10 nM, 24 
h), cells were stained with Annexin V/PE and 7AAD, and observed by flow 
cytometry. *p< 0.05, **p< 0.01, ***p< 0.001. Figure S10. MED23 p.P394H 
promoted homologous recombination repair. (a) U2OS cells expressing 
wild‑type MED23 and the P394H mutation were transfected with I‑SceI. 
After 24 h, the cells were treated with 10 μM triamcinolone acetonide for 
another 48 h. The HR reporter assay was determined by flow cytometry. 
(b) The working model of the HR reporter system is presented. I‑SceI 
endonuclease was introduced into GFP/U2OS cells. (c) Quantification of 
GFP‑positive cells. **p< 0.01 Table S1. Detailed information on the expres‑
sion constructs (a), primers (b) and shRNA sequences (c). Table S2. The 
vendors and working concentrations of antibodies.
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