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Abstract 

Background:  Established prediction models of Diabetic kidney disease (DKD) are limited to the analysis of clini-
cal research data or general population data and do not consider hospital visits. Construct a 3-year diabetic kidney 
disease risk prediction model in patients with type 2 diabetes mellitus (T2DM) using machine learning, based on 
electronic medical records (EMR).

Methods:  Data from 816 patients (585 males) with T2DM and 3 years of follow-up at the PLA General Hospital. 46 
medical characteristics that are readily available from EMR were used to develop prediction models based on seven 
machine learning algorithms (light gradient boosting machine [LightGBM], eXtreme gradient boosting, adaptive 
boosting, artificial neural network, decision tree, support vector machine, logistic regression). Model performance was 
evaluated using the area under the receiver operating characteristic curve (AUC). Shapley additive explanation (SHAP) 
was used to interpret the results of the best performing model.

Results:  The LightGBM model had the highest AUC (0.815, 95% CI 0.747–0.882). Recursive feature elimination with 
random forest and SHAP plot based on LightGBM showed that older patients with T2DM with high homocysteine 
(Hcy), poor glycemic control, low serum albumin (ALB), low estimated glomerular filtration rate (eGFR), and high bicar-
bonate had an increased risk of developing DKD over the next 3 years.

Conclusions:  This study constructed a 3-year DKD risk prediction model in patients with T2DM and normo-albumi-
nuria using machine learning and EMR. The LightGBM model is a tool with potential to facilitate population manage-
ment strategies for T2DM care in the EMR era.

Keywords:  Type 2 diabetes, Diabetic kidney disease, Electronic medical records, Machine learning, Light gradient 
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Background
Diabetic kidney disease (DKD) is a leading cause of end-
stage renal disease (ESRD), cardiovascular (CV) disease, 
and all-cause morbidity and mortality in patients with 
diabetes [1]. Notably, diabetes and chronic kidney disease 
(CKD) are risk factors for severe COVID-19 infection 
and poor outcomes [2, 3]. Early identification of patients 
with diabetes who are at high risk for DKD will inform 
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clinical decision-making. Understanding the risk factors 
that contribute to DKD and a precise DKD risk predic-
tion model will allow early intervention in DKD and pre-
vent its progression. Accurate prediction of DKD risk will 
drive the timely use of primary prevention strategies, and 
facilitate the identification of incident CKD in patients 
with diabetes before microalbuminuria appears. There 
remains an unmet clinical need for a precise predictive 
model of DKD risk that can be used to screen the large 
population of patients with diabetes and in management 
decisions.

Predictors of DKD risk include albumin excretion rate 
(AER), blood pressure, blood glucose, glomerular filtra-
tion rate (GFR), diabetic retinopathy, and plasma lipid 
levels. In the real-world setting, collecting longitudinal 
data from the large population of patients with diabetes is 
challenging [4]. In clinical practice, unselective screening 
for DKD is not cost-effective. The ability to predict DKD 
risk in individual patients with diabetes may be improved 
by a comprehensive and integrated evaluation of cur-
rently available clinical parameters.

Machine-learning of big medical data derived from 
electronic medical records (EMR) in the real-world set-
ting is supporting physicians in their clinical diagnoses 
and management of asthma and life-style related dis-
eases such as diabetes [5, 6]. Models that predict the 
risk of kidney failure (defined as replacement therapy-
treated ESRD) among patients with CKD or the risk of 
ESRD in patients with DKD have been developed [7, 8]. 
To the author’s knowledge, there are no predictive mod-
els of DKD in patients with diabetes based on EMR con-
structed using machine learning.

A recent study revealed that the predictive power of 
a real-world data (RWD)–based model for diabetes-
related CKD outperformed published algorithms based 
on data from clinical trials [9]. The objective of the pre-
sent study was to construct a 3-year DKD risk prediction 
model in patients with type 2 diabetes mellitus (T2DM) 
and normo-albuminuria using machine learning, based 
on EMR. The model will augment physicians’ empirical 
judgments with rapid and precise predictions of DKD 
risk in patients with T2DM and normo-albuminuria 
and identify predictive risk factors for DKD among this 
patient population.

Methods
Data source
Data for this study were retrospectively derived from the 
EMR database at the People’s Liberation Army (PLA) 
General Hospital, the largest hospital in North China. 
The EMR database contains patient information and 
medical records from all hospital departments. The data 
set was de-identified and spanned from October 2008 

to December 2019. This study was approved by the PLA 
General Hospital ethics committee (S2017-133-01) and 
conducted according to the guidelines of the Declaration 
of Helsinki.

Study population
Patients diagnosed with T2DM, according to Interna-
tional Classification of Diseases (ICD)-10 codes, with 
3  years of follow-up were eligible for this study. Exclu-
sion criteria were: (1) aged < 18 years; (2) undergoing an 
invasive procedure; (3) presence of an acute infection; (4) 
presence of a malignancy; (5) or pregnancy.

At baseline, included patients had no evidence of 
DKD, defined as urinary albumin/creatinine ratio 
(UACR) > 30 mg/g, protein excretion rate > 150 mg/24 h, 
or urine dipstick test ≥ 1 + [10], or eGFR < 60  mL/
min/1.73m2, calculated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI [11]) equation.

At the 3-year follow-up, included patients (n = 2809) 
were stratified according to the presence (n = 408) or 
absence (n = 2401) of DKD; under-sampling was used 
to balance the number of patients with or without DKD 
to 408 each [12]. Patients were randomly split 8:2 into a 
training set (n = 652) and a validation set (n = 164) using 
the Python package (Scikit-learn) [13] (Fig. 1).

Candidate predictor variables
Patients’ demographic and clinical characteristics at 
baseline and the 3-year follow-up were recorded. Labo-
ratory variables were derived from universally imple-
mented tests. Comorbidities (presence or absence, 
number and type), including hypertension, cardiovascu-
lar disease, peripheral neuropathy, diabetic retinopathy 
and cerebrovascular disease, were diagnosed according 
to ICD-10 codes.

The risk prediction model was trained using 46 vari-
ables selected from medical reports and published liter-
ature, including sex, age, body weight and height, BMI, 
urine specific gravity (SG), urine red blood cell count 
(RBC), hemoglobin (Hb), hematocrit (Hct), mean cor-
puscular volume (MCV), mean corpuscular hemoglobin 
concentration (MCHC), white blood cell count (WBC), 
percent neutrophil granulocytes (N%), percent lympho-
cytes (L%), neutrophil to lymphocyte ratio (NLR), plate-
let count (PLT), mean platelet volume (MPV), activated 
partial thromboplastin time (APTT), plasma fibrinogen 
(FIB), random blood glucose (RBG), HbA1c, blood urea 
nitrogen (BUN), serum creatinine (SCR), serum uric 
acid (SUA), eGFR, total bilirubin (T-BiL), direct biliru-
bin (D-BiL), ALB, γ-glutamine transferase (GGT), total 
cholesterol (TC), triglyceride (TG), high-density lipopro-
tein (HDL), LDL, serum potassium (K), serum sodium 
(Na), calcium (Ca), phosphate (P), bicarbonate, and Hcy. 
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Albuminuria was not used as a predictor, as patients had 
normal urinary protein excretion at baseline.

Variables with > 25% missing data were excluded. Miss-
ing values for included variables were imputed using the 
random forest (RF) method [14].

Model development and evaluation
Seven machine learning algorithms implemented in the 
Python package 3.3.8: light gradient boosting machine 
(LightGBM) [15], eXtreme gradient boosting (XGBoost) 
[16], adaptive boosting (AdaBoost) [17], artificial neural 
network [18], decision tree [19], support vector machine 
(SVM) [20] and logistic regression [21], were used to 
identify the most informative variables for 3-year DKD 
risk prediction and develop models that predicted 3-year 
DKD risk as a binary outcome (presence or absence), 
according to the baseline values of the selected predictor 
variables.

LightGBM is a new member of the boosting family of 
algorithms, which is an accurate and efficient implemen-
tation of GBDT, similar to XGBoost. Both LightGBM and 
XGBoost take the negative gradient of the loss function 
to fit the residuals and find the optimal solution. Com-
pared with XGBoost, LightGBM has faster training effi-
ciency, lower memory, higher accuracy, and it can handle 
large-scale data and provide direct support of categories. 
The AdaBoost algorithm is a boosting method that com-
bines multiple weak classifiers into a single strong classi-
fier. The neural network model represents a (significant) 
enhancement of the logistic regression method. Decision 

tree models break down data sets into smaller subsets 
and develop an associated decision tree. The SVM algo-
rithm is a binary classifier that maps input data into a 
high-dimensional feature space with a non-linear trans-
formation. The logistic regression algorithm builds linear 
models with built in attribute selection.

A binary outcome for the prediction model was defined 
as the presence or absence of DKD. Every subset of data 
included the baseline values (at patients’ first visit) for the 
predictor variables as well as DKD outcomes at 3  years 
of follow-up. Data were randomly allocated into separate 
training and validation data sets for each time window 
using the Python package (Scikit-learn) [13]. 80% of the 
data was used for training the model, and the remain-
ing 20% was used to validate the model’s predictive 
performance.

Statistical analysis
Analyses were conducted using Python version 3.8.3 
and SPSS software (version 25.0; SPSS Inc., Chicago, IL, 
USA). Normally distributed continuous variables were 
compared using the student’s t test. Non-normally dis-
tributed continuous variables were compared using the 
Wilcoxon rank sum test. Categorical variables were com-
pared using the chi-square test. Tests were two-sided. A 
P value < 0.05 was considered statistically significant.

Performance of the predictive models generated by 
the seven machine learning algorithms were evaluated 
using the area under the receiver operating characteristic 
(ROC) curve (AUC), sensitivity, specificity, accuracy, and 

Fig. 1  Flow diagram of patient selection. Non-DKD, no diabetic kidney disease; DKD, diabetic kidney disease; eGFR, estimated glomerular filtration 
rate



Page 4 of 10Dong et al. Journal of Translational Medicine          (2022) 20:143 

the F1 score ( 2* ( (precision*recall)/ (precision + recall)); 
range from 0 (worst score) to 1 (best score)) [22]. Shap-
ley additive explanation (SHAP) was used to interpret the 
results of the best performing prediction model by com-
puting the contribution of each variable to the prediction 
[23, 24]. SHAP values evaluate the importance of the out-
put resulting from the inclusion of feature A for all com-
binations of features other than A [23].

Results
Patient characteristics
A total of 816 patients were included in this analysis. 
Of these, patients had a median age of 56  years (IQR, 
48–66  years), and 585 (67.7%) patients were male. The 
incidence of at least one macrovascular or microvascular 

complication (hypertension, cardiovascular disease, 
cerebrovascular disease, diabetic retinopathy, diabetic 
peripheral neuropathy) was 52.6%. Baseline demographic 
and clinical characteristics of patients with or without 
DKD (n = 408 each) at the 3-year follow-up are shown 
in Table  1. At baseline, patients with no DKD at the 
3-year follow-up were significantly older and had signifi-
cantly higher eGFR, ALB, and Hb and significantly lower 
HbA1c, compared to patients with DKD at the 3-year 
follow-up.

Feature selection
Recursive feature elimination (RFE) with RF was used 
to select variables as inputs for the 3-year DKD risk 
prediction model [25]. Ultimately, the 46 variables were 

Table 1  Baseline demographic and clinical characteristics of the included patients

Values for continuous variables are expressed as mean ± standard deviation or median [interquartile range]; values for categorical data are given as number (percent). 
The P value represents comparison between non-DKD group and DKD group

Abbreviations and definitions: BMI, body mass index; eGFR, estimated glomerular filtration rate; SCR, serum creatinine; BUN, blood urea nitrogen; SUA, serum uric 
acid; ALB, serum albumin; TC, total cholesterol; TG, triglyceride; HDL. high-density lipoprotein; LDL, low-density lipoprotein; K, serum potassium; Na, serum sodium; Ca, 
calcium; P, phosphate; Hcy, homocysteine; Hb, hemoglobin; NLR, neutrophils to lymphocytes ratio; FIB, Plasma fibrinogen

Base line characteristics All non-DKD DKD P value

Patient population, n 816 408 408

Male, n (%) 541 (66.3) 291 (71.3) 250 (61.3) 0.002

Age (years) 56.00 (48.25–65.00) 52.5 (47, 60) 61 (50, 71) 0.000

BMI (kg/m2) 26.03 (24.22, 28.61) 25.79 (24.46, 28.24) 26.30 (23.96, 29.06) 0.343

Hypertension (%) 349 (42.8) 157 (38.5) 192 (47.1) 0.013

Cardiovascular disease (%) 194 (23.8) 79 (19.4) 115 (28.2) 0.292

Cerebrovascular disease (%) 81 (9.9) 36 (8.8) 45 (11) 0.003

Peripheral neuropathy (%) 31 (3.8) 13 (3.2) 18 (4.4) 0.360

Diabetic retinopathy (%) 21 (2.6) 9 (2.2) 12 (2.9) 0.507

eGFR CKD-EPI (ml/min/1.73m2) 98.42 ± 18.63 103.25 ± 16.15 93.6 ± 19.69 0.000

SCR (μmol/L) 68.62 ± 14.06 67.13 ± 12.85 70.1 ± 15.05 0.003

BUN (mmol/L) 5.36 (4.5, 6.43) 5.22 (4.47, 6.16) 5.51 (4.53, 6.66) 0.004

SUA (μmol/L) 331.50 ± 91.85 336 ± 84.46 326.99 ± 98.58 0.161

HbA1c (%) 6.8 (6.3, 77.7) 6.6 (6.18, 7.30) 7.00 (6.41, 8.03) 0.000

ALB (g/L) 43.21 ± 4.04 43.89 ± 3.63 42.54 ± 4.31 0.000

TC (mmol/L) 4.41 (3.72, 5.23) 4.46 (3.85, 5.24) 4.33 (3.65, 5.23) 0.153

TG (mmol/L) 1.58 (1.11, 2.35) 1.69 (1.16, 2.42) 1.50 (1.03, 2.21) 0.019

HDL (mmol/L) 1.04 (0.89, 1.28) 1.03 (0.88, 1.26) 1.07 (0.90, 1.31) 0.107

LDL (mmol/L) 2.76 ± 0.91 2.82 ± 0.86 2.71 ± 0.95 0.09

K (mmol/L) 4.09 ± 0.38 4.07 ± 0.33 4.1 ± 0.42 0.372

Na (mmol/L) 142 (140, 143.3) 142.00 (140.80, 143.88) 141.60 (139.4, 143.00) 0.000

Ca (mmol/L) 2.29 ± 0.11 2.29 ± 0.10 2.28 ± 0.12 0.381

P (mmol/L) 1.18 ± 0.18 1.20 ± 0.18 1.17 ± 0.18 0.023

Bicarbonate (mmol/L) 26.13 (24.95, 27.5) 25.98 (24.9, 27.10) 26.23 (25.01, 27.78) 0.017

Hcy 12.59 (10.17, 15.45) 1175 (9.71, 14.16) 13.61 (10.74, 16.65) 0.000

Hb (g/L) 141.93 ± 18.8 145.51 ± 16.82 138.34 ± 19.98 0.000

NLR 1.84 (1.42, 2.44) 1.76 (1.35, 2.32) 1.97 (1.45, 2.61) 0.000

FIB (g/L) 3.09 (2.70, 3.54) 3.00 (2.65, 3.42) 3.18 (2.77, 3.69) 0.000
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reduced to 8 potential predictors of 3-year DKD risk. 
Five-fold cross validation combined with RF selected age, 
Hcy, HbA1c, BMI, Alb, eGFR and bicarbonate as the 7 
most relevant variables. LDL was also included as it is a 
commonly cited risk factor for DKD.

Model building and evaluation
The eight selected variables were used as inputs for the 
seven machine learning algorithms to predict 3-year 
DKD risk. Performance evaluation of the models gener-
ated by the seven machine learning algorithms is shown 
in Table  2. The LightGBM model had the highest AUC 
(0.815, 95% CI 0.747–0.882), sensitivity, positive pre-
dictive, and negative predictive values (Fig.  2). The 
decision tree had the lowest AUC value (0.579, 95% CI 
0.503–0.655).

Explanation of risk factor
SHAP was used to interpret the results of the LightGBM 
model by computing the contribution of each variable to 
the prediction. The importance matrix plot and SHAP 
summary plot for the LightGBM model are shown in 
Fig. 3, and the SHAP dependence plot for the LightGBM 
model is shown in Fig. 4.

The importance matrix plot ranked the variables con-
tributing to 3-year DKD risk prediction from most to 
least important as patients’ baseline age, Hcy, HbA1c, 
BMI, Alb, eGFR, bicarbonate, and LDL (Fig.  3a). The 
SHAP summary plot (Fig. 3b) and SHAP dependence plot 
(Fig.  4) identified how each baseline variable influenced 
the outcome of DKD. On the SHAP summary plot, base-
line variables with higher SHAP feature values increased 
the risk of developing DKD over the next 3  years. On 
the SHAP dependence plot, each dot represented a 
patient, such that the plot depicted how the attributed 
importance of a baseline variable changed with its value. 
SHAP values exceeding zero represented an increased 

risk of 3-year DKD. In general, older patients  (Fig.  4a) 
with high Hcy (Fig. 4b), poor glycemic control  (Fig. 4c), 
low Alb  (Fig. 4e), low eGFR (Fig. 4f ), and high bicarbo-
nate  (Fig.  4g) had an increased risk of developing DKD 
over the next 3 years. High or low BMI (Fig. 4d) and LDL 
(Fig. 4h) are risk factors for DKD progression.

Applying the prediction model
SHAP force plots illustrate profiles of patients at high or 
low risk for developing an outcome and show how a pre-
dictive model based on EMR can facilitate individualized 
care planning. SHAP force plots for the LightGBM model 
are shown in Fig. 5.

Table 2  Performance of the prediction models generated by the seven machine learning algorithms

SE: sensitivity; SP: specificity; AC: accuracy; PPV: positive predictive value; NPV: negative predictive value

Models AUC​ 95% CI SE (recall) SP AC F1 PPV NPV

Lower bound Upper bound

LightGBM 0.815 0.747 0.882 0.741 0.797 0.768 0.768 0.797 0.741

XGBoost 0.779 0.706 0.853 0.682 0.785 0.732 0.725 0.773 0.697

AdaBoost 0.805 0.738 0.872 0.659 0.772 0.713 0.704 0.757 0.678

Artificial Neural Network 0.800 0.730 0.869 0.659 0.911 0.768 0.747 0.862 0.680

Decision Tree 0.579 0.503 0.655 0.576 0.595 0.579 0.587 0.598 0.603

Support Vector Machine 0.791 0.720 0.862 0.612 0.886 0.744 0.712 0.852 0.680

Logistic Regression 0.798 0.728 0.868 0.718 0.759 0.738 0.739 0.763 0.714

Fig. 2  Evaluation of the seven machine learning algorithms based on 
the AUC of the ROC curve. AUC, area under the curve; ROC, receiver 
operating characteristic
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In the study population, the risk of developing DKD 
over the next 3  years was 49.6%. Figure  5a shows a 
72-year-old female patient with a predicted 92.4% [26] 
probability of developing DKD over the next 3  years. 
Addressing the modifiable risk factors of BMI, HbA1c, 
Hcy, eGFR, and bicarbonate may reduce this risk. Fig-
ure  5b shows a 61-year-old female patient with a lower 
risk profile; this patient had a predicted 31.7% [26] prob-
ability of developing DKD over the next 3 years. Figure 5c 
shows the risk of developing DKD over the next 3 years 
in the training set was 49.6%. Predictive values for each 
patient are listed in supplementary materials [27].

Discussion
This study identified predictive risk factors for DKD 
and constructed a 3-year DKD risk prediction model 
in patients with T2DM and normo-albuminuria using 
machine learning and clinical variables easily extracted 
from EMR. The performance of predictive models gen-
erated by seven machine learning algorithms were com-
pared. Findings showed the LightGBM model had the 
highest AUC, sensitivity, positive predictive, and nega-
tive predictive values. LightGBM is a high-performance 
gradient boosting framework [28, 29] that has been used 
for the prediction of undiagnosed T2DM, based on EMR 
[30]. To the author’s knowledge, this is the first published 
study to apply the LightGBM algorithm to predict the 

Fig. 3  a Importance matrix plot of the LightGBM model, depicting the importance of each variable for predicting 3-year DKD risk in patients with 
T2DM and normo-albuminuria. b SHAP summary plot of the top 8 clinical features of the LightGBM model. There is one dot per patient per feature 
colored according to an attribution value, where red represents a higher value and blue represents a lower value. Hcy, homocysteine; BMI, body 
mass index; ALB, serum albumin; eGFR, estimated glomerular filtration rate; LDL, low-density lipoprotein

Fig. 4  SHAP dependence plot of the LightGBM model, depicting how a single variable affects the prediction. SHAP values for specific features that 
exceed zero suggest an increased risk of DKD. Hcy, homocysteine; BMI, body mass index; eGFR, estimated glomerular filtration rate
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3-year risk of DKD in patients with T2DM and normo-
albuminuria who attended a hospital.

EMR has increased access to large amounts of patient 
data. This, combined with machine learning, is facilitat-
ing the development of sophisticated prediction mod-
els [31, 32]. Previous reports have presented machine 
learning techniques as black boxes, providing little 
information on how predictions have been made. This 
has hampered uptake by clinicians, who are reluctant 
to make medical diagnoses based on non-transparent 
decision-making. In this study, to facilitate interpretation 
of the decision process of the LightGBM algorithm, we 
used SHAP methodology to explain our predictions [33]. 
Baseline age, Hcy, HbA1c, BMI, Alb, eGFR, bicarbonate 
and LDL were selected as variables relevant for predict-
ing 3-year DKD risk in patients with T2DM and normo-
albuminuria. Previous studies have identified these as 

medically, socially, and economically important variables 
for quantifying the risk of CKD as a microvascular long-
term complication of diabetes [34–36]. Consistent with 
this, our SHAP summary and dependence plots showed 
that baseline age, Hcy, HbA1c, Alb, eGFR and bicarbo-
nate could distinguish patients at high or low 3-year risk 
of developing DKD. Specifically, older patients with high 
Hcy, poor glycemic control, low Alb, low eGFR, and high 
bicarbonate had a high 3-year risk of developing DKD. 
SHAP visualizations provide clinical insight and inform 
clinical decision-making, but highlight the complexity of 
predictive models. In this case, SHAP dependence plots 
revealed an increased 3-year risk of DKD in patients with 
T2DM and normo-albuminuria who had high or low 
eGFR, BMI or LDL.

Machine learning has confirmed that several bio-
markers have prognostic use and may help investigators 

Fig. 5  SHAP force plot for patients in the dataset at high (a) or low (b) risk of developing DKD; c SHAP values (global interpretation) for the training 
set. The abscissa represents each patient, and the ordinate represents the SHAP value. More red indicates a higher overall risk. Hcy, homocysteine; 
BMI, body mass index; eGFR, estimated glomerular filtration rate
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identify novel risk factors and provide insight into disease 
pathogenesis [37]. Ongoing research has identified mul-
tiple risk factors for DKD. In the present study, patients 
with T2DM aged > 60  years, eGFR < 90  ml/min/1.73m2, 
poor glycemic control, and high or low BMI had a high 
3-year risk of developing DKD. Accordingly, older age 
was identified as a risk factor for DKD progression, inde-
pendent of diabetes duration, in patients with T2DM 
[38]; a prospective observational cohort study of patients 
with T2DM followed for 10-years reported that albumi-
nuria, older age, hypertension, insulin therapy, and lower 
baseline eGFR were independent predictors of annual 
eGFR decline [39]; and poor glycemic control and ele-
vated BMI have been associated with the development 
and progression of DKD [40]. eGFR, glycemic control, 
and BMI are modifiable risk factors for DKD, such that 
the rational use of sodium/glucose cotransporter-2 inhib-
itors (SGLT2i) and other drugs in patients with T2DM 
may be beneficial. Interestingly, the present study also 
showed patients with T2DM, normo-albuminuria and an 
eGFR120-130 ml/min/1.73m2 (hyperfiltration) had a high 
3-year risk of developing DKD. While more research is 
required, evidence suggests that glomerular or whole kid-
ney hyperfiltration is a major contributing factor to the 
development of DKD in patients with type 1 or T2DM 
[41, 42]. Specifically, cohort studies with 3–18  years of 
follow-up showed that GFR declines more rapidly in 
patients with hyperfiltration at baseline compared to 
those with normal GFR [43].

The relationship between lipid profile and DKD is com-
plex. Previous reports suggest dyslipidemia as a poten-
tial risk marker for DKD, but it is unclear which lipids or 
lipoproteins should be targeted for intervention [44]. In 
this study, LDL was included as a potential predictor of 
3-year DKD risk, and it had a small impact on the out-
put of the prediction model. Consistent with this, renal 
progression was significantly associated with LDL-cho-
lesterol in patients with T1DM and normoalbuminuria 
followed for 8–9  years [44], substantiating experimen-
tal data and clinical studies that show targeted use of 
statins may represent a successful renoprotective strategy 
in diabetes [45, 46]. Irrespective of the association with 
DKD, dyslipidemia has a strong association with overall 
cardiovascular risk, making the control of dyslipidemia, 
especially LDL, essential for patients with diabetes. The 
benefits of pursuing lipid targets in patients without 
known cardiovascular disease are controversial [47]. In 
the present study, 23.8% of patients had cardiovascular 
disease at baseline, and SHAP dependence plots revealed 
patients with T2DM and high or low or LDL had an 
increased 3-year risk of DKD.

Homocysteine, Alb, and bicarbonate are not tra-
ditionally associated with increased risk for DKD. 
However, one study in Chinese patients with diabetes 
indicated a causal relationship between elevated cir-
culating homocysteine levels and risk of DKD [48]; in 
hospitalized Han patients with T2DM, low serum Alb 
concentration was independently associated with dia-
betic retinopathy and DKD [30]; and serum albumin 
was identified as an important predictor of ESRD in 
patients with T2DM and DKD from three clinical trials 
(RENAAL [n = 1513], IDNT [n = 1715]and ALTITUDE 
[n = 8561]) using a feedforward neural network [40]. 
Bicarbonate may represent a novel risk factor for DKD 
[49]. Patients with diabetes with advanced renal failure 
show a lower prevalence or a less severe degree of met-
abolic acidosis [50], potentially through feedback con-
trol involving systemic acid–base status  and hydrogen 
ion production that inhibits ketoacid anion production 
[51].

This study has several strengths. First, we used RWD 
derived from EMR, which is likely more representa-
tive of the diverse T2DM patient population than data 
derived from clinical trials. Second, among the other 
algorithms, the LightGBM model performed the best. 
LightGBM is a highly optimized gradient boosting deci-
sion tree algorithm that can incorporate multiple clini-
cal variables Third, we identified risk factors that have 
not been traditionally associated with increased risk for 
DKD. Fourth, most studies have targeted patients with 
CKD and an eGFR < 60 ml/min/1.73m2 or ESRD [52]. We 
included patients with DKD presenting with new-onset 
micro- and macro- albuminuria. Fifth, our model can 
be used by clinicians and nurses as a visual approach to 
predict 3-year risk of DKD in patients with T2DM and 
normo-albuminuria, appropriately manage patients with 
T2DM and normo-albuminuria at high-risk for DKD and 
to target risk factors for DKD, thus informing the allo-
cation of healthcare resources. Last, the model can be 
used as a screening tool for clinical trials. Enriching tri-
als with patients at high 3-year risk of developing DKD 
may reduce sample sizes and lead to more efficient drug 
development programs.

This study was associated with some limitations. It was 
conducted at a single institution, included a small sample 
size, and the missing information (e.g., use of hypogly-
cemic drugs, history of diabetes, blood pressure) in our 
EMR-derived data represented a potential bias. How-
ever, we believe our rigorous methodology generated a 
robust predictive model of 3-year DKD risk in patients 
with T2DM and normo-albuminuria. External validation 
using another data set is required to establish stability in 
the performance of our prediction model.
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Conclusion
In conclusion, we identified baseline demographic and 
clinical variables as predictive risk factors for DKD 
and constructed a 3-year DKD risk prediction model 
in patients with T2DM and normo-albuminuria using 
machine learning and EMR. We established the Light-
GBM model as a tool with potential to facilitate popula-
tion management strategies for T2DM care in the EMR 
era.
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