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Abstract 

Immune checkpoint blockade therapy has revolutionized non-small cell lung cancer treatment. However, not all 
patients respond to this therapy. Assessing the tumor expression of immune checkpoint molecules, including pro‑
grammed death-ligand 1 (PD-L1), is the current standard in predicting treatment response. However, the correlation 
between PD-L1 expression and anti-PD-1/PD-L1 treatment response is not perfect. This is partly caused by tumor 
heterogeneity and the common practice of assessing PD-L1 expression based on limited biopsy material. To over‑
come this problem, we developed a novel method that can make formalin-fixed, paraffin-embedded tissue translu‑
cent, allowing three-dimensional (3D) imaging. Our protocol can process tissues up to 150 μm in thickness, allowing 
anti-PD-L1 staining of the entire tissue and producing high resolution 3D images. Compared to a traditional 4 μm 
section, our 3D image provides 30 times more coverage of the specimen, assessing PD-L1 expression of approxi‑
mately 10 times more cells. We further developed a computer-assisted PD-L1 quantitation method to analyze these 
images, and we found marked variation of PD-L1 expression in 3D. In 5 of 33 needle-biopsy-sized specimens (15.2%), 
the PD-L1 tumor proportion score (TPS) varied by greater than 10% at different depth levels. In 14 cases (42.4%), the 
TPS at different depth levels fell into different categories (< 1%, 1–49%, or ≥ 50%), which can potentially influence 
treatment decisions. Importantly, our technology permits recovery of the processed tissue for subsequent analysis, 
including histology examination, immunohistochemistry, and mutation analysis. In conclusion, our novel method 
has the potential to increase the accuracy of tumor PD-L1 expression assessment and enable precise deployment of 
cancer immunotherapy.
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Introduction
The development of immune checkpoint blockade ther-
apy has revolutionized cancer treatment. This modal-
ity of treatment, by unleashing the patients’ immune 
system from cancer suppression, has produced dura-
ble responses in multiple types of cancer even in the 
advanced stage, especially in non-small cell lung can-
cer [1]. The immune checkpoint programmed death-1 
(PD-1)-programmed death-ligand 1 (PD-L1) axis is the 
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major target of current therapies. Blocking antibodies 
to the axis are effective in treating several cancer types 
including lung cancer, bladder cancer, head and neck 
cancer, and melanoma [2]. However, not all patients 
responded to the treatment. Evidence showed that the 
variable response can be partially explained/predicted by 
the tumor expression of PD-L1. In particular, lung can-
cer patients with more than 50% tumor cells expressing 
PD-L1 are more likely to respond to the anti-PD-1 anti-
body, pembrolizumab [3]. Therefore, evaluation of tumor 
PD-L1 expression by a pathologist has become a stand-
ard procedure in selecting patients for therapy. However, 
the correlation between PD-L1 expression and clinical 
response is not perfect and better prediction markers are 
needed for more precise deployment of immunotherapy.

The current practice of PD-L1 expression evaluation 
has several limitations. Multiple diagnostic anti-PD-L1 
antibodies are available. The major clones include 28–8, 
22C3, SP142, and SP263. Staining of the same tumor 
tissue with each of these antibodies may yield different 
results, which sometimes vary substantially [4]. Another 
problem is tumor spatial and temporal heterogeneity [5, 
6]. PD-L1 expression is not homogenous in lung cancer 
and the expression level varies with time. Several immu-
notherapy candidate patients are diagnosed with the dis-
ease at advanced stages and the diagnosis is made using 
needle biopsy specimens obtained from the tumors. It is 
not surprising that PD-L1 evaluation based on this lim-
ited material sometimes fails to reflect the overall PD-L1 
expression in the patient’s tumor.

Attempts to overcome heterogeneity in PD-L1 expres-
sion include collecting more tissue from the patient, or 
making more sections for PD-L1 staining from the availa-
ble tissue. The first approach is not feasible because of the 
increased invasiveness and potential risk to the patient. 
The second approach is also ineffective because in this 
era of precision medicine, there is a need to save the pre-
cious tumor specimen for multiple tests to identify the 
suitable therapy for a particular patient (e.g. epidermal 
growth factor receptor gene (EGFR) mutation analysis for 
EGFR tyrosine kinase inhibitor therapy). Therefore, any 
attempt to improve the evaluation of PD-L1 expression 
in tumor tissue should ideally be no more invasive than 
the standard biopsy procedure and not consume more 
patient specimen than a standard immunohistochemitry 
(IHC) evaluation.

Therefore, our team has developed an innovative solu-
tion to this difficult challenge: 3D imaging using a unique, 
non-destructive tissue-clearing technology, derived 
from the CLARITY method [7]. Our technology can 
make 150  μm thick formalin-fixed, paraffin-embedded 
(FFPE) tissue sections that are transparent to light for a 
short time. Three-dimensional observation of the tissue 

and marker quantitation could be achieved by coupling 
fluorescence-labeled antibody staining with confocal 
microscopy. This method allows the pathologist to evalu-
ate tumor PD-L1 expression in a much larger population 
of cells. Moreover, our technology does not destroy the 
macromolecules in the tissue. Specimens after this imag-
ing process can still be used in other pathological and 
molecular tests. Thus, this technology can potentially 
revolutionize tumor PD-L1 expression evaluation.

In this study, we demonstrated the feasibility of three-
dimensional PD-L1 quantitation using tissue-clearing 
technology. We evaluated the variation of PD-L1 expres-
sion at different specimen depth levels and correlated the 
results with clinical response to immunotherapy. We also 
evaluated the specimen condition after tissue-clearing 
using various histopathological and molecular tests to 
demonstrate the preservation of specimen integrity.

Materials and methods
Patient population
Patients who were diagnosed with lung adenocarcinoma 
and underwent surgical resection of primary lung tumor 
at Taipei Veterans General Hospital from 2012 to 2019 
were included in this study. Cases with adenocarcinoma 
combined with other non-small cell histological com-
ponents, such as squamous cell carcinoma, were also 
allowed. Information about their tumor PD-L1 expres-
sion level, the diagnostic antibody used in the report, the 
immunotherapy they received (if any), and the treatment 
setting (for metastatic disease, as adjuvant or neoadju-
vant) were obtained from their medical records. Selected 
lung adenocarcinoma patients who only received needle 
biopsy of the primary tumor and who received immuno-
therapy but showed unexpected clinical response based 
on their tumor PD-L1 expression were also included in 
the study. This study was approved by the Institutional 
Review Board (IRB) of Taipei Veterans General Hospital 
(No. 2021-01-003C) and was performed in accordance 
with the Helsinki Declaration. Informed consent has 
been waived.

Tissue processing and staining
The overall workflow is summarized in Fig.  1A. FFPE 
tissue of the patients’ lung tumors were retrieved from 
the archives. For surgical resection specimens, one rep-
resentative tumor block was selected. For needle biopsy 
specimens, only cases with sufficient material for subse-
quent thick sectioning were included. Initially, two 4 μm 
thin sections were made, followed by one 150  μm thick 
section. The first thin section was subjected to hema-
toxylin and eosin (H&E) staining. The second thin sec-
tion was subjected to immunohistochemical staining of 
PD-L1 using clone SP263 antibody (pre-diluted, Ventana 
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Medical Systems, Oro Valley, AZ, USA). The IHC proto-
col was modified from manufacturer’s recommendations 
to match the conditions used in the following immu-
nofluorescence protocol. The sections were de-waxed 
and subjected to cell conditioning 1 (Tris–EDTA) pre-
treatment at 100 °C for 1 h. The slides were stained with 
anti-PD-L1 antibody at 4 °C for 12–16 h. The slides were 
then treated with the Novolink Min Polymer Detection 
System (Leica Biosystems, Newcastle, UK). The sections 
were counterstained with haematoxylin. Human placenta 
tissue was included as PD-L1 staining control.

Then, the 150  μm thick sections were subjected to 
immunofluorescence staining and tissue clearing. After 
dewaxing and rehydration, an 8  mm × 8  mm region 
of interest was cropped from each section of the surgi-
cal resection specimens. This region was selected by a 
pathologist (YYL) to be a morphological representative. 
For needle biopsy specimens, all the rehydrated tissue 
was used for subsequent staining. The specimens were 
first treated with 2% Triton X-100 (Thermo Fisher Sci-
entific, Waltham, MA, USA) and then incubated with 
clone SP263 anti-PD-L1 antibody at 4  °C for 12–16  h. 
The slides were then treated with poly HRP-conjugated 

goat anti-rabbit Immunoglobulin G (Thermo Fisher Sci-
entific), followed by fluorescence signal amplification 
with Alexa Fluor 555 Tyramide (Tyramide SuperBoost 
Kit with Alexa Fluor Tyramines, Thermo Fisher Scien-
tific). The sections were then incubated with lipophilic 
tracer DiD (20  μg/mL, Thermo Fisher Scientific) and 
nucleic acid dye SYTO-16 (5 mM, Thermo Fisher Scien-
tific). Finally, the sections were immersed in the clearing 
reagent (JelloX Biotech Inc., Hsinchu, Taiwan) [8–10] 
at 20–25  °C overnight. The sections were sealed in the 
clearing reagent and stored at room temperature before 
image acquisition.

To use as control, selected specimens after staining, 
tissue clearing, and image acquisition were dehydrated, 
embedded in paraffin, and tested for suitability of patho-
logical and molecular examinations, including making 
4  μm sections for H&E staining, IHC staining of tissue 
transcription factor 1 (TTF-1), and DNA extraction for 
EGFR mutation analysis. For TTF-1 IHC on the Leica 
Bond-Max (Leica Biosystems, Mount Waverley, Aus-
tralia) automated staining platform, the sections were 
treated with EDTA buffer (pH 9.0) at 99  °C for 20  min 
for antigen retrieval and antibody stripping. The sections 

Fig. 1  Schematic diagrams of 3D imaging workflow for the assessment of PD-L1 expression of non-small cell lung cancer. A Workflow of tissue 
sectioning, staining, clearing, and imaging for the evaluation of PD-L1 expression in 3D. B The structure of artificial intelligence assistance in 
quantitation of PD-L1 tumor proportion score (TPS). Green: PD-L1; Red: DiD lipid-labeling dye; Blue: SYTO-16 nucleus-labeling dye; White mask: 
software-inferred tumor region; Orange circle: software-identified PD-L1-positive cell; White circle: software-identified PD-L1-negative cell
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were stained with anti-TTF-1 antibody (clone 8G7G3/1, 
1:300, DAKO, Glostrup, Denmark) at room temperature 
for 15  min. The slides were then treated with the Bond 
Polymer Refine Detection Kit (Leica Biosystems, UK) and 
counterstained with haematoxylin. For EGFR mutation 
analysis, cobas EGFR Mutation Test v2 was performed on 
a cobas 4800 system (Roche Diagnostics, Basel, Switzer-
land), according to manufacturer’s protocol. The results 
were compared to those of the specimens obtained from 
the same tumor blocks that had not undergone PD-L1 
staining or tissue clearing processes.

Image acquisition and analysis
Whole slide images of the 4  μm thin sections were 
scanned with a MoticEasyScan scanner (Motic, Hong 
Kong). The images were viewed by a pathologist (YYL) 
using Motic Digital Slide Assistant System Lite 1.0 
(Motic). The PD-L1 tumor proportion score (TPS) of 
each case was estimated according to standard clinical 
practices and expressed as the percentage of tumor cells 
with any membranous PD-L1 staining among total tumor 
cells. The score was placed into one of the three catego-
ries: < 1%, 1–49%, and ≥ 50%.

For the 150 μm thick sections, 3D fluorescence images 
were acquired using a spinning disk confocal microscope 
(Andor Technology, Belfast, UK) with a 20X objective 
lens. The conditions of laser intensity and exposure time 
in each channel were fixed. The 488  nm laser intensity 
was fixed at 30%, and the exposure time was fixed at 
15  ms for the SYTO-16 channel. Similarly, the 561  nm 
laser intensity was fixed at 30%, and the exposure time 
was fixed at 30 ms for the Alexa Fluor 555 channel. The 
637 nm laser intensity was fixed at 15%, and the exposure 
time was fixed at 15 ms for the DiD channel. Image nor-
malization and export were performed using Imaris 9.7 
software (Bitplane, Belfast, UK). The 3D volume visuali-
zation was performed using Avizo 9.6 software (Thermo 
Fisher Scientific). As the fluorescence signal from the 
staining dye and antibodies is much higher than the tis-
sue autofluorescence in our staining process, the auto-
fluorescence signal did not appear in the images acquired 
using spinning disk confocal microscope with appro-
priate exposure settings (Additional file  1: Fig. S1A–J). 
Compared to the PD-L1 positive case, there is no signal 
detected in the PD-L1-Alexa-Fluor-555 channel of the 
PD-L1 negative case (Additional file 1: Fig. S1K–T).

For the surgical resection specimens, although the 3D 
image of the entire 8  mm × 8  mm × 150  μm processed 
tissue was obtained, we chose to create a “pseudo-needle 
biopsy” from this image to simulate application of the 
technology in needle biopsy specimens. The “pseudo-
needle” track was designed to be 8  mm × 1  mm and 
covering the entire 150  μm in the z-axis. We used the 

ImageJ software (version 1.53a, National Institute of 
Health, Bethesda, MD, USA) to determine the center 
of mass of each 3D image and created the pseudo nee-
dle track through this point. This cropped image was 
then exported using Imaris 9.7 software. For true needle 
biopsy specimens, entire 3D images were used for subse-
quent analysis.

The exported images were analyzed using the computer 
software MetaLite, developed by JelloX Biotech Inc. to 
determine tumor PD-L1 expression (Fig.  1B and Addi-
tional file  1: Fig. S2). The software contains three parts: 
first, the tumor recognition model generated a tumor 
area mask to delineate the tumor cells; the software 
then detected the individual tumor cells based on their 
nuclear SYTO-16 staining; and finally, the PD-L1 mem-
branous staining AI classifier model determined whether 
each tumor cell had membranous PD-L1 staining. This 
allowed calculation of TPS for each image in the X–Y 
plane.

The tumor segmentation model was developed with 
a training dataset (30 images) and a testing dataset (10 
images) from our cohort. Each two-dimensional (2D) 
image covering a tissue area of 3  mm × 3  mm in size 
and containing 5,000–10,000 cells was annotated by 
trained biologists at JelloX Biotech Inc. and confirmed 
by a pathologist (YYL) to delineate the tumor area. We 
designed our model referring to the structure of a bench-
marked segmentation model High-Resolution Network 
version 2 (HRNetV2) [11]. The network model was 
implemented on the NVIDIA GTX2080 ti GPU using 
TensorFlow architecture. We adopted cell instance accu-
racy to evaluate the performance of our model. By apply-
ing the following nuclear segmentation algorithm to the 
testing set, we determined how many software-predicted 
tumor cells were also the pathologist-confirmed tumor 
cells.

The nuclear segmentation algorithm was built based on 
previous methods [12, 13, 14]. Using the SYTO-16 chan-
nel, we applied the Li-threshold algorithm to remove 
background, fill foreground holes, and find connected 
components, obtaining rough nuclei labels. Subsequently, 
using the watershed algorithm on the local maxima 
image, we separated neighboring nuclei, obtaining the 
position of each nucleus and the total number of nuclei. 
The performance of this algorithm was evaluated using 
the BSST265 dataset [15]. This dataset consists of 79 flu-
orescence images containing 7813 nuclei.

To determine whether each tumor cell recognized 
by the above models had membranous PD-L1 stain-
ing, we built the PD-L1 membranous staining AI classi-
fier model. A total of 85 fluorescence images (containing 
9822 cells) from our patient cohort were collected for 
training. Another 10 images from the cohort containing 
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2,544 cells were prepared for testing. Both image sets 
were reviewed by two pathologists (YYL and LCW) using 
an auxiliary software (Additional file  1: Fig. S2B). Each 
cell in the images was given a positive/negative label. 
Each pathologist annotated the image sets twice, with 
a washout period of 2  weeks. A cell would be classified 
as PD-L1-positive only if it was annotated positive four 
times. We used a CNN-based classification model to 
process the training data (Additional file 1: Fig. S2C, D) 
using the same hardware and architecture as the tumor 
segmentation model [16]. The ability of the model to cor-
rectly identify cells with PD-L1 membranous staining 
was evaluated using the testing set.

We then used the complete model to calculate TPS 
of all cases in our cohort. The TPS of each X–Y plane 
was plotted against the tissue depth (z-axis) at 5  μm 
interval, and the average TPS of the entire tissue in 3D 
was calculated. The final TPS score was also placed into 
one of the three categories: < 1%, 1–49%, and ≥ 50%. As 

a final validation of our algorithm, we selected one 2D 
fluorescence image from each case and compared the 
TPS generated by the algorithm with the TPS visually 
estimated by two pathologists (YYL and LCW).

Statistical analysis
We used weighted kappa to determine the concordance 
of TPS categorization between the original pathology 
report and the TPS generated by viewing IHC staining 
of 4 μm thin sections based on our modified protocol. 
We used the same method to determine the concord-
ance between TPS derived from IHC and TPS derived 
from viewing the superficial layer of our 3D immu-
nofluorescence images. We also used this method to 
compare the concordance between artificial intelli-
gence-determined TPS and pathologist’s TPS estima-
tion based on immunofluorescence images. A kappa 

Fig. 2  High resolution image of non-small cell lung cancer PD-L1 expression from formalin-fixed, paraffin-embedded specimens generated 
using immunofluorescence staining and tissue clearing. A, B The standard H&E staining and PD-L1 immunohistochemistry (IHC) performed on 
4 μm sections of one representative case, respectively. The PD-L1 immunofluorescence and tissue clearing protocols produced image (C) was 
comparable to the traditional IHC, including the membranous staining pattern of PD-L1. The fluorescence image can be converted to pseudo-H&E 
(D) and pseudo-IHC (E) formats for assessment by pathologists. The three-dimensional projection of the immunofluorescence image (F) shows 
good tissue details of the entire specimen (Green: PD-L1, red: DiD, and blue: SYTO-16. Scale bar: A–E: 50 μm, F: 150 μm)
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value greater than 0.6 was considered good and a value 
greater than 0.8 was considered excellent.

Results
Patient characteristics
During the study period, 33 patients with surgical 
resection specimens fulfilling the inclusion criteria 
were identified. The basic clinical and pathological 
information of the selected patients is summarized in 
Table 1. Among the 33 cases, 30 cases were previously 
tested using the 22C3 clone of anti-PD-L1 antibody, 
one using clone SP142, and two using clone SP263. 
Twenty-two patients were subsequently subjected to 
immunotherapy. Since the patients were treated with 
immunotherapy under various clinical scenarios, with 
no limitation of concurrent treatment modalities, the 
correlation between pathological PD-L1 scoring and 
treatment response could not be easily evaluated. Nine-
teen patients were treated for stage IV metastatic dis-
ease. Two were treated in an adjuvant setting, while 
one was treated in a neoadjuvant setting. The clinical 
features of the two studied patients from whom needle 
biopsy specimens were collected are described individ-
ually later in the article.

PD‑L1 expression can be demonstrated in 3D 
after immunofluorescence staining of FFPE tissue 
and optical‑clearing
As shown in Fig. 2A–C, high resolution image could be 
generated from the 150 μm thick section of lung cancer 
tissue. The quality of the image was comparable to that 
of the traditional H&E staining and PD-L1 immunohisto-
chemistry performed on thin sections. The membranous 
staining pattern of PD-L1 was observed. The fluorescence 
image could also be converted to pseudo-H&E and IHC 
color for pathologists to evaluate in a familiar format 
(Fig. 2D, E). In the three-dimensional view (Fig. 2F), the 
image quality was homogenous in the entire tissue. Com-
parison between the top, middle, and bottom levels of the 
processed tissue (Additional file  1: Fig. S3A-C) showed 
equal clarity in cellular details.

As we modified the anti-PD-L1 antibody staining pro-
tocol to allow the staining of the thicker sections, we 
verified our protocol by staining 4  μm thin sections of 
human placenta tissue followed by 3,3’-Diaminobenzi-
dine histochemistry. The result was the expected stand-
ard pattern (Additional file 1: Fig. S3D). The trophoblasts 
were stained positive, whereas the villous stromal cells 
and blood vessels were stained negative. A comparison 
was made between the PD-L1 TPS derived from the 
4  μm thin sections stained with modified IHC protocol 
and the TPS originally reported clinically using standard 
protocol (excluding one case stained with clone SP142 
in the original report, which is known to behave differ-
ently from other anti-PD-L1 antibodies [4]). Twenty-four 
of the 32 cases (75%) had a TPS in the same category 
(Additional file  1: Fig. S3E). The weighted kappa value 
was 0.7718. These results indicate that our modified anti-
PD-L1 staining protocol did not introduce bias in PD-L1 
staining.

Similarly, a comparison between the PD-L1 TPS 
derived from the 4  μm thin sections stained with the 
modified IHC protocol and the TPS derived from view-
ing the top layer of the 150  μm thick sections stained 
with the immunofluorescence protocol was made and 29 
of the 33 cases (87.9%) had a TPS in the same category 
(Additional file  1: Fig. S3F). The weighted kappa value 
was 0.7022. This level of agreement was considered good; 
in the majority of cases, switching to a fluorescence stain-
ing/imaging format did not cause a bias in PD-L1 scoring.

Computer‑assisted quantitation of PD‑L1 expression 
in three‑dimensional space is accurate and shows 
significant variation across tissue depth levels
We developed a computer software to analyze the stacks 
of 2D images contained in each 3D image file. Each layer 
of the PD-L1 staining fluorescence image was processed 

Table 1  Characteristics of patients in this study

PD-L1 programmed death-ligand 1, TPS tumor proportion score, TC tumor cell, 
IC immune cell

Total number of patients 33

Mean age (Range) 63.7 (39–83)

Sex (Male:Female) 18:15

Clinically reported PD-L1 score

 Based on clone 22C3

  TPS < 1% 10

  TPS 1–49% 14

  TPS ≥ 50% 6

 Based on clone SP142 1 (TC 0%, IC 15%)

 Based on clone SP263

  TPS < 1% 1

  TPS 1–49% 0

  TPS ≥ 50% 1

Number of patients who Received Immunotherapy 22

 Pembrolizumab 9

 Nivolumab 6

 Atezolizumab 7

Treatment Scenario

 Stage IV Disease 19

 Adjuvant 2

 Neoadjuvant 1
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by our tumor recognition AI model to generate the 
tumor mask (Additional file  1: Fig. S4A–C). Individual 
tumor cells were recognized, then our PD-L1 mem-
branous staining AI classifier model determined their 
PD-L1 positive/negative status and calculated the PD-L1 
TPS (Additional file 1: Fig. S4D–F). Our validation pro-
cess showed that both the tumor recognition AI model 
and the PD-L1 membranous staining AI classifier model 
showed an accuracy greater than 90% (Additional file 1: 
Tables S1, S2). Our nuclei segmentation algorithm gen-
erated an average error of 8% and a standard deviation 
of 4.9% in 79 fluorescence images of a reference dataset 
[15]. We further compared the AI-determined TPS with 

the estimations of pathologists using one representative 
2D PD-L1 immunofluorescence image from each of the 
33 cases studied. The AI-calculated TPS was concordant 
with pathologist-assessed TPS in 87.9% (YYL) and 69.7% 
(LCW) of cases, with weighted kappa value of 0.8299 and 
0.4795, respectively, which is a remarkable performance 
based on this small set of training material (Additional 
file 1: Table S3).

We then applied the computer algorithm to the 
“pseudo-needle biopsy” images of our 33 cases to calcu-
late 3D PD-L1 TPS (Fig.  3A, B). In this limited volume 
of specimen simulating real needle biopsies, we observed 
that the PD-L1 TPS varied significantly at different 

Fig. 3  Computer-assisted quantitation of PD-L1 expression in 3D space shows clinically significant variation at different tissue depth levels. A, B To 
simulate the main future application of this technology in needle biopsy specimens, we generated pseudo-needle biopsy images that are 8 mm 
in length, 1 mm in width, and 150 μm in depth from the 3D images obtained from surgical resection specimens. C–E In this limited volume of 
specimen, the PD-L1 TPS varied significantly at different tissue depth levels, as shown in one representative case. F The average difference between 
the highest and lowest TPS observed in the pseudo-needle biopsy 3D images was 4.9%, with 5 out of 33 cases (15.2%) showing a TPS difference 
greater than 10%. G In 14 of 33 cases (42.4%), the TPS fell into different categories at different tissue depth levels, while in 19 cases (57.6%) the TPS 
category was constant throughout the specimen (Scale bar: A–B: 1000 μm, C–D: 50 μm)



Page 8 of 12Lin et al. Journal of Translational Medicine          (2022) 20:131 

tissue depth levels, as shown in one representative case 
(Fig. 3C–E). The average difference between the highest 
and lowest TPS observed in each pseudo-needle biopsy 
3D image was 4.9%, with 5 of 33 cases (15.2%) showing 
a TPS difference greater than 10% (Fig. 3F). Fourteen of 
33 cases (42.4%) showed TPS values at different depth 
levels that belonged to different TPS categories (Fig. 3G). 
Twelve cases showed a TPS below 1% at certain levels 
but above 1% at other levels, whereas two case showed 
a TPS below 50% at certain levels but above 50% at other 
levels (the TPS-depth relationship of each case is demon-
strated in Additional file 1: Fig. S5, and the corresponding 
detailed clinical and pathological information for each 
individual case is listed in Additional file  1: Table  S4). 

These results highlight the significance of evaluating 
PD-L1 expression at different tissue depth levels.

Difference between 3D PD‑L1 score and single thin section 
PD‑L1 score may explain unexpected immunotherapy 
outcome in selected cases
We next sought to apply our technology to actual nee-
dle biopsy specimens. We chose two cases with appar-
ent discrepancy between tumor tissue PD-L1 expression 
and clinical response to immunotherapies (Fig.  4A). 
Patient number 34 was a 69-year-old woman who 
had lung adenocarcinoma with brain metastasis. She 
received nivolumab treatment and her lung tumor size 
remained stable for 5 months. The PD-L1 TPS of her lung 

Fig. 4  Application of 3D PD-L1 scoring method to actual non-small cell lung cancer needle biopsy specimen shows difference compared to 
originally reported TPS and may explain unexpected immunotherapy treatment responses. A Two lung cancer patients with 0% tumor PD-L1 
expression as evaluated by the standard immunohistochemistry method achieved stable disease or partial response under nivolumab treatment. 
B–D 3D PD-L1 expression analysis of case 34 showed higher tumor cell PD-L1 expression at deeper levels, reaching 5.67%, above the 1% cut-off 
value. E–G Analysis of case 35 also showed higher tumor cell PD-L1 expression at deeper levels, up to 17.28% (SD: stable disease; PR: partial 
response; IF: immunofluorescence. Green: PD-L1 and blue: SYTO-16. Scale bar: 50 μm)
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cancer biopsy specimen was 0%. Patient number 35 was 
a 65-year-old man with stage IIIA lung adenocarcinoma 
who received definitive chemoradiation therapy. He suf-
fered from tumor recurrence in neck lymph nodes and 
received treatment with nivolumab and partial response 
of the tumor was achieved, lasting for six months. The 
PD-L1 TPS of his lung cancer biopsy specimen was 0%. It 
is known that treatment response to nivolumab, a thera-
peutic anti-PD-1 antibody, does not depend on tumor 
expression of PD-L1 [17]. However, we suspected that 
3D imaging of these two patients’ specimens may reveal 
PD-L1 expression at deeper depth levels and this may 
contribute to their disease stabilization or response to 
immunotherapy.

Indeed, by analyzing 150 μm thick sections, we discov-
ered that both their PD-L1 TPS were not zero: patient 
number 34 showed an average TPS of 1.53%, with a 
maximum of 5.67%. Patient number 35 showed an aver-
age TPS of 8.69%, with a maximum of 17.28%. The 
TPS-depth curve and representative images (Fig. 4B–G) 
suggested that although the superficial layers of the 
biopsy tissue showed very low PD-L1 expression, sub-
stantially higher expression was observed at deeper lev-
els. These two cases demonstrated the potential value of 
3D PD-L1 expression evaluation in the guidance of can-
cer immunotherapy.

Tissue after processing for three‑dimensional imaging 
is still suitable for histopathological and molecular 
examinations
After 3D imaging, we re-embedded the 150  μm thick 
tissue sections into paraffin blocks and high-quality 
H&E-stained tissue sections could be made from the re-
embedded tissue (Fig.  5A, B). The immunohistochemi-
cal staining of TTF-1 was also comparable to that of the 
routine sections (Fig.  5C, D). EGFR mutation tests per-
formed on the DNA extracted from the re-embedded tis-
sue showed 100% concordance with the tests performed 
on original FFPE tissue (Fig.  5F). These results indicate 
that the tissue clearing and three-dimensional imag-
ing processes preserve important tissue morphological 
details and molecular compositions.

Discussion
In this study, we demonstrated that evaluation of non-
small cell lung cancer PD-L1 expression in 3D was 
applicable to FFPE tissue. We showed significant vari-
ation in PD-L1 expression at different tissue depth 
levels, and the PD-L1 expression in 3D may correlate 
with clinical response to immune checkpoint blockade 
therapy in selected cases. Moreover, our technology 
preserved specimen integrity, allowing the processed 
tissue to be used for other important histopathological 

and molecular tests. We believe this method has the 
potential to replace traditional 2D PD-L1 expression 
evaluation in the future.

Our unique tissue-clearing technology is the founda-
tion of this approach. The tissue is made optically trans-
parent by immersion inthe solution with same refractive 
index. Our technology does not require the use of deter-
gents such as sodium dodecyl sulfate, digestive enzymes, 
or structure-supporting polymers, preserving the native 
macromolecules in the specimen. These advantages are 
crucial in the evaluation of PD-L1 expression. Compared 
to the 3D PD-L1 evaluation method developed by Kore-
hisa et al. [18], which was based on computer reconstruc-
tion of PD-L1 IHC image from serial thin sections, our 
method has the advantages of “true” 3D imaging and pre-
served tissue integrity after imaging for further patholog-
ical examinations. Compared to the method developed 
by Lee et al. [19], which required embedding lightly-fixed 
tumor tissue in agarose gel for subsequent processing, 
our method can be used on FFPE tissue. Therefore, our 
method can be more easily incorporated into routine 
pathology laboratory practices.

Due to the limited sample size of this study, we could 
not determine whether 3D PD-L1 expression scores cor-
relate better with immune checkpoint blockade therapy 
outcome than 2D scores. Prospective studies with proper 
control of the patient condition, type of immunotherapy 
used, type of concurrent treatment modalities, and ade-
quate follow-up period will be required to answer this 
question. How 3D PD-L1 score correlates with other pre-
dictive biomarkers for immunotherapy response, such 
as tumor mutation burden or microsatellite instability 
[20] is another crucial question. Importantly, all 33 sur-
gical resection specimens we studied consisted mainly 
of adenocarcinoma. One case also contained a squa-
mous cell carcinoma component, one contained a large 
cell neuroendocrine component, and two cases fulfilled 
the criteria for pleomorphic carcinoma. Therefore, our 
PD-L1 quantitation algorithm has limited challenge from 
non-adenocarcinoma histology types. In addition, the 
concordance of fluorescence image PD-L1 TPS between 
computer calculation and pathologist estimation could 
still be improved. More cases and more pathologists need 
to be involved to improve the algorithm. Our proof-of-
concept experiments showed the post-tissue clearing 
specimen was still suitable for a variety of pathological 
assessments such as H&E staining, immunohistochem-
istry staining, and EGFR genotyping. The exact range of 
applications that can be accommodated, as well as the 
pre-/post-clearing result concordance rate in a larger 
number of cases, will need to be determined before the 
technology can be widely accepted to be not interfering 
normal pathology specimen stewardship.
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The 3D image of tumor tissue can provide us with 
more information than just tumor PD-L1 expression. 
For example, in lung adenocarcinoma, a lepidic growth 
pattern with thick septum may appear very similar to 
acinar pattern in thin sections. Three-dimensional 
image analysis may help define these growth patterns 
more clearly. The current study focused on the tumor 
cell expression of PD-L1. However, PD-L1 expression 

by immune cells is also important in a patient’s out-
come and immune cell expression of PD-L1 is already 
included in the assessment of clone SP142 anti-PD-L1 
diagnostic antibody staining [21]. Quantitating PD-L1 
expression in three-dimensional space, with further 
differentiation between tumor cell and immune cell, 
is an important next step. Moreover, understanding 
the spatial distribution of the immune cells in 3D may 

Fig. 5  Specimen after 3D imaging could be recovered for standard pathology examinations for non-small cell lung cancer. Comparing the 
pre-processing (A) and post-processing (B) tissue, the standard H&E staining performed on 4 μm sections showed similar morphological details. The 
pre-processing (C) and post-processing (D) tissue also showed comparable TTF-1 staining by immunohistochemistry. The EGFR mutation analysis 
performed using pre- and post-processing tissue yielded identical results in all the tested cases (n = 3) (E) (Scale bar: 40 μm)
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also provide us with new insights into tumor immune 
microenvironment. In addition to application in lung 
cancer diagnosis, our technology can also potentially 
be applied to the evaluation of markers in other dis-
eases. For example, the evaluation of HER2 expression 
in breast cancer cells also specifically requires the rec-
ognition of membranous staining. Three-dimensional 
imaging of breast cancer specimens may also address 
tumor heterogeneity in HER2 expression and contrib-
ute to accurate pathological assessment of the speci-
men and precise deployment of anti-HER2 therapies. 
In patients without the availability of large resection 
specimens, computer-assisted, three-dimensional bio-
marker scoring would be an alternative option to eval-
uate the limited biopsy specimens in a more accurate 
way in the era of precision and personalized medicine. 
With the advent of mature tissue-clearing technol-
ogy and imaging methods, the impact of 3D pathology 
is just beginning to unfold and ever-broader applica-
tion of the technology will be the foundation of new 
discoveries.

Abbreviations
2D: Two-dimensional; 3D imaging: Three-dimensional imaging; EGFR: 
Epidermal growth factor receptor gene; FFPE tissue: Formalin-fixed, paraffin-
embedded; H&E: Hematoxylin and eosin; IHC: Immunohistochemistry; PD-L1: 
Programmed death-ligand 1; TPS: Tumor proportion score; TTF1: Tissue 
transcription factor 1.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​022-​03335-5.

Additional file 1. Fig. S1. The comparison of autofluorescence signal and 
immunofluorescence staining signal in formalin-fixed, paraffin-embedded 
tissue of non-small cell lung cancer. (A–J) In the images captured from 
two control samples without immunofluorescence staining, all of the 
channels revealed low signal. As the fluorescence signal from staining 
dye and antibodies is much higher than the tissue autofluorescence, the 
autofluorescence signal did not appear in the images acquired using spin‑
ning disk confocal microscope with appropriate exposure settings. (K–T) 
Representative fluorescence images of one PD-L1-positive case and one 
PD-L1- negative case were shown here. Compared to the PD-L1 positive 
case, there is no signal detected in the PD-L1- Alexa-Fluor-555 channel of 
the PD-L1 negative case. Fig. S2. Schematic diagrams of the develop‑
ment of artificial intelligence (AI)-assisted PD-L1 expression quantitation. 
The AI model consists of three parts: a lung tumor segmentation model, 
a nucleus segmentation model, and a PD-L1 membranous staining 
classification model. The architecture of the lung tumor segmentation 
model is outlined in (A). The network contains three parts; the details of 
each part are shown in (D), including: part A, Bottleneck block, which is 
stronger for maintaining the spatial resolution and enlarging the receptive 
field; part B: Basic block, which is better in maintaining low-level features; 
part C: Conv block, which is the basic unit of the network composed of a 
convolutional layer, batch normalization layer, and ReLU (Rectified Linear 
Units) activation function. In the development of the PD-L1 membranous 
staining classification model, we used an auxiliary software shown in (B) to 
allow pathologists to annotate the PD-L1 membranous staining status of 
cells in the training material. This information was used to train the PD-L1 
membranous staining classification model, the architecture of which is 

shown in (C), which also shares the structure details of the AI models 
shown in (D). Fig. S3. PD-L1 immunofluorescence staining and tissue 
clearing produce images of stable quality at different depth levels of the 
specimen and perform comparably to the standard PD-L1 immunohisto‑
chemistry. Representative 2D images from the superficial (A), middle (B) 
and deep (C) layers of the 3D fluorescence image of one specimen show 
equally good quality in tissue details. (D) Applying the same anti-PD-L1 
antibody staining condition to 4 μm sections of human placenta tissue 
followed by histochemistry resulted in the expected staining pattern. 
(E) Applying the same condition to 4 μm sections of 32 lung cancer 
specimens followed by histochemistry produced PD-L1 TPS comparable 
to the original TPS reported clinically. One case was excluded from the 
analysis because the original report was based on clone SP142 anti- PD-L1 
antibody, and it is known to behave differently from clone SP263 used in 
this study. (F) The TPS obtained from examination of the superficial layer 
of the immunofluorescence (IF) image of each specimen is mostly con‑
cordant with its TPS obtained from the immunohistochemistry of adjacent 
4 μm sections. (Scale bar: 100 μm) Fig. S4. The performance of the tumor 
recognition AI model and the PD-L1 membranous staining classification 
model. (A) Representative fluorescence image of a tumor specimen. (B) 
The AI-recognized tumor area is shown in the white mask. (C) Compared 
to pathologist’s annotation, the AI recognition is mostly correct. Green: 
true positive. Blue: true negative. Yellow: false positive (not tumor but 
recognized as tumor by AI). Red: false negative (tumor but recognized as 
not tumor by AI). (D) Representative fluorescence image with PD-L1 stain‑
ing in green. (E) Nuclei detection by nuclei segmentation. In this image, it 
is not limited to the tumor area. (F) Result of PD-L1 membranous staining 
classification. Orange circle: PD-L1 positive. White circle: PD-L1 negative. 
(Scale bar: A–C: 500 μm, D–F: 100 μm) Fig. S5. Relationship between 
PD-L1 TPS and tissue depth in all 33 pseudo-needle biopsy lung cancer 
specimens. (A) The PD-L1 TPS of each case across different tissue depth 
levels at 5 μm interval. Due to rehydrated section thickness variability, not 
every case has the same total depth analyzed. (B) The same data as shown 
in (A), excluding the five cases with TPS higher than 10%, highlighting 
the TPS variation in the lowexpression cases. (C) Box plot of TPS of each 
case across the analyzed tissue depth, showing the median (-), average 
(x), interquartile range, maximal and minimal value. (D) The same data as 
shown in (C), excluding the five cases with TPS higher than 10%, highlight‑
ing the TPS variation in the low-expression cases.
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