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RNA‑binding proteins in ovarian cancer: 
a novel avenue of their roles in diagnosis 
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Abstract 

Ovarian cancer (OC), an important cause of cancer-related death in women worldwide, is one of the most malignant 
cancers and is characterized by a poor prognosis. RNA-binding proteins (RBPs), a class of endogenous proteins that 
can bind to mRNAs and modify (or even determine) the amount of protein they can generate, have attracted great 
attention in the context of various diseases, especially cancers. Compelling studies have suggested that RBPs are 
aberrantly expressed in different cancer tissues and cell types, including OC tissues and cells. More specifically, RBPs 
can regulate proliferation, apoptosis, invasion, metastasis, tumorigenesis and chemosensitivity and serve as potential 
therapeutic targets in OC. Herein, we summarize what is currently known about the biogenesis, molecular functions 
and potential roles of human RBPs in OC and their prospects for application in the clinical treatment of OC.
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Introduction
Ovarian cancer (OC) has been reported to be the fifth 
leading cause of death among females, and an estimated 
21,410 new cancer cases and 13,770 cancer-related 
deaths occurred in the United States in 2020 [1]. Most 
patients are diagnosed at an advanced stage of disease 
due to the deep anatomical position in the pelvic cavity 
and the lack of specific diagnostic symptoms or biomark-
ers [2]. Standard treatment, including surgery and chem-
otherapy, is usually effective at inducing remission, but in 
70–80% of patients, the cancer recurs within 2 years [3]. 
OC is characterized by advanced stage diagnosis, rapid 
progression, high metastasis and recurrence rates, and 
rapid drug resistance development [4]. Despite numerous 
efforts to improve the efficacy of surgery, chemoradio-
therapy, and targeted treatments, such as antiangiogenic 

drugs and poly (ADP-ribose) polymerase inhibitors, few 
reliable biomarkers or notably better therapeutic strate-
gies for treating OC in daily clinical practice have been 
discovered in recent years [5].

RNA-binding proteins (RBPs) are proteins that play 
critical roles in the regulation of many RNA transcripts 
at multiple posttranscriptional levels [6]. Several studies 
have demonstrated that RBPs are abnormally expressed 
in cancer tissues relative to adjacent normal tissues, and 
this expression is related to patient prognosis [7–9]. 
Studies by our research group revealed a significant role 
of CUGBP- and ETR-3-like family 2 (CELF2) and Lin28 
homologue B (LIN28B) in OC progression, and our inter-
est in RBPs has grown [10]. Therefore, summarizing the 
functions and mechanisms of RBPs may broaden the field 
of OC research.

Biogenesis and domain features of RBPs
Biogenesis
RBPs are proteins that bind at specific target sites and 
impact the expression of coordinated sets of mRNAs 
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[11]. The abnormal expression of RBPs has been widely 
reported in multiple types of cancer cells and is regulated 
by numerous mechanisms, including genomic control, 
transcriptional regulation, posttranscriptional modifi-
cation (PTM), and posttranslational modification [12] 
(Fig. 1).

Genomic mutations, a prevalent feature of cancer cells, 
appear to have a minor contribution to abnormal RBP 
expression. Mutations in genes encoding RBPs are par-
ticularly rare compared to those in other genes [13, 14]. 
Somatic mutations, especially in spliceosome genes, are 
associated with haematopoietic disorders that result in 
acute myeloid leukaemia [15, 16]. Germline mutations in 
the DICER1 gene, which encodes a cytoplasmic endori-
bonuclease that processes precursor messenger RNAs 
(pre-mRNAs) into mature mRNAs, are reported for less 

than 1% of RBPs by the Online Mendelian Inheritance in 
Man database [16–18]. In addition, chromosomal trans-
locations involving RBPs are relatively rare in cancer. In 
contrast, copy number variations are more common and 
are related to the deregulation of RBP expression [19].

RBP expression deregulation is also driven by transcrip-
tional alterations [20, 21]. For example, RBP38 expression 
can be induced by the tumour suppressor P53, which in 
turn mediates the stabilization of P53 downstream target 
mRNAs that promote cell cycle arrest in the G1 phase 
[22, 23]. Posttranscriptional alteration is another mecha-
nism involved in RBP expression deregulation [24]. The 
expression of the RBP Musashi 1 (MSI1) can be repressed 
by a class of tumour suppressor miRNAs, including miR-
34a, miR-138, and miR-137, inhibiting the prolifera-
tion of glioblastoma and medulloblastoma cells [25, 26]. 

Fig. 1  Various mechanisms regulate changes in RBP expression in cancer cells. A Genomic control. B Transcriptional regulation. C 
Posttranscriptional regulation. D Posttranslational modifications
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Recent studies have emphasized the role of translational 
modification in RBP expression deregulation. RBPs are 
hotspots for posttranscriptional modifications (PTMs), 
including acetylation, phosphorylation, methylation, and 
ubiquitination [27, 28]. For example, the acetylation of 
the RBP SAM68 can enhance its binding to mRNA and 
play a critical role in cell cycle control [29].

Overall, these studies provide an overview of the 
changes in RBPs involved in various mechanisms that 
may be therapeutic targets in the future.

Domain features of RBPs
Through next‐generation sequencing (NGS) of diverse 
tumour cell types, a catalogue of 1542 experimentally 
validated human RBPs representing approximately 7.5% 
of all protein-coding genes in the genome was generated 
[30, 31]. Since RBPs play multiple biological roles, their 
structures comprise multiple small domains, including 
RNA recognition domains and RNA-binding domains 
interspersed between catalytic domains that enable 
them to recognize a wide range of downstream targets 
and regulate their catalytic activities [32]. These cata-
lytic domains include three parts: deaminases, RNAse III 
domains and helicases. Multiple RNA-binding domains 
(RBDs) can specifically recognize and bind to RNA 
sequences [33]. Among the RBPs represented, a quar-
ter contain conventional RBDs, and the rest contain 

nonconventional RBDs. Conventional RBDs may com-
prise RNA recognition motifs (RRMs), zinc fingers, S1 
domains, PIWI domains, double-stranded RNA-binding 
domains (dsRBDs), K-homology (KH) domains, PIWI, 
AGO, and Zwill (PAZ) domains, while nonconventional 
RBPs have internally disordered regions and adjust their 
spatial structure to bind to RNAs and subsequently 
mediate cell regulation, signal transduction and metabo-
lism [34].

Functions of RBPs in cancers
Because RBPs regulate various downstream targets in 
omnidirectional and multifunctional manners, even small 
alterations in their expression or activity can cause signif-
icant changes in regulatory networks. RBPs can interact 
with proteins or multiple RNAs, including mRNAs and 
ncRNAs, to form RNP complexes [35] and subsequently 
regulate the functions of RNA transcripts via multiple 
posttranscriptional mechanisms, including RNA splicing, 
polyadenylation, effects on localization and stability, and 
translational modification [35, 36] (Fig. 2).

Alternative splicing, a fundamental posttranscrip-
tional regulation mechanism, contributes to the com-
plexity and diversity of the proteome, resulting in 
changes in cancer cell phenotype [37, 38]. The regu-
lation of alterative splicing relies on RBPs, which act 
as splicing factors that precisely bind to RNA motifs 

Fig. 2  RBPs regulate the functions of transcripts at multiple post-transcriptional levels. A Alternative Splicing. B Alternative Polyadenylation. C RNA 
Localization. D RNA Stability. E Alternative Splicing
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located in exons or their adjacent introns [38, 39]. The 
serine/arginine-rich (SR) protein and hnRNP families 
are essential RBPs that play evolutionarily conserved 
roles as regulators of alterative pre-mRNA splicing 
[40]. SRSF3 and SRSF7 have been shown to bind dif-
ferent sites in terminal exons and recruit NXF1 to 
regulate the length of the 3’ untranslated region (UTR) 
[41].

Alterative polyadenylation is another process that 
is essential for generating mature RNA transcripts. 
It occurs in 3’ UTRs, resulting in different lengths by 
cleavage and polyadenylation (CPA). The function of 
the 3’-UTR is essential for mRNA maturation, stability, 
localization, and translation. RBPs can either recruit 
or compete with polyadenylation machinery pro-
teins, which regulate the cleavage and polyadenylation 
(CPA) of target mRNAs. In pancreatic cancer, CPEB4 
regulates tail elongation with TPA mRNA, resulting in 
alteration of cancer cell proliferation, migration, inva-
sion and angiogenesis [42].

RBPs also play a key role in subcellular localization 
by binding to the 3’ UTR sequence of mRNA or other 
ncRNAs, nucleating the assembly of multisubunit 
complexes that link transcripts to cytoskeletal motors 
that send ribonucleoproteins (RNPs) to specific sub-
cellular locations [43]. CPEB1 encodes an essential 
tight junction component that regulates the locali-
zation of ZO-1 mRNA. Its depletion may impair cell 
polarity, resulting in alteration of metastatic potential 
and EMT-related genes in breast cancer [44, 45].

RBPs also play a key role in the stabilization or desta-
bilization of specific target mRNAs or ncRNAs. The 
stability of RNAs is determined by their 3’ poly(A) tail 
and 5’-terminal 7-methylguanosine (m7G). HuR (a 
member of the Hu family of RBPs)-mediated mRNA 
stabilization relies on the subcellular localization of 
HuR, which is translocated into the cytoplasm and is 
associated with cell cycle regulators and inflammation. 
For example, HuR can stabilize mRNAs that encode 
cyclins (A, B1, D1 and E), HIF-1a, and VEGF, thus 
increasing the expression of these proteins. In con-
trast, the mRNA levels of c-Myc and WNT-5A can be 
destabilized by HuR in cancer cells [35, 46–48].

RBPs are involved in multiple steps of translation, 
such as initiation, elongation, and termination, form-
ing RNP complexes. A large number of related RBPs 
bind to the 5’ or 3’ UTR, resulting in different trans-
lation efficiencies [49]. HuR increases the abundance 
and translation of ProTa mRNA by targeting its 3’ 
UTR, which has been correlated with cancer progres-
sion [50].

Profiles of RBP expression in OC
Abnormal RBP expression can lead to genome-wide 
changes in the transcriptome and proteome levels and 
subsequently affect cell proliferation, apoptosis, angio-
genesis, senescence, epithelial-mesenchymal transition 
(EMT), invasion, and metastasis [6]. Therefore, it is not 
surprising that altered expression of RBPs is common 
during the development and progression of cancers. 
Next, the alteration of RBP expression in OC is summa-
rized (Table  1), and related phenotype changes are also 
presented (Fig. 3).

RBPs act as oncogenes or tumour suppressors 
in modulating OC phenotypes
Proliferation
Insulin-like growth factor 2 mRNA-binding protein 1 
(IGF2BP1/IMP1), a member of the IMP family, binds to 
the 5’ UTR of IGF2 mRNA [51]. IGF2BP1 has the most 
conserved “oncogenic” role in the IGF2BP family and 
is associated with poor prognosis [52]. Serum response 
factor (SRF)-encoding mRNA acts as a downstream tar-
get of IGF2BP1, which destabilizes cell identity [53]. 
IMP1 is overexpressed in high serous ovarian carcinoma 
(HGSOC), acts as a novel m6A reader by stabilizing 
c-MYC mRNA, and then promotes HGSOC progression 
[54].

YT521-B homology (YTH) domain-containing pro-
teins, including YTHDF1-3, YTHDF1 and YTHDF2, have 
been recognized as “readers” that identify m6A modifica-
tions [55]. YTHDF1 is highly expressed in HGSOC and is 
related to an adverse prognosis in patients. It can act as a 
m6A reader by specifically binding to the m6A modifica-
tion of the translation initiation factor EIF3C, augment-
ing EIF3C translation, and promoting OC progression 
[56]. Tripartite motif protein 29 (TRIM29) is aberrantly 
expressed in some cancers and can act as an oncogene 
or tumour suppressor [57]. Our research group also 
revealed that F-box and WD repeat domain-containing 
7 (FBW7) expression is regulated in HGSOC, where it 
interacts and antagonizes YTHDF2 to alter the expres-
sion levels of m6A-modified Bcl-2-modifying factor 
(BMF) mRNA, thereby affecting cell proliferation [58].

ELAV-like protein 1 (HuR) is a member of the embry-
onic lethal abnormal visual system (ELAV) family. The 
transcriptional repressor ZEB2 not only activates EMT 
but also promotes the initiation and progression of can-
cers [59]. HuR regulates the stability and translation of 
ZEB2 to affect proliferation [60]. Translocase of inner 
mitochondrial membrane 44 (TIMM44), a peripheral 
membrane protein, is associated with the transport 
of proteins from the mitochondrial inner membrane 
to the mitochondrial matrix [61]. HuR modulates the 
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Table 1  Experimental evidence of altered RBPs in OC

Oncogenes

RBP Mechanism Putative targets Cellular phenotype References

Insulin-like growth factor 2 
mRNA-Binding Protein

IGF2BP1/IMP1 mRNA stability, Inhibiting 
decay

c-MYC, MDR1, SRF Platinum,
Chemoresistance,
Growth,
invasion

[101]

IGF2BP2/IMP2 Proliferation [90, 125]

IGF2BP3/IMP3 mRNA stability, mRNA 
translation

HCTR1 Platinum,
Chemoresistance,
Proliferation,
Migration,
Invasion

[70]

La-Related Protein 1 LARP1 mRNA stability, mRNA de-
stability

BIK, BCL2 Proliferation [67]

Lin28 Lin28A Alternative splicing, mRNA 
translation

ROCK2 Invasion,
Metastasis,
Proliferation,
Migration,
Invasion

[84]

LIN28B mRNA translation AKT2, NEAT1 Platinum Chemoresistance, 
Proliferation,
Migration,
Invasion

[70]

Heterogeneous nuclear rib-
onucleoproteins (hnRNPs)

hnRNPA2B1 mRNA stability Lin28B Proliferation,
Invasion,
Migration,
Apoptosis

[69]

Hu family of RBPs (ELAV-like 
protein 1)

HuR mRNA stability, mRNA 
translation

TUBB3, lncRNA NEAT1, 
lncRNA MALAT1, lncRNA 
HOTAIR, ZEB2, TP53, E2F2

Proliferation,
Invasion,
Migration,
Paclitaxel resistance

[60, 64, 91–93]

Y-box binding protein 1 YB1 mRNA stability, Translation 
modification

Chemotherapy resistance [106]

YT521-B homology (YTH) 
domain-containing proteins

YTHDF1 mRNA translation EIF3C,
TRIM29

Chemotherapy resistance [56, 126]

YTHDF2 mRNA translation BMF Proliferation,
Migration,
Invasion,
Apoptosis

[58]

Polypyrimidine-tract bind-
ing protein-associated 
splicing factor

SFPQ Alternative splicing Caspase-9 Apoptosis [70]

Forkhead box protein C2 FOXC2 GClnc1 EMT [95]

epithelial cell RBP ESRP1 Alternative splicing Circ-NOLC1 Prognosis [72]

Tumour suppressors

RNA-binding motif protein 3 RBM3 Translation BCL-2, BAX Platinum sensitivity [3, 77]

CUGBP and ETR-3-like 
family 2

CELF2 mRNA stability FAM198B Proliferation,
Migration,
Invasion

[10]

Poly C Binding Protein 1 PCBP1 translational p27 Inhibiting OC progress [78]

heterogeneous nuclear 
family (hnRNPI)

PTB Alternative splicing [88]

Coiled-coil domain contain-
ing protein-124

Ccdc124 Prognosis [79]

Y-box binding protein 1 YBX1/YB1 Prognosis, resistance to 
cisplatin

[106]

DEAD-Box Helicase 
3X-Linked

DDX3X Translation PHGDH [80]
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expression of TIMM44 by stabilizing its mRNA levels, 
and its expression is correlated with OC cell progres-
sion [62]. E2F2 is a transcription activator that plays 
an important role in cancer progression [63]. CircE2F2 
can bind to HuR to stabilize E2F2 mRNA and conse-
quently promote OC cell proliferation, glucose metabo-
lism and metastasis [64].

La-related protein 1 (LARP1) is a highly evolutionar-
ily conserved RBP of the LARP family. It can regulate 
the stability and translation of mRNAs associated with 
ribosome biogenesis and cell proliferation [65]. LARP1 
interacts with the 3’ UTRs of BIK (encodes a pro-apop-
totic protein) and BCL2 (B-cell lymphoma 2, encodes 
an anti-apoptotic protein), stabilizes BCL2, and desta-
bilizes BIK with a net effect of promoting OC prolifera-
tion [66, 67].

Heterogeneous nuclear ribonucleoproteins (hnRNPs) 
have been considered crucial tumour oncogenes related 
to proliferation and apoptosis. hnRNPA2B1 has two 
isoforms, hnRNPA2 and hnRNPB1, that regulate dif-
ferent gene expression patterns and phenotypes in 
various cancers [68]. HnRNPA2B1 binds to and stabi-
lizes the transcript level of Lin28B, thereby promoting 
serous ovarian cancer (SOC) cells progression [69]. In 
addition, IGF2BP3 targets downstream human copper 
transporter 1 (hCTR1), induces chemoresistance and is 
correlated with a poor prognosis in SOC patients [70].

ESRP1, an epithelial cell RBP, participates in the EMT 
process by regulating alternative splicing and is associ-
ated with a poor prognosis [71]. Circ-NOLC1 promotes 
EOC progression by binding to ESRP1 and modulates 
cell-dependent kinase 1 (CDK1) and Ras homologous 
family member A (RhoA) expression [72].

MicroRNAs are small endogenous noncoding RNAs 
that regulate gene expression by promoting the deg-
radation and/or repressing the translation of their 
target mRNAs. The first step in miRNA maturation 
is executed by the Drosha microprocessor, in which 

the RNase III enzyme Drosha (Drosha) and DiGeorge 
syndrome critical region gene 8 (DGCR8) are the core 
components [73, 74]. DGCR8 can recognize primary 
miRNAs and promote their methylation with the help 
of the methylase METTL3 [75]. Dorsha can also be 
recruited to double-stranded RNA and thereby produce 
precursor miRNAs [76]. The RBP DDX1 belongs to the 
DEAD-box helicase family, which can promote pri-
miRNA maturation and repress OC progression [75].

Expression of RNA-binding motif protein 3 (RBM3), a 
member of the glycine-rich RNA binding protein (GRP) 
family, was highly upregulated in OC tissues and A2780 
OC cell lines. RBM3 positively regulates the DNA dam-
age response in OC cells and can act as a novel onco-
genic prognostic biomarker for OC patients [77].

Poly C-binding protein 1 (PCBP1) can bind to the 3’ 
UTR of the cell cycle inhibitor p27 via its KH1 domain, 
thereby stabilizing p27 and inhibiting OC progression 
[78].

Coiled-Coil Domain Containing protein-124 
(Ccdc124) is an mRNA-binding factor related to cell 
division and ribosome biology. Upregulated Ccdc124 
expression was associated with a prolonged prognosis 
in OC patients [79].

The RBP of DEAD-Box Helicase 3X-Linked (DDX3X) 
can be stabilized by RNA Component of Mitochon-
drial RNA Processing Endoribonuclease (lncRNA 
RMRP) and promotes Phosphoglycerate dehydrogenase 
(PHGDH) mRNA translation, thus conferring resist-
ance of OC cells and inhibiting OC progression [80]. 
Overexpression of DDX3X can reverse miR-196a-me-
diated OC progression by activating PTEN expression 
and suppressing AKT activity [81].

The plasminogen activator (PA) system plays an 
important role in the invasion and metastasis of OC, 
and PA inhibitor type 1 (PAI-1) is the main subtype 
[82]. PAI-RBP1 (PAI-1 mRNA-Binding Protein 1) con-
tributes to OC progression by binding and stabilizing 
PAI-1 mRNA [83].

Table 1  (continued)

Oncogenes

RBP Mechanism Putative targets Cellular phenotype References

PAI-1 mRNA Binding Protein 
1

PAI-RBP1 PAI-1 Progression [83]

Sorbin and SH3 domain-
containing 2

SORBS2 WFDC1, IL-17D Cell migration, Metastatic [99]

RNA-binding motif protein 3 RBM3 DNA damage, Repair 
adverse cytotoxic effects 
after chemotherapy

BCL-2, BAX, DNA integrity Prognosis, Platinum sensitiv-
ity

[3, 77]

Quaking isoforms 5 QKI5 stability TAZ inhibit metastasis [100]
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Apoptosis
Lin28 has two paralogues, Lin28A and Lin28B. Lin28A 
positively binds to and upregulates the mRNA encoding 
Rho-associated coiled-coil containing protein kinase 
family 2 (ROCK2) and therefore promotes cell prolif-
eration, invasion, and metastasis and inhibits apoptosis 
in OC cells [84]. LIN28B is highly expressed in HGSOC 
and can inhibit OC cell apoptosis by binding to AKT2 
mRNA, which is associated with the DNA damage 

pathway, and promote its expression, regulate FOXO3A 
protein phosphorylation and decrease the antiapoptotic 
activity of BIM [85]. NEAT1 is an abundant lncRNA 
that has been demonstrated to be an oncogene in mul-
tiple cancers. Lin28B enhances the stability of NEAT1, 
whose expression is upregulated in OC cells and corre-
lated with poor prognosis [86].

PTB, a member of the heterogeneous nuclear fam-
ily (hnRNPI), regulates RNA processing and internal 
ribosome entry (IRES)-mediated translation [87]. PTB 

Fig. 3  RBPs act as oncogenes or tumour suppressors in OC
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knockdown in OC cells inhibits cell apoptosis by alter-
native splicing [88].

Invasion and epithelial‑mesenchymal transcription (EMT)
Studies have revealed that IGF2BP1 can promote SRF 
expression in an M6A-dependent manner by impairing 
miRNA-directed decay [89]. These phenomena promote 
tumour cell growth and invasion in an SRF-dependent 
manner. Decreased IGF2BP2 levels significantly inhibit 
the proliferation of OC cells [90].

LncRNA HOX Transcript Antisense RNA (HOTAIR) 
is overexpressed in OC, leading to disease progression. 
HuR binds to the lncRNA HOTAIR, which positively 
regulates microRNA-373 expression and derepresses the 
expression of the Ras oncogene family member Rab22a, 
leading to the promotion of proliferation, migration and 
invasion [91]. It can induce paclitaxel resistance by bind-
ing to and stabilizing the mRNA encoding TUBB3 (class 
III b β-tubulin) in competition with miR-200c [92]. In 
OVCAR3 OC cells, HuR is highly overexpressed, and it 
binds to and stabilizes lncRNA nuclear enriched abun-
dant transcript 1 (NEAT1), thereby positively promoting 
proliferation and invasion [46]. In addition, HuR contrib-
utes to tumour proliferation, migration and tumorigenic-
ity by binding to the lncRNA metastasis-associated lung 
adenocarcinoma transcript 1 (MALAT1), which acts as a 
sponge for miR-506 and depresses the apoptosis inhibitor 
iASPP [93].

Gastric cancer-associated lncRNA1 (GClnc1) is a 
long noncoding RNA that plays an indispensable role in 
metastasis [94]. Forkhead box protein C2 (FOXC2) acti-
vates transcription of NOTCH1 by binding to GClnc1, 
thereby enhancing proliferation and EMT in OC cells 
[95].

Metastasis-associated lung adenocarcinoma transcript 
1 (MALAT1) is a lncRNA whose expression is upregu-
lated in OC and correlated with metastasis. Knockdown 
of MALAT1 expression can downregulate the splicing 
factor RBP Fox-1 Homologue 2 (RBFOX2) and subse-
quently regulate the transcription of tumour suppressor 
Kinesin family member 1B (KIF1B) [96].

Sorbin and SH3 domain-containing 2 (SORBS2), which 
is localized to the 4q35 region of the human genome, 
participates in signal transduction and cytoskeleton 
establishment [97]. Suppression of SORBS2 promotes 
cell migration by contributing to pseudopodia elonga-
tion and detachment of actin from focal adhesion areas 
[98]. SORBS2 can stabilize the tumour-suppressive 
immunomodulatory transcripts WAP four-disulfide 
core domain 1 (WFDC1) and interleukin-17D (IL-17D), 
thereby suppressing metastatic colonization of OC cells 
[99].

Our recent study indicates that CELF2 expression is 
positively correlated with the OS and PFS of OC patients. 
CELF2 increases the stability of its downstream target 
FAM198B by binding to AU/U-rich elements (AREs) in 
the 3’ UTR, modulating the proliferation, migration and 
invasion of OC cells in vivo and in vitro. In addition, we 
also demonstrate that CELF2/FAM198B can repress the 
progression of OC via its effects on mitogen-activated 
protein kinase/extracellular-regulated protein kinase 
(MAPK/ERK) signalling [10].

Quaking isoforms 5 (QKI5) had been implicated in the 
processing of microRNA (miRNA) and pre-mRNA and 
was downregulated in several cancers, including SOC. 
Studies have also demonstrated that QKI5 could inhibit 
metastasis by targeting transcriptional coactivator PDZ 
(TAZ). Mechanistically, QKI5 bound to TAZ mRNA and 
recruited EDC4, thus decreasing the stability of TAZ 
mRNA [100].

Chemotherapy resistance
IGF2BP1 regulates chemoresistance in OC by stabiliz-
ing c-MYC and adenosine triphosphate (ATP)-depend-
ent efflux pump MDR1 (multi-drug-resistance factor 1) 
[101].

Lin28B induces chemoresistance, and is correlated with 
a poor prognosis in HGSOC patients, by targeting down-
stream human copper transporter 1 (hCTR1) [70].

SFPQ (PSF, polypyrimidine tract binding protein-asso-
ciated splicing factor) is a splicing factor that participates 
in the processes of RNA transport and apoptosis [102]. 
SFPQ knockdown increases platinum plus taxane-based 
chemotherapy (PT)-induced apoptosis by regulating 
alterative splicing of caspase-9 mRNA in EOC cells [103].

Cytoplasmic polyadenylation element binding protein 
4 (CPEB4) has already been proven to be an RBP that 
contributes to transcript-level polyadenylation and trans-
lation. It binds to Taxol (paclitaxel)-resistance-associated 
gene-3 (TRAG-3/CSAG2), contributes to its translation, 
and promotes paclitaxel resistance in OC patients [104]. 
CSAG2 was demonstrated necessary for proliferation 
and tumorigenesis in vivo and CSAG2-stimulated SIRT1 
activity to enhance p53 deacetylation was shown to 
inhibit p53 transcriptional activity, leading to improved 
cell survival under genotoxic stress [105]. Thus, interfer-
ing CPEB4/CSAG2 axis might be of benefit to overcome 
paclitaxel-resistant OC.

Y-box binding protein 1 (YBX1/YB1), a member of the 
cold-shock domain-containing protein family, positively 
regulates resistance to cisplatin and correlates with the 
prognosis of EOC patients [106].

RNA-binding motif protein 3 (RBM3) is associated 
with a favourable prognosis of OC patients and has been 
verified to be a positive predictor of overall survival 
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(OS) and relapse-free survival (RFS) [107]. In addition, 
increased RBM3 expression promotes platinum sensitiv-
ity by regulating the apoptosis-related mediators BCL-
2, BAX and DNA integrity, which are involved in DNA 
damage, and repairs adverse cytotoxic effects after chem-
otherapy [3].

Others
Liang et  al. have identified 3 significantly increased key 
RBPs (MRPL14, PARP4 [108] and STRAP [109]) and 3 
markedly decreased RBPs (MRPL46 [110], LUC7L2 [111] 
and PAPOLA) related to OC by bioinformatics analysis, 
and subsequently verified in OC tissues by immunohis-
tochemistry and RNA-seq data [90]. Fortunately, it is not 
clear how these RBPs are related to the mechanism of 
OC formation.

The role of RBPs as potential diagnostic, prognostic 
and therapeutic biomarkers in OC
Most OC patients present with advanced abdominal pel-
vic metastasis and surgically unresectable disease due to 
a lack of reliable and valid diagnostic markers. Therefore, 
the early diagnosis of OC is important and is associated 
with a significant improvement in prognosis [64, 112].

To date, several studies have confirmed the diagnostic 
and prognostic roles of RBPs in different cancers, includ-
ing OC [113–116]. For example, IGF2BP1 expression is 
mostly upregulated and correlated with poor prognosis 
in OC [52]. Consistently, another study using gene set 
enrichment analysis (GSEA) revealed that IGF2BP1 is 
associated with pathways and WNT signalling pathways 
[117]. In addition, the expression of another family mem-
ber, IGF2BP3, is associated with more invasive pheno-
types and poor survival rates [70]. More relevant studies 
are needed in the future to confirm its role as a potential 
diagnostic and prognostic biomarker in OC.

Next, we will review many potential therapeutic bio-
markers, including antisense oligonucleotides (ASOs), 
small peptides, and small molecule inhibitors. In OC, 
4EBP-based peptides can prevent cap-dependent trans-
lation by binding to the eIF4E factor, ultimately repress-
ing tumour progression. They can bind to an analogue 
of gonadotropin-releasing hormone (GnRH), which is 
expressed in the majority of OC patients and has anti-
cancer effects [118]. The synthetic peptide can prevent 
tumour progression without any cytotoxicity in a xeno-
graft model of OC. In addition, fusion peptides can 
inhibit tumour growth by disrupting the RBM38-eIF4E 
interaction and thus upregulating the P53 levels with the 
goal of inhibiting tumour progression in vivo and in vitro 
[119]. Collectively, these findings support that the fusion 
peptide complex may be a potential therapeutic agent. 
In addition, microsatellite instability (MSI) is highly 

expressed in OC, and this high expression is associated 
with poor prognosis of OC patients. MSI siRNAs may 
be a new therapeutic strategy for reversing resistance 
and repressing OC tumours [120]. More relevant clinical 
studies are needed in the future to confirm its role as a 
therapeutic biomarker in OC.

Influences of RBPs on regulating OC cellular 
signalling pathways
Although an increasing number of RBPs have been iden-
tified and verified, their posttranscriptional gene regu-
lation (PTGR) signalling pathways have not been fully 
elucidated. It is now understood that RBPs involved in 
PTGR can cooperate with ncRNAs to bind to mRNAs 
and modify the amounts of proteins generated [5]. 
RBM11 can positively regulate the Akt/mTOR signal-
ling pathway in OC cells [121]. Our previous studies have 
demonstrated that CELF2/FAM198B can repress the 
progression of OC via MAPK/ERK signalling and fur-
ther be used to target the ERK pathway in the future [10]. 
Overexpression of LIN28B inhibits OC in vitro through 
regulation of the AKT2/FOXO3A/BIM axis [85]. MSI-1 
effectively protects OC cells against paclitaxel treatment 
by ERK signalling pathway activation [120]. IGF2BP2 
enhances circ0000745 and promotes aggressiveness 
and stemness in OC via miR-3187-3p/ERBB4/PI3K/
AKT axis [122]. By TCGA analysis, down-regulation of 
RAD51AP1 (RAD51‐dependent homologous recombi-
nation) supressed proliferation, migration and invasion 
of OC cells and correlated with TGF-β/Smad pathway 
[123]. Under platinum and paclitaxel (PT) treatment, 
SFPQ/p54nrb/SRSF2 pathway plays a crucial role in OC 
resistance [103].

Future perspectives and conclusions
Due to the late diagnosis and high rate of relapse, OC 
patients have poor prognosis, and its specific patho-
genesis of OC is still unclear. Therefore, it is of outer 
importance to identify earlier diagnostic and more 
efficient therapeutic approaches for clinical applica-
tion of OC. Currently, increasing evidence reveals 
that changes in RBP expression affect multiple steps of 
OC progression. In this review, RBPs were revealed to 
participate in multiply biological processes of OC and 
can serve as promising biomarkers for the diagnosis, 
prognosis, and therapy of OC. At present, a few stud-
ies have already provided proof-of-concept evidence 
regarding the in vitro use of small-molecule inhibitors, 
therapeutic peptides or ASOs to selectively antagonize 
RBPs or RBP-RNA interactions, as verified by experi-
ments using eIF4E, MSI, and LIN28, which have shown 
favourable functional outcomes [118–120, 124]. Never-
theless, whether RBPs can successfully act as effective 
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biomarkers for the diagnosis, prognosis and therapy of 
OC is still far from clinical application. The application 
of specific RBPs related to human disease in the treat-
ment of tumours is the ultimate goal of RBP-related 
research.

Therefore, some suggestions are put forward for future 
research on RBPs in OC. Firstly, although many research-
ers have initially demonstrated some mechanisms of 
RBPs’ dysregulated expression. More scientific researches 
and explorations are indispensable needed to fully clarify 
the mechanism of biogenesis of RBPs. A complete anno-
tation of RBP dysregulated expression will undoubtedly 
enhance our understanding of its function. Secondly, 
RBPs exert their functions by binding to downstream 
RNA, forming RNP complexes and subsequently regu-
late the functions of RNA transcripts via multiple post-
transcriptional mechanisms. Even small alterations in the 
expression can cause significant changes in regulatory 
networks. Therefore, it is imperative to elucidate other 
further mechanisms that we do not know. Thirdly, the 
detection of RBPs is currently mainly applied in tumor 
tissues. Thus, the expression of RBPs should be detected 
in more clinical samples, such as blood, urine. Combined 
detection methods should be exploited to obtain more 
diagnostic values. Fox example, special RBPs could be 
combined with traditional detection markers to improve 
the sensitivity and specificity of disease diagnosis. 
Fourthly, how to deliver RBPs to the tumour sites of the 
body, how to avoid the immune responses, how to ensure 
stable and effective function are difficult problems that 
need be addressed urgently.

In summary, our current understanding of RBP func-
tions in OC is still very limited. Fortunately, with the 
accelerated development of biotechnology and bioin-
formatics analyses, more RBPs will be discovered and 
validated. In the near future, we believe that in-depth 
knowledge of RBPs and effective application of RBPs in 
clinical practice will represent a giant breakthrough in 
the treatment of OC.
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