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in plasma for the investigation of myocardial 
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Abstract 

Background:  Circulating cell-free DNA (cfDNA) can be released when myocardial damage occurs.

Methods:  Here, we used the methylated CpG tandem amplification and sequencing (MCTA-seq) method for analyz-
ing dynamic changes in heart-derived DNA in plasma samples from myocardial infarction (MI) patients.

Results:  We identified six CGC​GCG​G loci showing heart-specific hypermethylation patterns. MCTA-seq deconvolu-
tion analysis combining these loci detected heart-released cfDNA in MI patients at hospital admission, and showed 
that the prominently elevated total cfDNA level after percutaneous coronary intervention (PCI) was derived from both 
the heart and white blood cells. Furthermore, for the top marker CORO6, we developed a digital droplet PCR (ddPCR) 
assay that clearly detected heart damage signals in cfDNA of MI patients at hospital admission.

Conclusions:  Our study provides insights into MI pathologies and developed a new ddPCR assay for detecting myo-
cardial damage in clinical applications.
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Background
Circulating cell-free DNA (cfDNA) is emerging as a pow-
erful tool for diagnosing and monitoring diseases. It has 
been successfully used in clinical practice for noninvasive 
prenatal testing and liquid biopsy for cancer, and its util-
ity in graft rejection is being investigated [1–6]. However, 
these genetic-based approaches are not applicable for sit-
uations where cfDNA originates from tissues with a nor-
mal genome. DNA methylation, a stable tissue-specific 

epigenetic modification, has recently been investigated 
for assessing the tissue of origin of cfDNA. We and oth-
ers have established deconvolution methods for tissue 
fractions using whole-genome and target-enrichment 
DNA methylation methods [7–13]. In addition, single-
marker assays for a variety of tissues, including the pan-
creas, brain, liver, colon, and heart, have been reported 
[8, 13–15].

Cardiovascular diseases, including myocardial infarc-
tions (MIs), are the leading causes of death worldwide. 
MIs are known to be associated with cell death. A previ-
ous study has shown that the concentration of cfDNA is 
elevated in MI patients, with series sampling showing that 
the cfDNA level usually peaks later than creatine kinase-
MB (CK-MB), but the source of the increased cfDNA is 
not clearly understood [16]. In a recent landmark study, 
Zemmour et  al. [14] has shown that DNA from dying 
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cardiomyocytes can be released into the blood as cfDNA. 
The marker FAM101A has been reported to be a cardi-
omyocyte-specific unmethylated marker which increases 
in the plasma of MI patients. However, no heart-specific 
hypermethylated marker has been reported. Further-
more, as the diagnosis of cardiovascular diseases is time-
sensitive, it is important to develop PCR-based assays for 
a heart-specific marker.

Here, we applied a genomic DNA methylation 
sequencing-based technique, methylated CpG tan-
dem amplification and sequencing (MCTA-seq) [5], to 
explore heart-specific hypermethylated markers and 
dynamic changes of heart-derived DNA in the blood of 
MI patients, and we also developed a droplet digital PCR 
(ddPCR) assay for detecting MI.

Methods
Sample collection
The study was approved by the Ethics Committee of 
Fuwai Hospital (Ethics No. 2018-1007). All subjects pro-
vided written informed consents for the collection of 
samples and subsequent analyses before inclusion in the 
study.

We collected tissue and plasma samples at Fuwai 
Hospital, Chinese Academy of Medical Science. Three 
pairs of left atrial and left ventricular heart tissue sam-
ples were obtained from donors who died for reasons 
other than cardiovascular diseases (3 males; mean age, 
25.3 ± 2.1  years). Three sets of plasma samples were 
obtained from MI patients who were defined according 
to the fourth universal definition of myocardial infarc-
tion [17], with the exclusion criteria as no troponin ele-
vation throughout the disease course, complicated with 
other diseases which also present with chest pain and 
elevated troponin such as aortic dissection or pulmo-
nary embolism. These sets included (i) cohort 1: plasma 
samples obtained from patients (n = 20) after percuta-
neous coronary intervention (PCI), (ii) cohort 2: three 
series time points of plasma samples (n = 60) obtained 
from patients (n = 20) upon hospital admission (D0), 
1 day after PCI (D1), and 2 days after PCI (D2), and (iii) 
cohort 3: plasma samples obtained from MI patients 
within 24  h of symptom onset upon hospital admission 
(n = 116); we also collected plasma of control individuals 
(n = 25), who were recruited from physical examination 
center of Fuwai hospital and had no history or symptoms 
of myocardial infarction, pulmonary embolism, aortic 
dissection or other significant diseases. The sample size 
of cohort 3 was determined using the software Med-
Calc (version 16.8.4). We applied MCTA-seq for cohort 
1 and 2, and the CORO6 ddPCR assay for cohort 3. All 
MCTA-seq results passed the quality control criterion as 
total molecular counts of 10,000, and all samples for the 

ddPCR assay were experimentally successful; thus none 
samples were excluded. The clinical characteristics of the 
patients were shown in Additional file 2: Table S1.

MCTA-seq data of nine tissues, i.e., the liver (n = 3), 
muscle (n = 2), lung (n = 2), stomach (n = 2), colon 
(n = 2), kidney (n = 2), pancreas (n = 2), skin (n = 2), and 
WBCs (n = 81), as well as the plasma of normal individu-
als (n = 202) and cancer patients (n = 229 for CRC and 
n = 42 for HCC), were retrieved from our previous stud-
ies [5–7].

Blood sample processing
To obtain plasma, 4  mL peripheral blood was collected 
using EDTA anticoagulant tubes and the plasma samples 
were prepared within 6 h. The blood tube was centrifuged 
at 1350×g for 12 min at room temperature, and then the 
plasma was transferred to a 15-mL tube and centrifuged 
at 1350×g for 12 min, before the supernatant was trans-
ferred to a 1.5- or 2-mL tube and centrifuged at 13,500×g 
for 5 min. Finally, the plasma supernatant (approximately 
2  mL) was transferred to a 1.5- or 2-mL new tube and 
immediately stored at − 80 °C.

DNA extraction and library construction
Genomic DNA was extracted from WBCs and tissues 
using a DNeasy Blood & Tissue Kit (Qiagen, 69504) 
according to the manufacturer’s protocol. For MI patients 
and control subjects, cfDNA was extracted using a 
QIAamp Circulating Nucleic Acid Kit (Qiagen, 55114). 
For MCTA-Seq library construction, the procedures were 
described previously [5–7]. In brief, after bisulfite con-
version (Zymo Research, D5030), cfDNA was subjected 
to the MCTA-Seq three-steps amplification, including (i) 
1 cycle of amplification using a random primer to obtain 
the semi-amplicon, (ii) 1 cycle of amplification using a 
targeting primer characterized as having CGC​GCG​G at 
its 3′ end to obtain the full-amplicon, and (iii) 14 cycles of 
exponential amplification using tail primers correspond-
ing to Illumina TrueSeq adapters (see details in Addi-
tional file  1: Methods). The final library was sequenced 
on an Illumina HiSeq Xten platform to generate 150-bp 
paired-end reads.

Sequencing data processing
The R2 reads in FASTQ format procession were pro-
cessed and filtered as previously described [5–7]. We 
focused on the fully methylated molecules (FMM) ampli-
fied from a CGC​GCG​G as the unit for calculation. The 
methylation value is calculated as the number of FMMs 
normalized by the total number of reads uniquely 
mapped to the whole genome, and expressed as methyl-
ated alleles per million mapped reads (MePM) for tissue 



Page 3 of 11Ren et al. Journal of Translational Medicine           (2022) 20:36 	

samples and unique molecular identifier-adjusted MePM 
(uMePM) for plasma samples [5–7].

Identification of heart‑specific methylation markers
Heart-specific markers were selected by considering the 
MCTA-Seq methylation sequencing data of all CCG​
CGC​GG sites within CGIs. We aimed to identify mark-
ers that give the highest signal-to-noise ratio. For a heart 
cfDNA methylation marker, the signal is the methylation 
value in the heart tissue, and the noise is the methyla-
tion level in the cfDNA. Plasma cfDNA is mainly derived 
from blood cells, and as we and others have previously 
shown, the main non-hemopoietic origin of cfDNA is the 
liver [7]. To this end, we focused on three parameters: the 
heart-to-white blood cell methylation ratio, the heart-to-
plasma methylation ratio and the liver methylation value. 
In addition, we wanted to make sure that the signal can 
be released to the blood, and thus we examined whether 
the methylation value increase in plasma of MI patients 
after PCI, in which previously studies have shown that 
the signal from cardial cells prominently increase [14]. 
We consider that this increase will also indicate that the 
signal is derived from cardial cells but not other cell types 
such as fibroblast and endothelial cells in the heart tis-
sue. The MCTA-Seq data of WBCs, normal plasma and 
the liver tissue were retrieved from our previous studies 
[5–7].

The criteria were as follows:

1.	 The average methylation value (MePM) in the heart 
tissue being 100-fold higher than that in WBCs 
(heart/WBC > 100);

2.	 The average methylation value in the heart tissue 
being 100 times higher than that in normal human 
plasma (heart/Pn > 100);

3.	 The average methylation value from the liver tissues 
being below 5 (liver < 5), as the liver has been shown 
to be the main nonhematopoietic source of plasma 
cfDNA;

The plasma from patients after PCI were used for vali-
dating that the methylation value of the loci significantly 
increased in comparison with the normal plasma.

Deconvolution analysis for the heart‑derived cfDNA 
fraction
The following equation was used to deconvolute the 
cfDNA tissue mapping:

MPi =

∑

k

MTik ∗ Pk .

The deconvoluted MCTA-seq data were analyzed as 
previously described [7]. In this study, heart-specific 
markers were added to the equation. A total of 9 simul-
taneous equations representing 9 nonhematopoietic 
tissue types were generated to be solved. To further 
eliminate any effect from nonspecific methylation in 
WBCs, the average tissue fraction values in fourteen 
paired WBC samples (0.022%, 0, 0.28%, 0.002%, 0.019%, 
0.003%, 0.2%, 0.014%, and 0.016% for the liver, lung, 
stomach, colon, kidney, pancreas, muscle, skin and 
heart, respectively) were subtracted from the measured 
tissue fractions. In addition, the measured tissue frac-
tions that were lower than the average values plus three 
standard deviations of WBC samples (0.11%, 0, 1.62%, 
0.023%, 0.0209%, 0.035%, 1.2%, 0.17%, and 0.2% for the 
liver, lung, stomach, colon, kidney, pancreas, muscle, 
skin and heart, respectively) were set to zero.

The CORO6 ddPCR assay
The CORO6 ddPCR assay covered a genome region 
(Chr17: 27,942,532–27,942,630) located within the 
intragenic CGI of CORO6. We designed two sets of 
primers and probes targeting to the methylated and 
unmethylated alleles, respectively, which allowed 
simultaneously quantification the methylated and 
unmethylated alleles in a one tube reaction. The 
sequences of the two groups of primers and probes 
are as follows: 5′-GGG​AGA​TTA​GAA​TTT​TTG​GAG​
TTT​AGG-3′ (forward primer), 5′-CGA​AAC​TCG​CAA​
TCC​AAC​CTC-3′ (reverse primer), and 5′-FAM-AGA​
TTT​ACG​TCG​TTT​TAG​CG-MGB-3′ (probe), for the 
methylated allele; and 5′-GGG​AGA​TTA​GAA​TTT​
TTG​GAG​TTT​AGG-3′ (forward primer), 5′-CAA​ATC​
CCA​AAC​AAA​ACT​CAC​AAT​CCA-3′ (reverse primer), 
and 5′-VIC-AGA​TTT​ATG​TTG​TTT​TAG​TGG​AGG​
T-MGB-3′ (probe), for the unmethylated allele. For 
each case, cfDNA extracted from 1 to 2  mL plasma 
was subjected to bisulfite conversion (Zymo Research, 
D5030), and then the purified DNA was divided into 
two replicates and subjected to the ddPCR assay which 
were described in Additional file 1: Methods in detail.

Bioinformatics and statistical analysis
Custom R scripts and R packages were used to con-
struct heatmaps and to perform statistical analysis. 
GraphPad Prism (PRISM version 5) software was used 
to generate boxplots, bar plots, and AUC curves and 
to perform statistical analysis for the nonmultiplex 
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tests. A P value of 0.01 or 0.05 was set as the cutoff for 
significance.

Results
Identifying heart‑specific hypermethylation markers
To screen heart-specific methylation markers, we per-
formed MCTA-seq on genomic DNA samples extracted 
from normal adult heart tissues (3 pairs of ventricles and 
atria) and cfDNA samples obtained from the plasma of 
MI patients after primary PCI (cohort 1, n = 20). The 
sequencing information are provided in Additional file 3: 
Table S2. We retrieved our previous MCTA-seq data of 
WBCs (n = 81), normal plasma (n = 202) and the liver 
tissue (n = 3) for searching for loci that displayed high 
methylation values in the heart tissue and the plasma 
samples after PCI, and low methylation values in nor-
mal plasma, WBCs and livers (see “Methods”) [5–7]. We 
also retrieved our previous MCTA-seq data of seven tis-
sues, i.e., the muscle (n = 2), lung (n = 2), stomach (n = 2), 
colon (n = 2), kidney (n = 2), pancreas (n = 2) and skin 
(n = 2), for examining the tissue-specificity of the identi-
fied loci [7].

We identified six CGC​GCG​G loci that were located in 
the CpG islands (CGIs) of CORO6, CACNA1C (two loci), 
OBSCN, CRIP1 and ZNF503-AS2. Among these markers, 
CORO6 showed the most specific methylation pattern in 
the heart. Only CORO6 showed nearly no methylation in 
the muscle; other loci, including another relatively spe-
cific locus, CRIP1, were methylated to various degrees 
in the muscle. The two CACNA1C loci had the highest 
methylation values in the heart, but they also showed 
relatively high methylation levels in other tissues, includ-
ing the liver and muscle (Fig.  1a and Additional file  4: 
Table S3).

The methylation values of all six markers were sig-
nificantly elevated in the plasma from MI patients after 
PCI compared with the plasma from normal individu-
als (P < 0.0001, two-tailed Mann–Whitney-Wilcoxon 
(MWW) test, Fig. 1b–g and Additional file 4: Table S3). 
CORO6, CACNA1C-1, CACNA1C-2, OBSCN, CRIP1 
and ZNF503-AS2 were methylated in 95% (19/20), 100% 
(20/20), 95% (19/20), 80% (16/20), 65% (13/20), and 55% 
(11/20) of these MI patients, respectively. The two CAC-
NA1C loci displayed the highest methylation values in 
the plasma from MI patients; however, these two mark-
ers also displayed high methylation frequencies in nor-
mal plasma (25.2%, 51 of 202 for CACNA1C-1 and 28.7%, 
58 of 202 for CACNA1C-2, Fig.  1c, d). CORO6 ranked 
second in MI patients, and remarkably, it displayed the 
lowest methylation frequency in normal plasma (3.0%, 
6 of 202) and WBCs (0%, 0 of 81) (Fig.  1b). CRIP1 also 
displayed a low methylation frequency in normal plasma, 
similar to CORO6, but it was detected in fewer MI 

patients than CORO6 (Fig. 1e). The results of the marker 
analysis in plasma samples were consistent with their 
methylation patterns in tissues.

Notably, CACNA1C, CORO6 and OBSCN are cardiac 
myocyte-related genes. CACNA1C is a voltage-depend-
ent calcium channel, and OBSCN is a component of sar-
comeres [18–20]. CORO6 is an actin-binding protein that 
has been shown to be highly expressed in both skeletal 
muscle and the heart and critical for the regulation of 
acetylcholine receptor clustering in skeletal muscle [21]. 
We confirmed the heart-enriched gene expression pat-
terns of all three genes using the Human Protein Atlas 
database (Fig. 1a, right). All CGC​GCG​G loci were located 
in the intragenic region of the genes, which was consist-
ent with our previous finding that many tissue-specific 
hypermethylation markers are located in the intragenic 
or 3′ CGIs of tissue-specific expressed genes [7].

To further evaluate the specificity of these markers, we 
examined the MCTA-seq data of the plasma from can-
cer patients retrieved from our previous studies [6, 7]. 
CORO6 and CRIP1 were barely detected in the plasma 
from colorectal cancer (CRC) and hepatocellular carci-
noma (HCC) patients (3.9%, 9 of 229 for CRC and 9.5%, 
4 of 42 for HCC), suggesting that these two markers were 
not hypermethylated in cancers (Additional file 1: Fig. S1 
and Additional file 4: Table S3). In contrast, other mark-
ers were detected at a high frequency in cancer patients.

Together, we used MCTA-seq to identify six hyper-
methylation markers for detecting heart damage in the 
blood and CORO6 showed the top performance.

Dynamic changes in heart‑derived DNA in MI
We next performed MCTA-seq on a second group of 
MI patients (cohort 2, n = 20), from whom serial plasma 
samples were collected at three time points: at hospital 
admission before PCI (D0), 1  day after PCI (D1), and 
2 days after PCI (D2). Sequencing information of theses 
samples are provided in Additional file 3: Table S2.

The concentration of cfDNA was similar in MI 
patients at admission and normal individuals (paired 
two-tailed MWW test, P = 0.21, median 6.5  ng/mL for 
D0 MI patients and 6.33  ng/mL for the normal indi-
viduals, Fig.  2a). Notably, the concentration signifi-
cantly increased at 1 or 2 days after PCI compared with 
at admission (median 15.9  ng/mL and 18.8  ng/mL for 
D1 and D2 cases, respectively, paired two-tailed MWW 
test, P = 0.02395 for D1 vs. D0 and P = 0.03623 for D2 vs. 
D0); no significant difference was found between D1 and 
D2 (paired two-tailed MWW test, P = 0.67) (Fig. 2a and 
Additional file 5: Table S4). These results were consistent 
with the previous study showing that the concentration 
of cfDNA peaks after PCI [16].
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Fig. 1  Identification of heart-specific hypermethylation markers with MCTA-seq. a Heatmap of 6 identified heart-specific hypermethylation marker 
methylation levels and the expression levels in 9 different tissues, including the heart and WBCs. Each column represents one tissue type, and each 
row represents a marker. The markers (n = 6) are ranked by their methylation levels in the tissue, as calculated by their MePM values of MCTA-seq. 
In the heatmap, blue indicates low, white and yellow indicate intermediate and red indicates high DNA methylation values, which are shown 
as log2(MePM) (left). The expression levels are shown by the log2(z-score) (right). See the online methods for the identification of heart-specific 
hypermethylation markers. b–g Comparison of the representative heart-specific marker methylation levels in the plasma of MI patients (n = 20), 
normal plasma (n = 202), and WBCs (n = 81). MI indicates patients with acute myocardial, PN indicates normal control individuals, and WBC indicates 
samples of white blood cell. ****P < 0.0001. Two-tailed MWW test
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We investigated the tissue of origin of the increased 
cfDNA after PCI. We extended our previously reported 
deconvolution approach to infer the tissue fractions 
of the heart and eight other nonhematopoietic tis-
sues (see “Methods”). Notably, the results showed that 
heart-derived DNA was significantly elevated in the 
plasma from MI patients at admission compared with 
the controls (median 1.6% for MI versus 0% for control, 
P = 1.0168E−11, Fig. 2b). The fraction of heart-derived 
DNA was clearly elevated on the first day after PCI, 
while it significantly decreased on the second day after 
PCI (median 12% and 0.4% for D1 and D2, respectively, 
Fig. 2b). The level of high-sensitivity troponin (hs-cTn) 
showed a similar dynamic pattern (median 1.05 for D0 
versus 8.46 for D1, P = 0.003652); 3.77 for D2 versus 

8.46 for D1, P = 0.3144, Fig.  2c and Additional file  5: 
Table S4). These dynamic changes were consistent with 
Zemmour et  al.’s study and indicated that MCTA-seq 
detected true signals of heart injury [14]. Examina-
tion of the relationship between the fraction of heart-
derived DNA and high-sensitivity troponin showed a 
correlation coefficient of 0.48 (Additional file 1: Fig. S2).

The data revealed a discordance between the cfDNA 
concentration and the heart fraction on the second day 
after PCI: the total cfDNA concentration remained high 
while the heart fraction decreased (Fig.  2d). Decon-
volution analysis showed that the increased cfDNA at 
D2 was mainly derived from blood cells (Fig.  2d). Also, 
among the 3130 increased cfDNA counts from D0 to D1 
(median values: 2170 and 5300  GE/mL for D0 and D1, 
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respectively), only approximately 20% (median 512  GE/
mL) were derived from the heart. The heart-derived DNA 
amount clearly decreased to a median of 159 GE/mL at 
D2 (Fig. 2d and Additional file 5: Table S4). The pattern 
of dynamic changes was confirmed in individual patients 
(Fig. 3a–i and Additional file 1: Fig. S3). However, there 
were also exceptions. For example, both the total and 
heart-derived cfDNA amounts clearly increased in the 
D2 plasma of patient Pami95, although the hs-cTn level 
decreased (Fig. 3a); the peak hs-cTn level of that patient 
was extraordinarily high, suggesting severe heart damage.

Together, these results showed that heart-derived DNA 
increased in the plasma of MI patients both before and 
after PCI, while the surge in total cfDNA concentration 
after PCI was mainly derived from blood cells.

A ddPCR assay for detecting MI
Among the six identified heart methylation markers, the 
CORO6 locus showed the best heart specificity and low-
est frequency in normal plasma. We therefore explored 
the development of a ddPCR assay for this locus. Two 
pairs of primers were designed to amplify the methylated 
and unmethylated states of a 71-bp region (Fig. 4a). Two 
TaqMan probes were designed to detect three common 
CpG sites within the amplicon, with a FAM probe for the 
methylated amplicon and a VIC probe for the unmeth-
ylated amplicon (Fig.  4a). A single-tube reaction distin-
guished the signals of the methylated and unmethylated 
amplicons.

We first used the assay to examine tissue samples, 
including the heart, esophagus, kidney, lung, muscle, 
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colon, pancreas, liver, stomach and WBCs. For the heart, 
methylated molecules accounted for 23% of all ampli-
cons. In contrast, the ratios were 0.79%, 0.39% and 
0.015% for the muscle, liver, and WBCs, respectively; 
slight ratios of 3.61% and 3.14% were detected in kid-
ney and esophagus, respectively (Fig. 4b). To investigate 
whether the signal of CORO6 was from cardiomyocytes, 
we enriched cardiomyocytes from a heart tissue sample 
obtained from human myocardial hypertrophy (HCM) 
surgery. The CORO6 signal increased to 40% in the 
cardiomyocyte-enriched portion and remained at 24% 
in the unenriched portion, suggesting that hypermeth-
ylation of CORO6 was cardiomyocyte-specific (Fig.  4b). 
It was notable that CORO6 gave high heart:WBC and 
heart:liver ratios, which are two of main sources of 
cfDNA [7]. The heart:muscle signal ratio was also high, 
which should be useful for distinguishing between heart 
and muscle diseases.

Then, we applied the assay to plasma samples from 
116 MI patients and 25 control individuals. All plasma 
samples from MI patients were collected before PCI 
and within 24  h of the onset of chest pain upon hospi-
tal admission. The results showed that the CORO6 meth-
ylation signal was significantly higher in MI patients 
than in controls (median 0.99 [interquartile range (IQR) 
0.77–1.98] vs. 0 [IQR: 0–0.91] copies/mL; P = 0.001861) 
(Fig.  5a and Additional file  6: Table  S5). The meth-
ylation signal was detected in 54 of 116 MI patients, 

ranging from 1 to 104  copies/mL, while in contrast, it 
was detected in 20% (5 of 25) of controls at 1 or 2 copies/
mL. The fractional concentration in MI patients was also 
significantly higher than that in controls (P = 0.005703, 
Fig.  5b and Additional file  6: Table  S5). The area under 
the curve (AUC) values were 0.6852 (95% confidence 
interval (CI) 0.59–0.78, P = 0.0037) and 0.6751 (95% CI 
0.57–0.78, P = 0.007) for the absolute concentration and 
for the fractional concentration, respectively (Fig.  5c, 
d). When one copy of cardiac-specific cfDNA/mL was 
defined as the cutoff for a positive signal, the diagnostic 
sensitivity was 46%, and the specificity was 80%. When 
0.2% cardiac-specific cfDNA/mL was defined as the cut-
off for a positive signal, the diagnostic sensitivity was 
47%, and the specificity was 84%.

In summary, we established a methylated CORO6 
ddPCR assay for the detection of heart-derived DNA in 
the blood.

Discussion
In this study, we conducted MCTA-Seq to identify heart-
specific methylated markers and investigated the origin 
and dynamics of the increased cfDNA in MI patients. 
Among the identified markers, CORO6 shows the top 
performance. We developed a CORO6 ddPCR assay for 
detecting heart damage in blood.

MCTA-seq is suitable for screening cfDNA meth-
ylation markers since it detects thousands of hyper-
methylated CGIs in cfDNA in a semi-targeted manner. 
Among the detected CGIs, the CORO6 locus emerged 
as the best heart-specific hypermethylation marker. The 
CORO6 ddPCR assay detected approximate 20% meth-
ylation level in the heart and 0.015% in WBCs. As the 
heart tissue is composed of approximately 30% cardio-
myocytes [22], the ratio is estimated to be approximate 
60% in cardiomyocytes. Zemmour et  al. [14] have pre-
viously described unmethylated FAM101A as the first 
heart-specific marker. Methylated CORO6 was detected 
in a similar percentage of control individuals compared 
with unmethylated FAM101A (29% for the FAM101A 
sequencing-based assay and 20% for the CORO6 ddPCR 
assay), indicating that the two loci have similar back-
ground levels in the blood. The signal of FAM101A is 
higher than that of CORO6 in the cardiomyocytes (89% 
for FAM101A and ~ 60% for CORO6). However, the 
amplicon length of the CORO6 ddPCR assay (71 bp) was 
shorter than that of the FAM101A sequencing-based 
assay (90 to 100 bp). Since cfDNA is highly fragmented 
and bisulfite treatment further reduces the length, a 
short amplicon should give a higher signal than a long 
amplicon, particularly for cfDNA detection. FAM101A 
sequencing-based assay has shown an AUC value of 0.76 
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for detecting plasma before PCI, and the CORO6 ddPCR 
assay showed an AUC value of 0.68 (95% CI 0.59–0.78). 
We consider that the performance of the CORO6 assay 
is comparable to that of the FAM101A sequencing-based 
assay for detecting heart-derived DNA.

An advantage of the CORO6 ddPCR assay is that it is 
more rapid and convenient than the FMA101A sequenc-
ing-based assay. Zemmour et al. also developed a ddPCR 
assay for FAM101A. However, since the marker requires 
the simultaneous interrogation of six CpG sites crossing 
a relatively long distance, it is not possible to perform a 
standard ddPCR assay. Though the authors cleverly used 
two fluorescent probes to cover five CpG sites, the tech-
nical specificity of the ddPCR assay is still approximately 
50-fold worse to the sequencing-based assay; thus, the 

performance of the FAM101A ddPCR assay is not satis-
factory. In contrast, the CORO6 assay showed high speci-
ficity comparable to the FAM101A sequencing-based 
assay, with a typical ddPCR design that interrogates 3 
CpG sites using one 20–25 bp TaqMan probe. In normal 
plasma, the FAM101A ddPCR assay has been reported to 
show a specificity of 53%, while the CORO6 ddPCR assay 
showed a specificity of 80% [23]. In addition, compar-
ing with a hypomethylation marker, a hypermethylation 
marker provides a technical advantage as relatively resist-
ing to contamination from the unmethylated amplified 
PCR products, which are converted into unamplifiable 
products by the bisulfite treatment. The performance of 
the CORO6 ddPCR assay may be further increased by 
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optimizing the primer and probe, and by improvement of 
DNA methylation detection technique.

The CORO6 ddPCR assay provides a simple method 
for investigating clinical situation with heart injure. 
Our study provides the first independent experimental 
validation of Zemmour et al.’s study showing the release 
of cardiac-derived cfDNA during MI [14]. A recent 
report has shown elevation of cardiomyocyte-specific 
cfDNA in heart failure patients using the FMA101A 
ddPCR assay. The elevation of the total cfDNA level 
has been shown in uncontrolled hypertension; yet the 
source remains to be determined [23]. Future investiga-
tion is needed for the usage of the heart-specific meth-
ylation marker in MI, heart failure and hypertension. In 
addition, the heart-specific methylation marker includ-
ing the CORO6 ddPCR assay may complement the 
genetic and sequencing-based cfDNA method for mon-
itoring heart transplantation, which is quicker and able 
to distinguish between cardiac and coronary released 
donor cfDNA [4]. It is also possible to further increase 
the specificity and sensitivity of the CORO6 assay by 
testing regions adjacent to the one covered by our pre-
sent ddPCR assay, by adding the antisense information, 
or by combining FAM101A or other types of molecules 
such as miR-208 and miR-499 [24–27].

We showed that only a small portion of the increased 
cfDNA was derived from the heart in MI patients who 
underwent PCI. We made a similar finding in acute 
pancreatitis patients in whom the increased cfDNA was 
also mainly not derived from the pancreas [7]. Recently, 
Moss et  al. more precisely showed that the increased 
cfDNA in sepsis patients is mainly derived from granu-
locytes [13]. Thus, it appears that elevation of cfDNA 
from WBCs is common in acute clinical situation and 
reflects an immune response. It is interesting that the 
total WBC count has been associated with the risk 
of coronary heart disease [28], and an increase in the 
WBC count after an MI episode has been shown to be 
a predictor of worse patient prognosis [29]. Increased 
cfDNA levels have also been shown to be a prognos-
tic marker in a small cohort of MI patients [30]. Dis-
tinguishing tissue of origin of the elevated cfDNA may 
provide more information for prognosis prediction.

Conclusions
Our comprehensive cfDNA methylation analysis not 
only provides insights into the source of the increased 
cfDNA relating to cardiac pathologies of MI, but also 
identified heart-specific methylation markers. The 
CORO6 ddPCR assay may be useful for investigation of 
myocardial damage in clinical applications.
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