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Role of Chemerin/ChemR23 axis 
as an emerging therapeutic perspective 
on obesity‑related vascular dysfunction
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Abstract 

Sufficient epidemiological investigations demonstrate that there is a close correlation between obesity and vascular 
dysfunction. Nevertheless, specific mechanisms underlying this link remain currently unclear. Given the crucial and 
decisive role of vascular dysfunction in multitudinous diseases, various hypotheses had been proposed and numer-
ous experiments were being carried out. One recognized view is that increased adipokine secretion following the 
expanded mass of white adipose tissue due to obesity contributes to the regulation of vascular function. Chemerin, as 
a neo-adipokine, whose systemic level is elevated in obesity, is believed as a regulator of adipogenesis, inflammation, 
and vascular dysfunction via binding its cell surface receptor, chemR23. Hence, this review aims to focus on the up-to-
date proof on chemerin/chemR23 axis-relevant signaling pathways, emphasize the multifarious impacts of chemerin/
chemR23 axis on vascular function regulation, raise certain unsettled questions to inspire further investigations, and 
explore the therapeutic possibilities targeting chemerin/chemR23.
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Introduction
Over the years, obesity has become a worldwide public 
health incident [1, 2], which is mainly caused by the accu-
mulation of white adipose tissue (WAT) [3]. Besides, obe-
sity is also an acknowledged predisposing and risk factor 
for types of disorders, including diabetes, dyslipidemia, 
vascular dysfunction and so on [4]. Vascular dysfunction 
then leads to multi-system diseases, such as cardiovas-
cular system diseases (atherosclerosis, hypertension) [5, 
6], respiratory system diseases (pulmonary hypertension, 
adult respiratory distress syndrome) [7, 8], digestive sys-
tem diseases (Budd-Chiari syndrome, severe acute pan-
creatitis) [9, 10] and so on.

WAT is a well-acknowledged human endocrine organ 
with the secretion of various adipokines (i.e. adipocy-
tokines), in addition to serving as energy storage [11]. 
Adipokines are the conditioning agents of adipogen-
esis, vascular function, glucose and insulin metabolisms 
[12–15], whose regulating ability becomes more pro-
nounced with the expanded mass of WAT due to obe-
sity. Chemerin is also a protein whose systemic level will 
increase in obesity and plays an extremely important role 
in regulating vascular function through binding its recep-
tor, chemR23. Notably, chemerin can be activated in obe-
sity, transforming from inert prochemerin to activated 
chemerin [16].
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Interestingly, chemerin is more highly expressed in 
perivascular adipose tissue (PVAT) than in subcutane-
ous or visceral adipose tissue [17], which provides a 

mechanistic explanation for the regulation of vascular 
function by chemerin, partly due to the natural loca-
tion advantage and the absence of mechanical barrier 

Table 1  Characteristics of different chemerin isoforms

Chemerin 
isoforms

Characteras�cs

Precursor(s) Protease(s) 

Number of 

removed 

COOH-terminal  

amino acids 

Activitiy 

Chemerin(21-157) 

Prochemerin(21-163) Elastase  

6 Highest 

activity 
Chemerin(21-158) 

Carboxypeptidases 

N or B (CPN or CPB) 

Chemerin(21-156) Prochemerin(21-163) Cathepsin G 7 Second 

highest 

activity 

Chemerin(21-158) Prochemerin(21-163) 

Plasmin 

5 Low 

activity Trptase 

Chemerin(21-155) 

Prochemerin(21-163) 

Proteinase 3 

8 Inactive 

Typtase 

Elastase 

Chemerin(21-157) 

Angiotensin-converting 

enzyme(ACE) 

Chemerin(21-154) 

Chemerin(21-157) 

Mast cell chymase 9 Inactive 

Chemerin(21-156) 

Chemerin(21-152) Prochemerin(21-163) Elastase 11 Unknown
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between PVAT and blood vessels [18]. Evidence had 
shown that chemerin/chemR23 axis exerted significant 
effects on the regulation of vascular function, but the 
detailed mechanisms and pathways mediated by this axis 
remained controversial.

In this review, we introduce the formation of chemerin 
via COOH-terminal processing and the alteration of 
expressions of both chemerin and chemR23 in obesity. 
Furthermore, the role of chemerin/chemR23 axis in vas-
cular dysfunction, especially when the body is in the state 
of obesity is described in detail.

Chemerin feature and processing
Chemerin is a 16 KDa protein and encoded by tazarotene 
induced gene 2 (i.e. retinoic acid receptor responder 2). 
It was initially reported as a synthetic retinoid gene in 
psoriatic skin lesions in 1997 [19, 20]. In previous stud-
ies, chemerin was identified as a natural ligand of orphan 
guanosine 5’-triphosphate (GTP)-binding protein-cou-
pled receptors (GPCR), also known as chemokine like 
receptor 1 (CMKLR1) or chemR23 [18]. There exist three 
phases before chemerin evolves into active modalities: 
pre-prochemerin, prochemerin, and chemerin stages 
[22]. So-called pre-prochemerin (1–163) is a 163-amino-
acid long protein without biological activity and directly 
encoded by tazarotene induced gene 2. It transforms 
into prochemerin (21–163), a 143-amino-acid long 
protein with low biological activity, by getting rid of 20 
NH2-terminal amino acids in a proteolytic cleavage 
way [20, 23]. And prochemerin undergoes extracellular 
COOH-terminal processing by certain proteases [24], 
ending up as chemerin with higher biological activity and 
chemR23 receptor binding ability [20].

It is worth mentioning that different types of proteases 
simultaneously cut prochemerin into diverse length 
products that differ in COOH-terminal amino acids 
and potency for chemR23 activation. For instance, the 
first enzymes shown to activate prochemerin are called 
elastase and cathepsin G [24], both belonging to neutro-
phil proteases species. The former removes the 6, 8, or 
11 COOH-terminal amino acids to produce three forms, 
chemerin (21–157), (21–155), or (21–152), respectively 
[21]. Among them, chemerin (21–157) holds the high-
est activity. While the latter clears the 7 COOH-terminal 
amino acids to produce one fragment, chemerin (21–
156) [25], which is the second most active form next to 
chemerin (21–157), and both are the two active forms in 
the human body.

Prochemerin is also cut into chemerin (21–158) with 
low activity mediated by tryptase and plasmin through 
sweeping the 5 COOH-terminal amino acids away. 
Chemerin (21–158) undergoes the second processing 
to complement this activity by carboxypeptidases N or 

B (CPN or CPB), ultimately forming chemerin (21–157) 
[26, 27]. This illustrates that the segments formed by the 
COOH-terminal processing might be also the substrates 
in the subsequent processing.

In addition to the above typical proteases leading to the 
formation of various fragments, there are some enzymes 
(e.g., mast cell chymase and angiotensin-converting 
enzyme) having been reported to cleave certain frag-
ments to generate relatively inactive modalities, includ-
ing chemerin (21–154) and chemerin (21–155) [28, 29].

Taken together, chemerin is conscripted to undergo 
proteolytic cleavages to remove amino acids located 
in NH2-terminal and COOH-terminal by multitudi-
nous proteases before the formation of diverse isoforms 
(Table  1), which differ in their activities. Most of them 
hold a low activity or no activity, even antagonizing the 
active isoforms, generally referring to chemerin (21–
157). This manifests that a complex regulatory network 
controls chemerin bioactivity.

Noticeably, excessive chemerin tends to be activated 
when the body is in the state of obesity with the accelerated 
COOH-terminal processing. To some extent, it is a hint that 
chemerin seems to have inextricable relation to obesity.

Chemerin receptor types and characteristics
The chemerin receptors that have been recognized 
and understood mainly include chemR23(i.e. GPCR 
or CMKLR1), G protein-coupled receptor (GPR)1 and 
chemokine (C–C motif) receptor-like (CCRL)2. They are 
all located at the surface of cells but distinct from each 
other in the affinity of binding to chemerin, signaling, and 
internalization of the chemerin-receptor complex (Fig. 1).

ChemR23
Chemerin is a natural ligand of chemR23. As the well-
deserved nature receptor with the highest affinity bind-
ing, efficient signaling and internalization, chemR23 is 

Fig. 1  Distinctions of the three receptors for chemerin. ChemR23, 
GPR1 and CCRL2 are cell-surface receptors, and all of them have a 
high affinity for chemerin. ChemR23 leads to strong signaling and 
internalization of the chemerin–receptor complex. GPR1 leads to 
weak signaling but also displays equal internalization as chemR23. 
CCRL2 does not signal nor internalizes but might pass on chemerin 
to functional chemR23 of nearby cells
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presently the only one reflecting the veritable activity of 
chemerin and accurately representing chemerin targeting 
sites among the three receptors. Chemerin active forms 
were observed only through measuring the activity on 
chemR23-expressing cells [25]. In other words, where 
there is chemR23, there is chemerin combining target. 
Besides, chemR23 is structurally relevant to a suite of 
chemokines, such as complement fragments (e.g., C5a, 
C3a) and prostaglandin D2 [30] which also cover GPR1 
and the orphan receptors GPR32 and GPR33 [25].

Furthermore, chemR23 has a second ligand named 
resolvin E1 (RvE1), a new bioactive oxygenated product 
of the essential fatty eicosapentaenoic acid (EPA), which 
is one of the main types of omega-3 polyunsaturated fatty 
acids (ω-3 PUFAs), existing in fish oils [31, 32]. Based 
on the powerfully anti-inflammatory role of ω-3 PUFAs 
in cardiovascular diseases, the combination of chemR23 
and RvE1 is increasingly taken for a salutary one, differ-
ing from chemerin/chemR23 axis, even quite the oppo-
site [33, 34].

GPR1 and CCRL2
In addition to chemR23, GPR1 and CCRL2 are uni-
versally acknowledged as two other receptor types of 
chemerin [35]. GPR1 structurally resembles ChemR23, 
which is concretely embodied in a 37% similar sequence 
identity between them [36]. That is why GPR1 is taken as 
a potential candidate in binding and activating chemerin 
in addition to chemR23. Meanwhile, GPR1 was mapped 
genome-wide of human loci for essential hyperten-
sion, involving the British Genetics of Hypertension 
(BRIGHT) study in 2003 [37]. Regrettably, despite high-
affinity binding, GPR1 shows weak signaling. It has been 
found that chemerin elicits potent constrictor actions via 
chemR23, not GPR1 [38].

CCRL2 is also referred to as Eo1 in mice, and 
chemokine receptor (HCR) in humans. Though previ-
ous thought of as leukocyte chemoattractant receptor 
binding the chemokines C–C motif chemokine ligand 
(CCL)2, CCL5, CCL7, and CCL8 [39], CCRL2 is latterly 
depicted as a third receptor for chemerin with high-affin-
ity binding [40]. Unlike the first two receptors, CCRL2 
shows no signaling or internalization. Whereas, the con-
clusion cannot be drawn that CCRL2 is disqualified as 
the receptor to bind chemerin and activate chemerin/
chemR23 axis. Instead, CCRL2 is proposed for elevat-
ing the local concentration of chemerin and presenting 
chemerin to GPR1 and chemR23 nearby, implying its role 
as a regulator of chemerin concentration and a mediator 
of chemerin transfer [40].

It appears that the other two receptors, GPR1 and 
CCRL2 are likely to participate in the peculiarity 

manifestations of chemerin, but both take effect with 
mechanisms relying on chemR23 more or less.

The changes of chemerin/chemR23 axis in obesity
Increased expression of chemerin in obesity
Evidence from clinical observations
Chemerin concentrations in  obese patients  Chemerin 
is a secreted protein that is detected in the plasma or 
serum. Generally speaking, it is a trend that women and 
the elderly have higher circulating chemerin concentra-
tions than men and the young [41, 42]. Though chemerin 
concentration partly varies with age and gender, it always 
fluctuates from 90 to 200  ng/mL in non-obese popula-
tions. Owing to the varying degree of obesity, the range 
of chemerin concentration fluctuation is too large to be 
represented simply by a numerical value in obese popula-
tions.

Circulating chemerin concentration is certainly higher 
in obese patients than lean ones, which has been con-
firmed by numerous studies [43, 44]. Obesity is often 
classified into different grades by body mass index (BMI), 
so, previous studies elucidated that plasma chemerin 
concentration positively correlates with BMI [43]. A ris-
ing view is that BMI puts more emphasis on the amount 
of subcutaneous adipose tissue (SAT), not visceral adi-
pose tissue (VAT), which was confirmed by stepwise 
multiple regression analysis [45]. And VAT is better rep-
resented by waistline or waist-to-hip ratio (WHR). Given 
that chemerin was reported to be expressed more in 
VAT, particularly in PVAT, than in SAT [46–48], relevant 
evidence supported serum chemerin concentration was 
also positively correlated with waistline or WHR, both of 
which were more representative of circulating chemerin 
than BMI [42, 49]. Besides, studies about aerobic exercise 
[50] and losing weight [51] as lateral proofs verified that 
chemerin can be reduced through the cut-down of WAT 
mass.

Chemerin mRNA and  protein expressions in  obese 
patients  Similar to the up-regulation of circulating 
chemerin concentration due to obesity, chemerin protein 
expression is increased in tissues from obese patients. A 
study described that compared with the WAT of non-
obese individuals, the WAT from obese donors produced 
higher chemerin protein mass [52]. In addition to WAT, 
other tissues like skeletal muscle also show a similar trend 
[52].

The mRNA expression of chemerin is also elevated in 
obese individuals. It was observed that chemerin mRNA 
expression was dramatically higher expressed in omen-
tal adipose tissue and SAT of obese patients, and weight 
loss induced by bariatric surgery led to a lower mRNA 
expression of chemerin than before [43]. Additionally, 
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chemerin mRNA expression was elevated significantly 
in obese patients with non-alcoholic fatty liver disease 
[53]. In 56 morbidly obese women (BMI > 40  kg/m2), 
hepatic chemerin mRNA expression was induced [53, 
54]. Increased expressions of other inflammatory factors, 
such as tumor necrosis factor α (TNFα) and lipopolysac-
charide, were also detected in WAT of obese patients 
when chemerin expression was elevated. It indicates that 
inflammation could enhance chemerin production in 
WAT and other tissues [49, 55].

The conjecture that circulating chemerin protein 
depends on chemerin mRNA expression in WAT is rea-
sonable in many cases. However, chemerin mRNA and 
protein expressions are not always synchronously mod-
ulated. For instance, chemerin mRNA expressions in 
SAT and VAT seemed not to be associated with serum 
chemerin concentration [56]. A study even revealed the 
negative correlation of chemerin mRNA expression in 
SAT with the systemic level of chemerin [57]. These 
seemingly contradictory experimental results mani-
fest, to some extent, that chemerin is partly regulated by 
unknown post-transcriptional mechanisms.

Evidence from animal experiments
Chemerin concentration in obese animals  There are usually 
two types of experimental models associated with obesity. The 
first is mice with genetic deficiency, such as db/db mice (lep-
tin receptor-deficient) and ob/ob mice (leptin-deficient). The 
second is obese mice induced by a high-fat diet (HFD), called 
diet-induced-obesity (DIO) mice. Circulating chemerin con-
centration in db/db mice was approximately two-fold higher 
than that in wild-type (WT) mice [58]. Female DIO mice had 
higher systemic chemerin concentrations compared to mice 
fed the control chow diet [59]. Moreover, compared with db/
db mice treated with vehicle, CCX832 (chemR23 antagonist)
treatment decreased body weight of db/db mice, accompa-
nied by reduction of chemR23 protein expression. It is sug-
gested that chemerin/chemR23 axis could be involved in the 
development of obesity.

Chemerin protein and  mRNA expressions in  obese ani-
mals  In terms of tissues, protein expression of chemerin 
varies with different parts, the highest in WAT and liver 
[61], followed by brown adipose tissue, lung, heart, ovary, 
and kidney [61]. Female DIO mice had markedly ele-
vated chemerin protein expression in SAT and VAT [62]. 
Chemerin protein expression was up-regulated promi-
nently in the gonadal adipose tissue of ob/ob mice [63]. 
Of interest, the level of chemerin protein expression in 
WAT of obese animal models was observed to go down 
after injection of 0.5  µg/g leptin, demonstrating that 
leptin resistance may be one of the reasons for elevated 
chemerin protein expression in obesity.

Hepatic chemerin mRNA expression of db/db mice 
was twofold higher than that of WT mice [58]. Hepatic 
chemerin mRNA expression was also induced in DIO 
mice [64]. In ob/ob mice, chemerin mRNA was not sig-
nificantly changed in the liver, but elevated in the skele-
tal muscle [58], indicating the participation of chemerin 
in skeletal muscle insulin resistance via underlying 
mechanisms.

Evidence from cell researches
In physiological conditions, besides mature adipocytes 
and preadipocytes, chemerin was expressed in types of 
cell populations, like epithelial cells [65], endothelial cells 
[66, 67], fibroblasts [68], chondrocytes, and platelets [27], 
because those cells contain prochemerin transcripts. 
Sherd of evidence manifested that platelets also stock-
piled a small amount of chemerin and released it under 
the stimulation of platelet-activating factors as platelet 
activity fluctuated [27].

At the cellular level, obesity is characterized by an 
increase in adipocyte cell size (hypertrophy), adipocyte 
cell number (hyperplasia), or both [27]. Studies showed 
that chemerin was detected on the 6th day (the early 
stage of differentiation) and increased dramatically on the 
9th day (the end of differentiation) in 3T3-L1 preadipo-
cytes, revealing the up-regulated expression of chemerin 
during adipogenic differentiation.

Increased expression of chemR23 in obesity
Evidence from obese patients
Interestingly, both chemR23 protein and mRNA expres-
sion show similar trends to chemerin in obese patients. 
ChemR23 protein expression was increased prominently 
in adipocytes and skeletal muscle cells of obese sub-
jects when compared to lean, healthy ones [52]. Hepatic 
chemR23 mRNA expression was likewise induced mark-
edly in patients suffering from non-alcoholic fatty liver 
disease [53]. ChemR23 mRNA expression in VATvwas 
dramatically higher in obese patients than that in lean 
volunteers. What’s more, there was a significant correla-
tion and synchronism between chemerin and chemR23 
mRNA expressions [53]. Bariatric surgery-induced 
weight loss reduced chemR23 protein and mRNA expres-
sions in obese patients [43]. These findings were obtained 
from tissue samples of obese individuals. In order to fur-
ther explore its possible mechanism, related investigation 
needs to be carried out in obese animal models.

Evidence from animal experiments
Through experimental animals, scientists can know more 
about the tissue distribution of chemR23. Under physi-
ological conditions, chemR23 is expressed in WAT and 
hematopoietic tissues such as the thymus, bone marrow, 
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spleen, fetal liver, and lymphoid organs [4, 69, 70]. While 
in obese animals, chemR23 protein expression in WAT 
was affected a lot. For example, chemR23 protein expres-
sion was increased markedly in SAT and VAT of obese 
rodents, including female DIO mice [59], Psammomys 
obesus [59], db/db mice and ob/ob mice [63]. What’s 
more, chemR23 protein expression was even up to five 
times higher than that of WT mice in epididymal adi-
pose tissue of ob/ob mice. Interestingly, the injection of 
0.5  µg/g leptin reduced chemR23 protein expression in 
WAT of ob/ob and db/db mice [63], indicating that leptin 
deficiency or resistance partly contributes to the elevated 
chemR23 protein expression in WAT of obese animals.

Evidence from cell researches
ChemR23 is expressed in various types of cells, cov-
ering blood monocytes, monocyte-derived human 
macrophages [65], immature dendritic cells [23, 71], 
plasmacytoid dendritic cells (pDCs) [72], microglial 
cells, and natural killer cells [73], and low levels in non-
irritant CD4+ T lymphocytes, polymorphonuclear cells 
[73], even leukocyte population, where chemerin is not 
expressed.

Although no increase in the protein and mRNA expres-
sions of chemr23 was observed in 3T3-L1 preadipocytes 
[59]. The knock-down even loss of chemR23 in 3T3-L1 
preadipocytes indeed obstructed adipogenesis through 
lowering gene expression of adipogenesis like peroxisome 
proliferator-activated receptor-γ and sterol regulatory 
element-binding protein 2 [50, 74, 75]. It demonstrates 
that chemR23 promoted adipogenesis and further led to 
fat accumulation through enhancing capacity rather than 
expressions.

Increased activity of chemerin in obesity
The biological activity of chemerin is influenced as well as 
its expression by obesity. As mentioned above, chemerin 
becomes the most active form, chemerin(21–157), 
through COOH-terminal processing. By using spe-
cific enzyme-linked immunosorbent assays for different 
chemerin forms, chemerin (21–157) concentration in 
obese subjects was 1000-fold higher than that in non-
obese subjects, accompanied by the increase of plasma 
C-reactive protein (CRP) level. This indicates that 
chemerin activity increased greatly in obesity perhaps 
by inflammation-mediated COOH-terminal processing 
[16].

Vascular dysfunction mediated by chemerin/
chemR23 axis in obesity
Blood vessels are the largest network structure of the 
human body, mainly composed of the intima, media, 
adventitia, and PVAT surrounding the adventitia [52]. 

Endothelial cells (ECs) from intima and vascular smooth 
muscle cells (VSMCs) from media are recognized as the 
most pivotal cell populations for normal vascular func-
tion. In addition, PVAT attracts much attention recently 
because diverse adipokines from PVAT regulate vascular 
function more quickly than those from adipose tissue in 
other areas [76]. Thus, ECs, VSMCs, and PVAT maintain 
vascular homeostasis together. In other words, alters of 
structures or features of any one of them could induce 
vascular dysfunction.

Dysfunction of PVAT
PVAT is a double-edged sword in regulating vascular 
function. Under physiological conditions, PVAT often 
serves as mechanical support for blood vessels, with sta-
ble adipokines secretions. Immunohistochemistry, quan-
titative real-time polymerase chain reaction and western 
blot had validated a robust expression of chemerin in 
PVAT. But in vascular pathologies caused by detrimental 
states like obesity, PVAT expands in volume, along with 
increased secretions of adipokines [77, 78]. For exam-
ple, chemerin and chemR23 protein expressions were 
higher in PVAT of DIO rats after a four-week HFD [48]. 
Chemerin antisense oligonucleotides (ASO) with whole-
body activity reduced chemerin in PVAT and partially 
reversed the chemerin/chemR23 axis-induced vascular 
dysfunction [79]. Broadly speaking, the currently ample 
evidence supports that chemerin is such a typical adi-
pokine that elevates in obese PVAT and then contributes 
to vascular dysfunction by further acting on the constitu-
ent cells of blood vessels like ECs and VSMCs via various 
mechanisms and pathways.

Endothelial dysfunction
Enhanced ECs proliferation and migration capacity
Proliferation and migration of ECs driven by proangio-
genic molecules lead to angiogenesis, which is the patho-
physiological basis of some diseases, such as metastasis 
of the tumor, atherosclerosis [80], and so on. A mass of 
in-vitro experiments had manifested that chemerin/
chemR23 axis stimulated capillary-like structure forma-
tion via promoting the proliferation of ECs, and chemerin 
functioned as a chemoattractant for ECs to hasten migra-
tion [80, 81]. Chemerin/chemR23 axis-induced angio-
genesis depends on p38 mitogen-activated protein kinase 
(MAPK) and extracellular regulated protein kinases 
(ERK) 1/2 pathway in human umbilical vein endothelial 
cells [66, 82, 83]. Matrix metalloproteinases-2/9 were 
also found to get involved in the proliferation and migra-
tion of ECs through degrading extracellular matrix in a 
chemerin dose-dependent way [66]. Besides, new evi-
dence suggested that chemerin/chemR23 axis promoted 
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angiogenesis through enhanced autophagy. It illustrates 
that chemerin/chemR23 axis enhances ECs proliferation 
and migration capacity through diversified pathways and 
mechanisms.

Moreover, CCX832 and the knockdown of chemR23 
largely reversed chemerin/chemR23 axis-induced angio-
genesis. For example, CCX832 reversed angiogenesis 
through decreased expression of P38 MAPK, ERK1/2 and 
matrix metalloproteinases-2/9. Additionally, angiogen-
esis was also reversed through knockdown of chemR23 
by short hairpin RNA (shRNA), along with the down-
regulated expression of autophagy-related genes [84–86]. 
It not only verifies the effect of chemerin on ECs capacity, 
but also indicates that ChemR23 can be taken as the tar-
get to block obesity-related angiogenesis.

Elevated expressions and levels of endothelial inflammatory 
factors
Activated ECs can release a series of inflammatory fac-
tors, such as interleukin (IL-6), TNFα and CRP, which 
leads to abnormal endothelial secretion and inflam-
mation in the blood vessel wall [87]. Besides, elevated 
expressions of intercellular adhesion molecule 1 and 
E-selectin have been regarded as the symbols of vascu-
lar endothelial activation. It was shown that increased 
circulating chemerin concentration was accompanied by 
the elevated level of CRP in obese children and expres-
sions of intercellular adhesion molecule 1 and E-selectin 
in human coronary artery endothelial cells [88]. Simulta-
neously, certain inflammatory cytokines such as TNF-α, 
IL-1β, and IL-6 augmented chemR23 expression in ECs 
in turn [66]. Moreover, the elevated levels of inflam-
matory cytokines induced by chemerin/chemR23 axis 
increased monocyte attachment to ECs [67, 89]. It sug-
gests that the activation of chemerin/chemR23 axis 
promotes endothelial dysfunction partly through inflam-
matory mechanisms.

Excessive production of reactive oxygen species in ECs
Oxidative stress is associated with multiple pathologi-
cal processes [90]. As a momentous product of oxidative 
stress, reactive oxygen species (ROS) is another key fac-
tor that contributes to endothelial dysfunction [87, 91]. 
On one hand, the production of ROS was increased in 
human aorta endothelial cells with chemerin stimulation, 
and the chemerin-induced ROS generation was inhibited 
by N-acetylcysteine, a ROS scavenger [85]. On the other 
hand, the knock-down of chemR23 decreased the ROS 
generation [85]. It supported that chemerin/chemR23 
axis induced ROS generation. Moreover, as the main 
source of intracellular ROS production, mitochondria 
are closely related to chemerin/chemR23 axis [92]. It’s 
reported that chemerin-treated ECs showed enhanced 

mitochondrial ROS generation and the mitochondria-
targeted antioxidant, Mito-TEMPO significantly sup-
pressed the chemerin-mediated ROS production. 
Furthermore, oxidative stress induced by chemerin/
chemR23 axis subsequently triggers autophagy and apop-
tosis of ECs, which further impairs the vascular integrity 
and function [85].

Reduced production of nitric oxide in ECs
Nitric oxide (NO) is recognized as an effective vasodi-
lator released by ECs and maintains vascular tone and 
homeostasis [93]. NO within ECs is mainly produced via 
endothelial nitric oxide synthase (eNOS) [94]. Chemerin 
decreased eNOS generation and enhanced NO break-
down, which ultimately led to NO reduction in ECs. 
Additionally, other potential mechanisms, including 
eNOS uncoupling, increased O2-generation, and reduced 
NO-dependent cGMP signaling could participate in 
chemerin/chemR23 axis-related endothelial dysfunction 
[95].

Dysfunction of VSMCs
Enhanced proliferation and migration capacity of VSMCs
It has been approved that VSMCs proliferation and 
migration are involved in the pathophysiological pro-
cess of vascular remodeling [96, 97]. The abnormal vas-
cular structure is accompanied by vascular dysfunction 
to a great extent. After stimulating VSMCs by chemerin 
(100  ng/mL) for 20  min, enhanced proliferation and 
migration capacity of VSMCs could be found. And 
CCX832 ameliorated VSMCs proliferation and migra-
tion. Furthermore, new evidence demonstrated that 
chemerin/chemR23 axis promoted proliferation and 
migration of VSMCs through MAPK signaling [98], Akt/
ERK signaling [99], endothelin-1 dependent pathway 
[100], and enhanced autophagy [101]. To some extent, 
chemerin/chemR23 axis could affect VSMCs capacity 
through multiple regulatory networks.

Excessive apoptosis of VSMCs
Excessive apoptosis is another adverse event for dysfunc-
tion of VSMCs in addition to increased proliferation 
and migration capacity [102]. After stimulating VSMCs 
by chemerin (100  ng/mL) for 6  h, obvious apoptosis of 
VSMCs was observed. Similarly, CCX832 improved such 
apoptosis-associated VSMCs dysfunction [89]. Interest-
ingly, the intervention time of chemerin-induced pro-
liferation and migration was obviously longer than that 
of chemerin-induced apoptosis. It may indicate that 
the early effect of chemerin is to promote proliferation 
and migration of VSMCs, resulting in thickening of the 
media while the late effect enhanced apoptosis ultimately 
leading to vascular weakness. This further suggests that 
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chemerin could play different roles in different stages of 
vascular dysfunction.

Augmentation of oxidative stress of VSMCs
Oxidative stress has been identified to exert impor-
tant effects on deteriorating vascular function through 
enhanced inflammation, proliferation and migration, 
apoptosis and so on [103–106]. The generation of ROS 
was increased in chemerin-incubated VSMCs. However, 
CCX832 or knockdown of chemR23 by shRNA decreased 
the production of ROS. It indicates that chemerin/
chemR23 axis could induce VSMCs dysfunction partly 
through an oxidative mechanism [103–106].

Up‑regulation of Inflammatory factors of VSMCs
There is no doubt that inflammation is involved in the 
dysfunction of VSMCs and inflammatory factors could 
impair VSMCs capacity through multiple pathways, such 
as promoted proliferation and migration, aging and apop-
tosis [97]. After stimulation with chemerin, the expres-
sions of certain inflammatory cytokines such as IL-1β, 
IL-6 and monocyte chemoattractant protein-1 (MCP-
1) were found to up-regulate in VSMCs. Conversely, 
CCX832 ameliorated the increase of these inflammatory 
cytokines [89].

Cardiovascular diseases mediated by chemerin/
chemR23 axis
Atherosclerosis and acute coronary syndrome (ACS)
The scientists assessed the severity of aortic and coro-
nary arteries by the AHA classification through the 
angiography completed before the patients died, and 
then detected chemerin and chemR23 proteins in those 
arterial specimens by immunohistochemistry. Strong 
chemerin immunopositivity was observed in PVAT, 
VSMCs, and foam cells in atherosclerotic lesions, and 
accompanied by a positive correlation with the severity of 
atherosclerosis [107]. Nevertheless, chemerin is not rec-
ommended as a predictor of human atherosclerosis [108, 
109]. Or rather, the predictive value of chemerin immeas-
urably could hinge on the region of affected arteries and 
stage of disease [110].

The analogous conclusion in experimental animals was 
drawn that chemerin accelerated the progression of ath-
erosclerosis in apolipoprotein (Apo) E−/− mice with HFD 
by adenovirus transfection for knockdown or overexpres-
sion of chemerin gene into the aorta or pDCs [111]. In 
addition, the knockout of chemR23 in pDCs of ApoE−/− 
mice restricted the formation and progression of ath-
erosclerotic plaque [112]. This pro-atherosclerotic effect 
is induced by chemerin/chemR23 axis partly through 

promoting adhesion and migration of ECs [113], inflam-
mation [114], and proliferation of VSMCs.

ACS, including unstable angina pectoris (UAP) and 
acute myocardial infarction (AMI), is the most feared 
consequence of partial or complete thrombotic vessel 
occlusion caused by disruption of a certain coronary ath-
erosclerotic plaque. The plasma chemerin concentration 
was notably higher in patients with ACS than in those 
with stable angina pectoris and controls, and the increase 
of chemerin concentration was synchronized with the 
elevation of CRP concentration [115–118]. Hence, 
chemerin could be considered as a novel predictor of 
ACS. What’s more, the average chemerin concentration 
in AMI is higher than that in UAP [117].

Hypertension
Compared with healthy controls, adult patients with 
primary hypertension had significantly higher serum 
chemerin concentrations [117]. Circulating chemerin 
concentration also increased even in obese children 
with elevated systolic blood pressure and not diagnosed 
with hypertension [119, 120]. Although ample evidence 
appealed that chemerin concentration was highly posi-
tively correlated with blood pressure, more clinical trials 
are needed to support the view prop up the perspective 
that chemerin is a predictor of human obesity-induced 
hypertension.

Obese rats with elevated serum chemerin concentra-
tions showed a tendency of susceptibility to hypertension 
[48]. There was a certain drop in mean and systolic blood 
pressures in the chemerin knockout rats [121]. Besides 
dysfunctions of ECs, VSMCs and PVAT, chemerin/
chemR23 axis induced hypertension also through 
enhanced arterial contraction [26, 38, 47] and sensitivity 
of the sympathetic nervous system [122].

Pulmonary arterial hypertension (PAH)
The protein expressions of chemerin and chemR23 were 
elevated in PAH model rats. And chemerin-9 (chemR23 
agonist) induced contraction of the isolated intrapulmo-
nary artery through increasing chemR23 protein expres-
sion in VSMCs [123]. Although animal experiments 
indicated that chemerin/chemR23 axis was involved in 
the development of PAH, there was still a lack of abun-
dant clinical observations to prove this correlation in 
patients with PAH.

Aortic valve (AV) stenosis
Degenerative AV stenosis is one of the most common 

cardiovascular diseases currently in the elderly, which is 
classified into mild, moderate, severe according to the 
stricture degree of AV. In comparison with the controls, 
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serum chemerin concentration was observably higher in 
patients with mild and moderate AV stenosis. Interest-
ingly enough, the patients with the severe stenosis had 
lower circulating chemerin concentration than those in 
the mild and moderate stenosis, for which inactivation 
of inflammation might account [123, 124]. So, chemerin 
was proposed as a good predictor for mild AV stenosis 
and chemerin > 38.60  ng/mL was selected as the cut-off 
point for the diagnosis of mild AV stenosis. [125].

Abdominal aortic aneurysm (AAA)
AAA is a progressive segmental abdominal aortic dila-
tion. The circulating chemerin concentration was 
higher in patients suffering from AAA than healthy 
controls. Besides, compared with the normal abdomi-
nal aortic samples, higher mRNA expressions of 
chemerin and chemR23 were detected in the focus tis-
sues from patients with AAA [123]. This demonstrated 
that chemerin/chemR23 axis was involved in AAA 
progression.

In previous animal experiments, scientists found that 
DIO mice and ob/ob mice were more prone to AAA 
than WT mice [126, 127], but the potential mecha-
nisms have not been explored yet. Therefore, we rea-
sonably speculate that chemerin/chemR23 axis could 
partly promote the formation of AAA in obese mice. 
(Fig. 2).

Arterial calcification and arterial stiffness
Arterial calcification and arterial stiffness are independ-
ent predictors of cardiovascular risk and mortality. Both 
processes reinforce one another, creating a vicious cycle. 
However, chemerin/chemR23 axis seemingly induced 
contradictory results in the occurrence and progres-
sion of arterial calcification and arterial stiffness. On 
one hand, there was a significantly positive correlation 
between the circulating chemerin concentration and 
arterial stiffness in obese patients [120, 128, 129]. On the 
other hand, chemerin-9 (chemR23 agonist) increased the 
expression of a calcification inhibitor, matrix gla protein, 
and reduced phosphate-induced calcification in VSMCs. 
And the aforementioned effect on arterial calcification 
mediated by chemerin-9 was not observed VSMCs lack-
ing chemR23. It indicates that chemerin/chemR23 axis 
may restrain the occurrence and development of arterial 
calcification [130].

Future therapeutics for chemrin/chemR23 axis
Although we have a general idea of the significant role of 
chemerin/chemR23 axis in obesity-related vascular dys-
function, it remains a pity that there is almost no drug 
circulating in the market targeting chemerin/chemR23 

axis. Through a variety of related studies, several drugs 
targeting chemerin/chemR23 axis are still considered to 
have potential and feasibility for use in humans. They 
include CCX832, RvE1, chemerin-9, chemerin ASO, and 
nano-antioxidant.

CCX832
Numerous in vivo and in vitro studies have revealed that 
chemR23 inhibitor, CCX832, greatly reversed chemerin/
chemR23 axis-induced vascular dysfunction.

The effect of CCX832 on improving chemerin/
chemR23 axis-induced vascular dysfunction has been 
verified in various cells and in  vitro vessels from multi-
ple sources. For example, CCX832 improved chemerin-
induced vascular inflammation in human microvascular 
ECs and human aorta ECs [60, 66]. CCX832 reversed 
oxidative stress in human aortic smooth muscle cells and 
VSMCs from mesenteric arteries of C57BL/6 J mice [38, 
47]. Besides, CCX832 inhibited abnormal contraction 
in the isolated rat mesenteric artery, rat thoracic aorta, 
human pulmonary artery and human coronary artery 
[38, 131, 132].

Moreover, oral and intravenous administration of 
CCX832 ameliorated vascular insulin sensitivity in dia-
betic obese db/db mice and DIO mice [60]. Although 
CCX achieved phased success in phase 1 clinical trial 
of patients with psoriasis in 2012, its development was 
discontinued in 2013 for unknown reasons. Even so, 
CCX832 was still used in animal and cell experiments 
and obtained good experimental results. This mani-
fests that CCX832 does play an essential role in block-
ing chemerin/chemR23 axis signaling and improving 
the chemerin/chemR23 axis-induced vascular dysfunc-
tion. Hence, we should strengthen the development of 
chemR23 antagonists to find other chemR23 antagonists 
that can not only replace CCX832 in experiments but 
also have safety and effectiveness in humans.

RvE1
RvE1, a new bioactive oxygenated product of EPA, is 
proved to be another ligand of chemR23. Meanwhile, 
RvE1 is a specialized pro-resolving mediator (SPMs), 
which are involved in promoting the resolution of inflam-
mation [133, 134]. RvE1 plays a crucial role in improv-
ing vascular function and reducing cardiovascular risk 
through its downstream specific receptor axis, namely 
ERV1/chemR23 [135, 136].

A mass of in  vivo and in  vitro studies have dem-
onstrated that RVE1 exerts powerful cardiovascular 
benefits, including inhibiting the progression of athero-
sclerotic plaques [137, 138], reducing the formation of 
new intima [139], preventing vascular endothelial injury, 
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regulating vasoconstriction [132], restraining vascular 
calcification [140, 141] and so on. What’s more, multiple 
clinical trials have also supplemented the cardiovascular 
benefits of EPA [142–145]. Based on this, RvE1 is spec-
ulated rationally to redress vascular dysfunction partly 
through competing with chemerin for the binding site of 
chemR23.

Chemerin‑9 and other chemerin isoforms
Chemerin-9, also known as C9, is a synthetic small 
molecule fragment of chemerin. Although it is biologi-
cally active as an analog of chemerin and an agonist of 
chemR23. Chemerin-9 seemingly plays an anti-inflam-
matory and positive role in regulating vascular function 
in most cases, which is the exact opposite of chemerin.

Fig. 2  The potential pathogenic effects of chemerin/chemR23 axis on vascular dysfunction and cardiovascular diseases. The schematic figures 
indicate that chemerin/chemR23 axis leads to vascular dysfunction through diversified pathways, including ECs (enhanced proliferation and 
migration, increased inflammation, decreased NO production and augmented oxidative stress), VSMCs (enhanced proliferation and migration, 
increased inflammation, excessive apoptosis, augmented oxidative stress) and PVAT dysfunction (enhanced chemerin secretion and increased 
chemR23 expression), which further results in various vascular-related diseases
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A study described that chemerin-9 attenuated the for-
mation of AAA in obese mice [146]. And the infusion 
of chemerin-9 significantly decreased the areas of aor-
tic atherosclerotic lesions, accompanied by the reduc-
tion of TNF-α [147]. It is well known that chemerin-9 
improved vascular function. But interestingly, some stud-
ies revealed that chemerin-9 might be involved in the 
evolvement of hypertension and PAH by inducing arte-
rial contraction [147]. The detailed mechanism is worth 
exploring.

In addition to chemerin-9, there are other active frag-
ments, such as chemerin-13 (C13). Chemerin-13, simi-
lar to chemerin-9, is also an agonist of chemR23, but 
few studies have been conducted on the treatment of 
chemerin/chemR23 axis-induced vascular dysfunction 
with it. More studies are needed to explore the difference 
between chemerin-13 and chemerin-9 in regulating vas-
cular function.

It will necessitate investigations of the differences 
between chemerin-13 and chemerin-9 in regulating vas-
cular function and further explorations of the therapeutic 
possibilities of more fragments or isoforms of chemerin.

Chemerin antisense oligonucleotide
ASO is a class of molecular drugs that inhibit the expres-
sion of target gene DNA or mRNA by sequence-specific 
binding and regulation at the gene level. It has been 
found that chemerin ASO with whole-body activity 
dramatically decreases blood pressure in rats [57, 148]. 
This opens up the possibility of chemerin ASO in the 
treatment of chemerin/chemR23 axis-induced vascular 
dysfunction in humans. Hence, the experimental and 
clinical studies of chemerin ASO are strongly advocated 
to provide more diversified options for the treatment of 
chemerin/chemR23 axis-induced dysfunction.

Nano‑antioxidant
Considering the critical role of oxidative stress on the 
vascular dysfunction induced by chemerin/chemR23 
axis, inhibition of ROS production can reduce chemerin 
expression to a certain extent, further improving vascu-
lar function. Therefore, the application of antioxidants 
provides a novel direction for the treatment of chemerin/
chemR23 axis-induced vascular dysfunction. To date, the 
effectiveness of traditional antioxidants has been lim-
ited for many reasons, such as gastrointestinal degrada-
tion, first-pass effect, and/or instability during storage 
[149]. The combination of nanotechnology and antioxi-
dants can effectively avoid these problems. Nano-antiox-
idants not only have higher physicochemical stability as 
well as biological activity, but also have improved ROS 

scavenging ability [92]. Recently, several types of these 
nano-antioxidants have demonstrated potential utility in 
nanomedicine [150, 151]. Thus, The application of nano 
antioxidant technology is expected to ameliorate obesity-
related vascular dysfunction.

Conclusion
The significance of chemerin has been illustrated in 
many researches. Circulating chemerin concentrations 
are related to the development and progression of mul-
tiple system diseases and even are used as a biomarker 
for the diagnosis of cardiovascular diseases like ACS, 
AV stenosis, AAA, and so on. The chemerin/chemR23 
axis is a complex network strictly involved in the occur-
rence and development of obesity and regulation of vas-
cular function, which is supported by abundant rationale 
from clinical and experimental observations. However, 

Fig. 3  Unsettle experimental questions
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the concrete mechanisms and pathways of chemerin/
chemR23 axis displaying in these disorders remain a mys-
tery and worth exploring. Thus, uncovering the answer to 
key questions (Fig. 3) probably conduces to deeply under-
stand and better define the relationship among this axis, 
obesity, and vascular dysfunction. Moreover, it is helpful 
to seek the possibility of other treatments in addition to 
CCX832, RvE1, chemerin ASO, chemerin-9, nano-anti-
oxidants even other alternative and salutary isoforms of 
chemerin.
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