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NOX4: a potential therapeutic target 
for pancreatic cancer and its mechanism
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Abstract 

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) is one of the seven isoforms of NOX family, 
which is upregulated in pancreatic cancer cell, mouse model of pancreatic cancer and human pancreatic cancer tis-
sue. NOX4 is a constitutively active enzyme that primarily produces hydrogen peroxide, which exhibits completely dif-
ferent properties from other subtypes of NOX family. More importantly, recent studies illuminate that NOX4 promotes 
pancreatic cancer occurrence and development in different ways. This review summarizes the potential roles and its 
mechanism of NOX4 in pancreatic cancer and explores NOX4 as the potential therapeutic target in pancreatic cancer.
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Introduction
Pancreatic cancer (PC) is a highly malignant digestive 
system tumor with a poor prognosis. Despite advances in 
medicine has improved the survival rate of many types of 
aggressive cancer, PC remains one of the deadliest malig-
nancies with an incidence/mortality ratio of as high as 
94% and a 5-year survival rate of about 9% [1]. It is pre-
dicted that PC will rise to the second-leading cause of 
cancer-related deaths in the U.S. in 2030 [2]. Therefore, 
it is urgent for us to explore the pathogenesis of PC and 
search its potential therapeutic targets. PC has a complex 
landscape of genetic alterations with prevalent chromo-
thripsis and mutations in KRAS, TP53, SMAD4, and 
CDKN2A [3–5]. However, heterogeneous and complex 
compositions of genetic alterations may, in concert, drive 
common phenotypes that expose specific vulnerabilities. 
One such phenotype that has emerged as a potential vul-
nerability in cancer is aberrant redox homeostasis [6].

Reactive oxygen species (ROS) exerts oxidative stress 
in the cells which deregulate the redox homeostasis 

and promote tumor formation by initiating an aberrant 
induction of signaling networks that cause tumorigen-
esis [7]. ROS is a by-product of cell metabolism, includ-
ing superoxide anions, hydroxyl radicals and hydrogen 
peroxide. Nicotinamide Adenine Dinucleotide Phos-
phate (NADPH) oxidases are a major intracellular source 
of ROS, and evidence suggests that ROS production 
by NADPH species can strongly influence both tumor 
growth and survival [8, 9]. Over the decades, six human 
homologs of the catalytic subunits of the phagocyte NOX 
were found: NOX1, NOX3, NOX4, NOX5, DUOX1 and 
DUOX2.Together with the NOX2/gp91phox component 
present in the phagocyte NADPH oxidase assembly itself, 
the homologs are now referred to as the NOX family of 
NADPH oxidases. The isoforms of NOX are distributed 
in different tissues, cells and subcellular structures, pro-
duce corresponding products, and perform specific func-
tions under physiological and pathological conditions 
[10].

NOX4 is identified as a nonphagocytic novel NOX in 
kidney in 2001. Then researchers found that NOX4 is 
expressed in not only kidney tissues, but also lung, ovar-
ian, pancreas and other organs [11–13]. Unlike other 
isoforms, NOX4 is a constitutively active enzyme. It 
produces H2O2 as the sole or vast majority of detectable 
ROS product even in vitro in the absence of superoxide 
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dismutase [14]. Compared with other members of the 
NOX family, NOX4 widely expressed in many different 
tissues and has a wider range of biological functions. As 
the main endogenous ROS source, NOX4 is involved in 
regulating multiple functions of cells including cell pro-
liferation, migration and death [15]. NOX4 generates 
lower level of ROS which serve as second messengers to 
induce a panel of intracellular signaling pathways such as 
HIF2-α, p38 MAPK, TGF-β1/Smad2/3, Akt, Caspase3 
to regulate functions of cells [15]. However, when some 
stimulation signals are received, NOX4 could generate 
high level of ROS and cause the activation of multiple 
downstream signal pathways which may promote disease 
development. Preliminary immune-histological and gene 
expression surveys of human primary tumor samples 
have revealed elevated NOX4 protein or transcript lev-
els relative to adjacent normal healthy tissues in several 
tumor types [11, 16, 17]. The data from gene and protein 
profiling, cell lines, mouse model and human PC tissues 
suggest that NOX4 expression is significantly increased 
in PC which reminds us that NOX4 may play a vital role 
in the development of PC [18, 19]. Previous studies have 
shown that NOX4 participates in PC progression via dif-
ferent ways [20–22]. However, the specific mechanism of 
NOX4 in the occurrence and development of PC remains 
unclear. In this review, we summarize the currently avail-
able evidence regarding the role and the mechanism of 
NOX4 in PC and its possibility as a potential target for 
the treatment of PC.

NOX4 is involved in the pancreatic tumorigenesis
The human NOX4 gene comprises 18 exons and is 
located on chromosome 11q14.2-q21 [23]. NOX4 is 
quite different from other NOX isoforms as it primar-
ily produces H2O2 due to a unique third extracytosolic 
loop (E-loop) [14]. Of the multiple types of ROS, H2O2 
is an adept signaling molecule. H2O2 is a relatively stable 
oxidant that is able to cross membranes and react with 
protein thiol moieties to produce post-translational mod-
ifications, altering protein function [[12]. Recent studies 
showed NOX4 was closely associated with the occur-
rence and development of different cancers [24–26]. 
Moreover, NOX4 was upregulated in PC [18, 21]. There-
fore, we consider that NOX4 plays a vital role in PC pro-
gression. The potential mechanisms of NOX4 in PC are 
as follows.

NOX4 regulates PC cells from death
One reason why PC is so aggressive and unresponsive 
to treatments is its resistance to apoptosis. Previous 
research showed that the antiapoptotic effects of growth 
factors in PC cells are mediated via ROS produced by 
NOX4 [27]. Moreover, Mochizuki pointed out that ROS 

generated by NOX4 transmit cell survival signals through 
the AKT-ASK1 pathway and Jong showed that NOX4 
generated ROS promote PC cell survival via inhibiting 
JAK2 dephosphorylation by tyrosine phosphatasesin [28, 
29].

Cell senescence is the process by which cells stop divid-
ing and lose their ability to proliferate. Therefore, cellu-
lar senescence plays a crucial role in suppressing cancer 
[30]. ROS have been proposed to be signaling molecules 
that mediate proliferative cues. However, ROS may also 
cause DNA damage and proliferative arrest. How these 
apparently opposite roles could be reconciled, especially 
in the context of oncogene-induced cellular senescence, 
which is associated both with aberrant mitogenic signal-
ing and DNA damage response (DDR)-mediated arrest, 
is unclear. Ogrunc et  al. showed that NOX4 promotes 
transformation of oncogene-expressing PC cells by gen-
erating mitogenic ROS, and transformed cell cause inac-
tive DDR and oncogene-induced cellular senescence 
bypass [19]. Therefore, NOX4-dependent ROS are indeed 
mitogenic signaling molecules that fuel oncogene-driven 
aberrant cell proliferation in PC.

NOX4 promotes fibrosis in PC
In the occurrence and progression of PC, the most sig-
nificant feature is the formation of pancreatic fibrosis. In 
this process, pancreatic fibrosis creates a microenviron-
ment of hypo perfusion, hypoxia, and immune shielding 
in pancreatic tissue, which brings treatment more dif-
ficult [31]. NOX4 has been proven to play an important 
role in the fibrosis process of different organs. Zhao et al. 
found upregulation of NOX4 in the myocardium causes 
cardiac remodeling through activating Akt-mTOR and 
NF-κB signaling pathways [32]. In fibrotic lung disease, 
NOX4 expression is increased and plays a deleterious 
role by reducing fibroblast apoptosis, leading to fibroblast 
accumulation and fibrosis progression [33]. In kidney, 
alcohol promotes renal fibrosis by activating NOX4-
mediated DNA methylation of Smad7 [34].

The key to pancreatic fibrosis is the activation of pan-
creatic stellate cells (PSCs). Although previous studies 
found that NOX enzymes play a crucial role in the acti-
vation of PSCs and extracellular matrix (ECM) formation 
[35–37], the specific role of NOX4 in the process of pan-
creatic fibrosis has not been extensively studied. While it 
is worth noting that the process of pancreatic fibrosis is 
similar to liver fibrosis. Like pancreatic fibrosis, the key 
of hepatic fibrosis is closely related to the activation of 
hepatic stellate cells (HSCs). Normally, PSCs or HSCs are 
quiescent and regulate ECM production. However, PSCs 
and HSCs are activated by many stimulating factors dur-
ing tumorigenesis [38, 39]. Then, active PSCs or HSCs 
can create a suitable microenvironment and facilitate 
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cancer progression by altering four processes in hepatic 
cancer or PC models: excessive fibrosis, promoting 
tumor metastasis, inducting resistance of chemotherapy 
and radiotherapy and immune modulation [40, 41].

Plenty of researches already proved that NOX4/ROS 
signaling pathway promotes the proliferation and acti-
vation of HSCs [42–46]. Moreover, experiments using 
siRNA against NOX4 attenuated HSCs activation, and 
more importantly, knocking down NOX4 in activated 
myofibroblasts could reverse the fibrotic phenotypes [47, 
48]. In summary, NOX4 is involved in fibrosis of different 
organs, especially in liver. And considering the similarity 
between the process of pancreatic fibrosis and liver fibro-
sis, we believe that NOX4 also plays a key role in pan-
creatic fibrosis. However, the role of NOX4 in pancreatic 
fibrosis deserves further study.

NOX4 contributes to EMT in PC
The epithelial-mesenchymal transition (EMT) process is 
a major contributor to the development of resistance in 
multiple cancer types including PC [49]. Classical EMT 
involves a phenotypic change in cells, in which cells 
loss their epithelial phenotype, such as tight cell-to-cell 
adhesion and apical-basal polarity, and acquire a highly 
invasive, mesenchymal phenotype [50]. Accumulating 
evidence suggest that EMT plays an important role in 
the pathogenesis, invasion, metastasis, and drug resist-
ance in PC [51–53]. Notably, many key EMT regulators 
were recently found to be redox-sensitive, enabling the 
elucidation of the molecular basis of EMT from a redox 
perspective. ROS, an important cellular secondary mes-
senger containing free radical species, can alter the bio-
logical functions of redox-sensitive proteins involved in 
ECM remodeling and cell mobility, thereby regulating 
EMT [54, 55]. One of the primary sources of ROS pro-
duction is via NOX enzymes and previous studies proved 
NOX4 is involved in the EMT process in different organs 
such as lung, kidney, liver, cervix and breast [24, 56–59].

The role of NOX4 in the EMT process of PC has 
also been studied. Ma et  al. showed that NOX4 mRNA 
correlation with EMT gene expression such as colla-
gen (COL1A2, COL3A1, COL5A2), metalloproteases 
(MMP2, MMP9) and fibronectin (FN1) [21]. Risako et al. 
treated the PC cells with the NOX4 inhibitor diphenylene 
iodonium and NOX4 siRNAs, the results showed down-
regulation of NOX4 blocked TGF-β-induced EMT phe-
notype including morphological changes, augmented 
migration, and altered expression of E-cadherin and Snail 
in PC cells, which showed that NOX4 transmit TGF-
β-triggered EMT signals in PC [11]. David et  al. sug-
gest that TGF-β1-induced EMT in PC cells is mediated 
through RAC1/NOX4/ROS/p38 MAPK cascade [60]. 
Recent research showed that NOX4 caused inactivation 

of lysine demethylase 5A, increased the methylation 
modification of histone H3 and regulated the transcrip-
tion of EMT associated gene SNAIL1. And NOX4 defi-
ciency repressed hypoxia-induced EMT in PC cells [61]. 
To sum up, NOX4 and NOX4-mediated ROS generation 
play vital roles in regulating EMT process in PC.

NOX4 plays a vital role in metabolic regulation
Metabolism reprogramming is the hallmark of tumor 
cells, and it has a causal relationship with the occur-
rence and development of tumors. Regulated metabolic 
changes in tumor cells include aerobic glycolysis (the 
Warburg effect), increased glucose uptake, abnormally 
active glutamine metabolism, and the use of non-primary 
energy-supply substances for energy supply [62]. These 
metabolic changes satisfy the rapid growth of tumor 
cells. The strong energy and material requirements dur-
ing proliferation help cells adapt to the hypoxic tumor 
microenvironment, and then provide energy and material 
support for tumor proliferation, invasion, migration and 
other biological activities [63].

NOX4 has been reported as a glycolytic regulator in 
different tissues. Tang et  al. used papillomatosis thyroid 
cancer cells to study the cell growth by knocking down 
the expression of NOX4 and knocking out its func-
tional partner p22phox/CYBA, the results suggested 
that NOX4 participated in regulating glycolysis through 
mROS-HIF1α pathway, thereby mediating proliferation 
in thyroid carcinomas [26]. In terms of human neuroblas-
toma cells, it is showed that knockdown of NOX4 expres-
sion by siRNA inhibited glycolysis induced by hypoxia 
through decreasing the expression of glycolysis-related 
proteins (HIF-1α, LDHA, and PDK1), decreasing glucose 
uptake, lactate production, and ROS production, while 
increasing mitochondria membrane potential [64]. Zeng 
et al. revealed NOX4 promotes glycolysis, contributing to 
non-small cell lung cancer growth, and supports glutami-
nolysis for oxidative resistance [65]. David et  al. proved 
that disturbed flow could increases NOX4 and ROS to 
stabilize endothelial HIF-1α which stimulates glycolysis 
in endothelial cells and then results in vascular inflam-
mation and ultimately atherosclerosis [66]. In respect 
to the metabolic change in PC, Ju et  al. showed that 
elevated NOX4 activity accelerates oxidation of NADH 
and supports increased glycolysis by generating NAD+, a 
substrate for GAPDH-mediated glycolytic reaction, pro-
moting PDAC cell growth [18].

With more and more evidence showing that NOX4 
mediates the metabolic reprogramming in different 
organs, the role of NOX4 in the regulation of PC cell 
metabolism and its mechanism deserve further explo-
ration. Firstly, more in  vivo experiments are needed to 
confirm that NOX4 could participate in the regulation of 
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PC metabolic changes. Then, the specific mechanisms by 
which NOX4 regulates PC metabolism changes should 
be studied, such as whether they play roles in interfer-
ing with glycolysis-related proteins or activating certain 
downstream signaling pathways. Finding out the specific 
mechanisms how NOX4 regulates PC metabolic changes 
would help us make better strategies for PC treatment.

NOX4 mediates angiogenesis in PC
Angiogenesis is necessary for the invasive growth and 
metastasis of tumors and is an important target in the 
control of cancer progression [67]. Despite of conflicting 
views about the formation and recruitment of new blood 
vessels in human PDAC [68, 69], decades of studies dem-
onstrate that PDAC, like other cancers, need new and 
destabilized blood vessels (tumor angiogenesis) as a pre-
requisite event for the growth and progression as well as 
dissemination of tumor cells for metastasis [70, 71].

Angiogenesis is a tightly regulated multistage process, 
including vessel sprouting, lumen formation and matura-
tion [72]. Upon pro-angiogenic stimulation, endothelial 
cells (ECs) firstly sprout from the pre-existing vascellum 
after the degradation of ECM. Afterwards, these ECs 
undergo proliferation, migration and differentiation 
and recruit smooth muscle cells (SMCs) or pericytes to 
cover the newly-formed vessels to promote their matu-
ration. The essential role of NOX4 in angiogenesis has 
been the subject of research for years. NOX4 is the major 
isoform of NADPH oxidases expressed in vascular cells 
and predominantly produce ROS, which play an impor-
tant role in angiogenesis. In femoral artery ligation mice 
model, NOX4-/- mice exhibit attenuated angiogenesis, 
while endothelial-specific NOX4 transgenic mice exhibit 
enhanced angiogenesis and blood flow recovery under 
ischemia in an eNOS-dependent manner [73, 74]. Not 
only is involved in a variety of physiological processes, 
NOX4 also mediates angiogenesis in pathological condi-
tions which can cause cancer.

Compelling evidence demonstrates that NOX4 and 
its generated ROS have a close relation to tumor angio-
genesis in different cancers. In a carcinogen 3-methyl-
cholanthrene (MCA)-induced fibrosarcoma mice model, 
NOX4 was proved to regulate the tumour-vessel density 
through stabilization of HIF-1α and induction of VEGF 
expression, while a significant 38% reduction in tumour 
vascularization in fibrosarcomas of Nox4-/- mice [75]. In 
von Hippel Lindau (VHL)-deficient renal cell carcinoma, 
NOX4 also promotes renal tumorigenesis in a similar sig-
nal pathway via nuclear accumulation of HIF-2α [76]. Li 
et al. showed that stable NOX4 knockdown reduced ROS 
production significantly and suppressed glioblastoma 
cells proliferation and invasion and tumor associated 
angiogenesis [77].

HIF-1 is a key transcription factor of angiogenesis in 
solid tumors including PC and NOX4 can regulate angio-
genesis through HIF-1 in different cancers [78, 79]. Thus, 
we assume that NOX4 may mediate angiogenesis in a 
similar way to promote the development of PC which 
need more studies to prove that.

Perspective: Targeting NOX4 for the therapy 
of pancreatic cancer
As NOX4 participates in the progress of PC via differ-
ent ways, it has been emerging as a promising therapeu-
tic target for PC treatment. We believe more studies are 
worth to do in some aspects. As discussed above, onco-
genes mutation drives the development of PC. However, 
the carcinogenic mechanism of these mutant oncogenes 
remains exclusive. Recent studies showed that some 
oncogenes promote PC progress through interacting with 
NOX4. TP53 mutations could “switch” NOX4 from being 
protective and an indicator of good prognosis to deleteri-
ous by promoting programs favoring cancer progression 
including EMT, cell migration, cell adhesion, and angio-
genesis [21]. Ju et  al. found that NOX4 is the key point 
of interaction between KRAS activation and P16 inactiva-
tion to promote the occurrence of pancreatic cancer [18]. 
According to the full exome group sequencing of PC, 
KRAS, TP53, CDKN2A and SMAD4 are most common 
oncogenes. Therefore, more studies are needed to explore 
the relationship between NOX4 and other oncogenes, 
such as CDKN2A and SMAD4. If we could prove that a 
variety of genetic mutations play carcinogenic role in PC 
are associated with NOX4, then NOX4 would become 
the greatest target of PC as it could be applied to patients 
carrying different genetic mutations.

As presented in this review, NOX4 can participate in 
the development of PC via different mechanism, which 
prove that it could be a promising target for the PC treat-
ment (Fig.  1). Although some studies have shown that 
pharmacological/genetic inhibition of NOX4 can inhibit 
tumor development at the cellular level or in animal 
models, the effectiveness in human still needs further 
clinic trial [20, 22]. This is the second point we could 
explore.

Recent breakthroughs in cancer treatment consisting of 
new combinations of existing medications. Drug resist-
ance is the main reason why chemotherapeutics can-
not achieve the desired therapeutic effect. Interestingly, 
NOX4 may related to chemotherapy resistance [80, 81]. 
Karthigayan et al. found NOX4 functions as a mitochon-
drial energetic sensor coupling cancer metabolic repro-
gramming to drug resistance [82]. In ovarian cancer 
cells, NOX4 knockdown increased sensitivity of targeted 
therapy and radiotherapy through decreased expression 
of HER3 and NF-κB p65 [12]. Ju et al. tested the impact of 
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NOX4 inhibitors combined with gemcitabine on Panc1 
cells-a human PDAC cell line carrying a mutant K-Ras 
allele.53, and observed that the combination therapy 
displayed a strong synergistic impact on reduced cell 
viability and enhanced apoptosis and it increased the 
half-maximal inhibitory concentration of gemcitabine 
by four- to sixfold [19]. These results indicated us that 
chemotherapy with NOX4 inhibitor may achieve bet-
ter therapeutic effects in PC. This is the third and most 
important idea which we could test.

Therefore, research needs to further explore the role 
of NOX4 in PC progression and chemotherapy resist-
ance, so that clinic can make individual treatment for PC 
patients to enhance drug efficacy, extending patient sur-
vival, and improve quality of life.

Conclusion
Despite rapid advances in modern medical technology 
and significant improvements in survival rates of many 
cancers, PC is still a highly lethal gastrointestinal can-
cer with a low 5-year survival rate and difficulty in early 
detection. Exploring the pathogenesis of PC and seeking 
its therapeutic targets has become an urgent issue.

NOX4 is one of the NOX family. Unlike most other 
subunits generating O2

−, NOX4 catalyzes the reduction 
of molecular oxygen to H2O2. This feature gives NOX4 
some specific roles in different cellular functions, such 
as proliferation, differentiation, migration, apoptosis, 

senescence and matrix secretion [83–88]. NOX4 has 
been proven to participate in the development of PC by 
promoting cell proliferation, activation of PSCs, EMT 
progression, regulating cell metabolism changes and 
mediating angiogenesis. However, its specific mecha-
nism of these effects is still exclusive and awaits further 
study. Since NOX4 is increased in PC and promotes PC 
development via variety ways, it may be a robust poten-
tial therapeutic target for PC. More researches also 
need focus on the therapeutic effect of NOX4 in PC.
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