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Abstract 

Background:  Comparing the microbiome compositions obtained under different physiological conditions has 
frequently been attempted in recent years to understand the functional influence of microbiomes in the occurrence 
of various human diseases.

Methods:  In the present work, we analyzed 102 microbiome datasets containing tumor- and normal tissue-derived 
microbiomes obtained from a total of 51 Korean colorectal cancer (CRC) patients using 16S rRNA amplicon sequenc-
ing. Two types of comparisons were used: ‘normal versus (vs.) tumor’ comparison and ‘recurrent vs. nonrecurrent’ 
comparison, for which the prognosis of patients was retrospectively determined.

Results:  As a result, we observed that in the ‘normal vs. tumor’ comparison, three phyla, Firmicutes, Actinobacteria, 
and Bacteroidetes, were more abundant in normal tissues, whereas some pathogenic bacteria, including Fusobac-
terium nucleatum and Bacteroides fragilis, were more abundant in tumor tissues. We also found that bacteria with 
metabolic pathways related to the production of bacterial motility proteins or bile acid secretion were more enriched 
in tumor tissues. In addition, the amount of these two pathogenic bacteria was positively correlated with the expres-
sion levels of host genes involved in the cell cycle and cell proliferation, confirming the association of microbiomes 
with tumorigenic pathway genes in the host. Surprisingly, in the ‘recurrent vs. nonrecurrent’ comparison, we observed 
that these two pathogenic bacteria were more abundant in the patients without recurrence than in the patients with 
recurrence. The same conclusion was drawn in the analysis of both normal and tumor-derived microbiomes.

Conclusions:  Taken together, it seems that understanding the composition of tissue microbiomes is useful for pre-
dicting the prognosis of CRC patients.
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Introduction
Colorectal cancer (CRC), like many other cancers, is 
a malignant disease that occurs as a result of the accu-
mulation of complex genetic and epigenetic changes. 
Although it has been reported that the majority of 
CRC cases (~ 80%) are due to nongenetic or epigenetic 
changes and less than 20% of CRC cases are caused by 
genetic mutations [1], these two types of risks are actually 
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entangled in a very complicated way that makes it almost 
impossible to differentiate between the upstream driver 
risk and the downstream passenger risk in causing CRC. 
Genetically, alterations in Wnt signaling pathways initi-
ated by APC mutation are known as one of the common 
causes of familial types of CRC [2, 3]. On the other hand, 
smoking cigarettes, diets rich in red meats and processed 
foods, and drinking alcohol have frequently been linked 
to nongenetic environmental risk factors for CRC [4, 5], 
and the microbiota has recently been added to that list. 
The microbiome has been proven in several studies to be 
a mediator between genetic mutations and harmful diets 
in the onset and progression of CRC.

It is known that abnormal changes in the composition 
of the gut microbiome can lead to disruption of epithe-
lial barrier function, which increases inflammation and in 
turn leads to various gastrointestinal diseases, including 
CRC [6, 7]. In fact, it has been reported that the distri-
bution of the microbiome differs significantly between 
normal and tumor tissues or between normal and cancer 
fecal samples, mainly due to dysbiosis of the microbiome 
under tumorigenic conditions. For instance, pathogenic 
bacteria such as Bacteroides (B.) fragilis and Fusobacte-
rium (F.) nucleatum were significantly more enriched 
in the tumor tissue than in the normal tissue, and con-
versely, nonpathogenic members of the Bacteroidetes 
and Firmicutes phyla were more abundant under normal 
conditions than tumorigenic conditions for both tissue 
samples and fecal samples [8, 9].

Pathogenic bacteria are known to directly or indirectly 
cause enhanced inflammation and oxidative DNA dam-
age and even stimulate cancer-causing signaling path-
ways inside the cell [10–13]. Particularly, according to 
Strauss et  al. [13], Fusobacteria can invade colonic epi-
thelial cells, destroying the epithelial barrier that allows 
CRC cells to survive or be maintained. In addition, some 
studies have shown that F. nucleatum can activate Wnt/
β-catenin signaling, promoting cell proliferation and 
inflammation, through binding of its FadA adhesion pro-
tein to E-cadherin on the surface of colon cells [14–16], 
or through activating TLR4 signaling to NF-kB [17]. Like-
wise, another pathogenic bacterium abundant in CRC, 
B. fragilis, also known as an enterotoxin-producing bac-
terium, can take part in multistep tumorigenesis by pro-
ducing toxins. Toxins are known to induce E-cadherin 
degradation, causing downstream β-catenin signaling, 
and to stimulate the release of reactive oxygen species 
and the expression of inflammatory cytokines that cause 
DNA damage [18–20].

Tjalsma et al. [21] proposed a ‘driver-passenger’ model 
to explain how the microbiome can facilitate CRC tum-
origenesis. According to the model, driver pathogenic 
bacteria induce DNA damage in colon epithelial cells, 

leading to the initiation of tumorigenesis. Damaged 
epithelial cells in turn change the surrounding tumor 
microenvironment such that opportunistic bacteria (i.e., 
passenger bacteria) with a competitive advantage in this 
altered tumor microenvironment defeat and replace 
healthy gut bacteria, eventually worsening inflammation 
and accelerating cell proliferation, promoting tumorigen-
esis. It is, however, worth noting that thus far, no single 
bacterial species has universally been associated with all 
CRC patients because substantial variations are present 
in the compositions of microbiota associated with CRC 
[22, 23]. It seems that changes in both pathogenic and 
nonpathogenic microbiomes are responsible for the ini-
tiation and/or progression of CRC.

In the present work, using the microbiome informa-
tion estimated from 16S rRNA amplicon sequencing 
data generated from matched samples of CRC patients, 
including tumors and adjacent normal tissues derived 
from the same patient, we investigated compositional 
changes in microbiomes related to the tumorigenesis of 
CRC. We also investigated the compositions of microbi-
omes between nonrecurrent CRC (named ‘crc_nRC’) and 
recurrent CRC (named ‘crc_RC’), revealing the bacterial 
population associated with the relapse of CRC.

Materials and methods
Sample collection and generation of 16S rRNA sequences
A total of 51 matched normal and tumor samples 
obtained from the same individuals with CRC (mostly 
at TNM stage 2 and 3, see Additional file  1: Table  S1, 
aged 43–86, 51 males collected from the cecum to 
the rectum at the Samsung Medical Center in Seoul, 
Republic of Korea) who underwent resection surgery 
were used for producing the host RNA-seq data and 
16S rRNA data to investigate gene expression pat-
terns and the composition of microbiomes that the 
CRC tissues carry. The RNA-seq data and the V3–V4 
amplicon sequencing data of 16S rRNAs were obtained 
with an Illumina MiSeq reagent kit v3 (2 × 300 bp, Illu-
mina, USA). The PCR primers, i.e., forward (CCT​ACG​
GGNGGC​WGC​AG) and reverse (GAC​TAC​HVGGG​
TAT​CTA​ATC​C), were designed from the hypervariable 
regions (V3–V4) of 16S rRNAs. PCR was conducted 
using 2× KAPA HiFi HotStart ReadyMix (Roche) 
under the following conditions: 95  °C solution chain 
for 3  min, 25 cycles of 95  °C for 30  s, 55  °C for 30  s, 
and 72  °C for 45  s, followed by a 72  °C extension for 
5  min. Sequencing libraries were then constructed 
using a TruSeq® DNA PCR-Free Sample Preparation 
Kit (Illumina, USA) and TruSeq® Nextera XT index 
primer (Illumina, USA), and 2× KAPA HiFi HotStart 
ReadyMix (Roche) using the PCR products after puri-
fication. Subsequently, paired-end reads were generated 
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by sequencing on the MiSeq platform after determin-
ing the quality of the library with the Tapestation 4200 
platform (Agilent Technologies) and a Qubit Fluorom-
eter (Thermo Fisher Scientific).

Analysis of the microbiomes using bioinformatics tools
The sequencing reads were selected by filtering out 
low-quality sequences, including primer sequences, 
truncated sequences, and sequences that were classified 
into Eukarya and Archaea lineages, following a previ-
ously reported QIIME (v1.9.1) quality control process 
[24]. After finishing quality control procedures, an aver-
age of 188,342 high-quality reads per sample (median 
190,643; range 128,130–256,314) were obtained, where 
the average length and quality score were 268.1 bp and 
33.01, respectively. Then, the paired-end reads were 
assembled using the Fast Length Adjustment of SHort 
reads (FLASH) [25] tool, and chimeric sequences were 
also excluded by matching the clean tag sequences to 
the reference database using the Usearch software v6.1 
algorithm [26]. Eventually, an average of 139,572 clean 
reads per sample (range 93,441–208,822) were obtained 
after filtering chimeric reads.

All the cleaned sequences were used for clustering 
analysis that led to the identification of operational tax-
onomic units (OTUs) after removing singleton OTUs. 
The taxonomic rank (i.e., phylum, class, order, family, 
genus, and species) of each sample was determined 
using the Ribosomal Database Project (RDP) classifier 
[27] by aligning the sequence to the GreenGene refer-
ence database (release 13.8) [28] at a 97% minimum 
similarity level. The final OTU table was used to gen-
erate a taxonomic profile graph by including only taxa 
with at least 0.1% relative abundance in each group. See 
Additional file 2: Table S2: the OTU table used in this 
study. The compositional characteristics of the micro-
biomes differentially enriched in normal and tumor tis-
sues were investigated by linear discriminant analysis 
effect size (LEfSe) [29].

Estimation of α‑ and β‑diversity
The α-diversity was evaluated by the Shannon index and 
observed OTUs with QIIME software, while β-diversity 
was estimated by principal coordinate analysis (PCoA) 
based on the Bray–Curtis distance [30]. Permutational 
multivariate analysis of variance (PERMANOVA) as 
implemented by the ‘adonis’ function in the R package 
‘Vegan’ was applied to test the microbial composition 
between groups. The box plots and diagrams for these 
analyses were constructed with the ‘ggplot2’ package in R 

(v3.6.2). All statistical significance tests were performed 
with the ‘Wilcoxon rank-sum’ test using the R package.

Prediction of metabolic pathways based 
on the composition of microbiomes
To predict the functions of bacteria, software called 
‘PICRUSt’, i.e., an acronym for ‘phylogenetic investiga-
tion of communities by reconstructing of unobserved 
states’, was used, the main procedures for which were 
well described previously [31]. The metabolic functions 
were estimated by mapping the composition of the 
identified bacteria into the KEGG database. Statistical 
Analysis for Metagenomic Profiles (STAMP) [32] was 
used to identify different metabolic functional abun-
dances between groups. A corrected P-value < 0.05 was 
considered to be significant.

Estimation of differentially expressed genes
After the quality of sequencing reads was determined 
by FastQC (https://​www.​bioin​forma​tics.​babra​ham.​ac.​
uk/​proje​cts/​fastqc/), the low-quality (Phred score < 33) 
and adaptor sequences were removed by Trimmomatic 
(v0.39) [33]. The reference genome (GRCh38/hg38) was 
then indexed by STAR (v2.7.6a) [34]. Subsequently, the 
cleaned reads were mapped to the indexed reference 
genome using STAR, following previously reported 
procedures [35, 36]. The count value for each gene 
was then estimated using ‘htseq-count’ [37] after gene 
names were assigned for the mapped reads by the ‘GTF’ 
file of the ‘GENCODE Gene Set’ (release 30) (https://​
www.​genco​degen​es.​org/​human/​relea​se_​30.​html). 
Finally, differentially expressed genes (DEGs) estimated 
by comparing gene expression between normal and 
tumor conditions were identified using ‘DESeq2’ [38] 
after the read counts were normalized. Two thresh-
olds, an adjusted P-value (i.e., Q-value) < 0.01 and |log-
2fold change (fc)|> 1 (i.e., abs(log2fc)), were applied to 
estimate DEGs by comparing gene expression levels 
between tumors and normal tissues. Principal compo-
nent analysis (PCA) revealed that tumor and normal 
samples were clearly distinguished. However, one non-
recurrent sample (10003704) was revealed to be an out-
lier and was removed from later analysis.

Gene set enrichment analysis and cellular heterogeneity 
of host genes
Two annotation methods were used for the analysis of 
DEGs. (i) The single-sample GSEA (ssGSEA) method, 
an extension of gene set enrichment analysis (GSEA), 
was used to calculate separate enrichment scores for 
each pairing of a sample and gene set. (ii) A cell type 
deconvolution tool, xCell, was used to analyze cellular 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.gencodegenes.org/human/release_30.html
https://www.gencodegenes.org/human/release_30.html
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heterogeneity between tumors and normal tissues. Sub-
sequently, the specific gene set enrichment score and 
deconvoluted cell composition information were used 
for correlation analyses with microbial compositions.

Results
Tumors had a lower bacterial diversity than normal tissues
From the 16S rRNA amplicon sequencing data obtained 
from a total of 51 CRC patients with matched normal 
and tumor tissues, we attempted to identify microbial 
communities and to estimate their diversity and abun-
dance. We found that α-diversity in tumor tissues was 
significantly lower than that in normal tissues (Fig.  1a), 
indicating that the number of inhabiting bacterial species 
is significantly reduced in the location where tumor for-
mation and progression occur. A possible explanation for 
this observation is that the tissue environment affected 
by dysbiosis of the microbiota can be detrimental to some 

healthy bacteria. The β-diversity estimated using PCoA 
plots also indicated that the bacterial population struc-
ture in tumor tissues was distinct from that in normal tis-
sues, with a significant Bray–Curtis distance (R2 = 0.039, 
p = 0.001) (Fig. 1b). Relatedly, using unsupervised hierar-
chical clustering, we examined whether the population 
structure of the microbiome was similar between normal 
tissues and tumors in the same patient or between nor-
mal tissues or tumors in different patients (Additional 
file 1: Fig. S1). Although the clustering pattern was com-
plex in that the clusters in the dendrogram were mixed 
patterns supporting the former or the latter scenario, the 
similarity of microbial population structures seemed to 
be higher between normal or tumor tissues in different 
patients than between normal and tumor tissues in the 
same patient.

Subsequently, LEfSe, i.e., linear discriminant analy-
sis (LDA) effect size, was performed to investigate 

Fig. 1  Bacterial diversity of normal and tumor tissues in CRC patients. a The α-diversity estimated by the Shannon index and observed OTUs. b (left) 
The β-diversity estimated using PCoA of OTUs. (right) Distribution of Bray–Curtis distances of OTUs in normal samples (N–N), tumor samples (T-T), 
and normal and tumor samples (N-T). c LEfSe plot illustrating microbial taxa enriched in normal compared with CRC tumor tissues. N: normal, T: 
tumor
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differentially abundant microbiome features (clades, 
OTUs, etc.) in normal and tumor tissues, and it was 
confirmed that normal-enriched microbiome features 
were distinct from tumor-enriched microbiome features 
(Fig.  1c, Additional file  1: Fig. S2). Namely, in the dif-
ferential microbiome features ranked by effect size, four 
genera, Fusobacterium (g_Fusobacterium), Treponema 
(g_Treponema), Selenomonas (g_Selenomonas), and 
Campylobacter (g_Camplylobacter), were enriched in 
tumor tissues, whereas three phyla, Bacteroidetes (p_
Bacteroidetes), Actinobacteria (p_Actinobacteria) and 
Firmicutes (p_Firmicutes) (including Clostridia at its 
lower class level (c_Clostridia)), were abundant in normal 
tissues (Fig.  1c). Similarly, hierarchical clustering analy-
sis of bacterial proportions accompanied by a heatmap 
confirmed that pathogenic bacteria and healthy bacteria 
were separately grouped into subclusters, indicating that 

bacteria with similar characteristics coevolved and cooc-
curred under the influence of an altered environment 
(Additional file 1: Fig. S3). It is notable that LEfSe-based 
analysis also adheres to the idea that tumor tissues har-
bor fewer bacterial features than normal tissues.

Identification of pathogenic bacteria associated 
with tumor progression
Using the taxonomic level information for each sam-
ple obtained by QIIME analysis, we constructed stacked 
graphs of the microbiome proportions for three selected 
levels, phylum, genus, and species. As shown in Fig. 2a–
c, at the phylum level, a majority of the bacterial popu-
lation (> 75%) in normal tissues consisted of two OTUs, 
Bacteroidetes and Firmicutes, consistent with what was 
previously reported [39]. In tumor tissues, these two 
abundant bacterial OTUs were also highly abundant but 

Fig. 2  Colorectal cancer-associated bacterial composition. Average relative composition of the bacterial community at the phylum (a), genus 
(b) and species levels (c). d Box plot analysis of the relative abundance of four bacterial phyla, Bacteroidetes, Firmicutes, Actinobacteria and 
Fusobacteria. e Box plot analysis of the relative abundance of four species, B. vulgatus and F. prausnitzii, F. nucleatum and B. fragilis. Statistical 
significance was estimated by T-test



Page 6 of 12Choi et al. Journal of Translational Medicine          (2021) 19:485 

in significantly decreased proportions (~ 60%). In con-
trast, Fusobacterium showed a significantly increased 
proportion in tumor tissues (~ 23%) compared to that 
in normal tissues (~ 12%) (Fig.  2b). Actinobacteria was 
found to be more abundant in normal tissue than in 
tumor tissues, while Spirochaetes was the opposite, 
although the proportions of these two bacteria were very 
low under each condition (Fig. 2a).

Most OTUs were similarly proportionated between 
normal and tumor tissues at the genus and species levels, 
but a few bacterial compositions were significantly dif-
ferent between the two tissue conditions (Fig. 2b, c). For 
instance, at the genus level, Bacteroides, Clostridiales and 
Prevotella were more abundant in normal tissues; in con-
trast, Fusobacterium and Treponema were more enriched 
in tumor tissues (Fig. 2b). At the species level, B. vulgatus 
and Faecalibacterium (F.) prausnitzii were more abun-
dant in normal tissues, whereas F. nucleatum and B. fra-
gilis were significantly increased in tumor tissue (Fig. 2c). 
Statistical analysis of differences in bacterial composi-
tions in normal and tumor tissues was performed for 
some selected bacteria at the phylum and species levels 
(Fig. 2d, e). Of particular interest are significantly higher 
amounts of two bacterial species, i.e., F. nucleatum and B. 

fragilis, in tumor tissues than in normal tissues because 
these bacterial species have been repeatedly identified as 
pathogenic bacteria associated with intestinal inflamma-
tory diseases and even with CRC [13–15, 18, 20]. Addi-
tional taxa with significant differences in OTUs between 
tumor and normal conditions are shown in Additional 
file 1: Fig. S4.

Prediction of metabolic pathways exerted by microbiomes 
in normal and tumor tissues
It has been suggested that the cross-talk between the 
microbiota and the host tissue may be mediated by 
short-chain fatty acids (SCFAs) produced by the micro-
biomes. Therefore, to predict microbiome-driven meta-
bolic functions, we used a tool named ‘PICRUSt, i.e., a 
tool for making inferences by mapping marker genes 
to known sequenced genomes with information about 
the identified bacteria and their compositions. In par-
ticular, we found that the pathways of production and 
assembly of bacterial motility proteins (such as flagella) 
and of lipopolysaccharide biosynthesis were significantly 
enriched in tumors compared to normal tissues (Fig.  3) 
(P < 0.05), which is consistent with a previous report 
based on the gut microbiome of Moroccan CRCs [40]. 

Fig. 3  Functional pathways predicted with tumor- and normal tissue-enriched bacteria. KEGG pathways of OTUs enriched differentially between 
normal and tumor tissues were analyzed using PICRUSt (see “Materials and methods”). P-values were estimated by Welch’s t-test
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In relation to this observation, it has been reported that 
overexpression of flhDC, a bacterial motility regulator, 
produced from Salmonella is associated with increased 
tumor cell mass [41]. Another notable compositional dif-
ference enriched in tumor tissue was bile acid secretion 
(Fig. 3) (P < 0.01) because it was reported that some of the 
gut microbiome secretes bile acid, by which the microbi-
ome can provoke a proinflammatory response in hepatic 
stellate cells [42].

In contrast, the pathways associated with sporulation, 
RNA transport, and chloroalkane and chloroalkene deg-
radation were more significantly enriched in normal tis-
sues than in tumor tissues (Fig. 3) (P < 0.0001), although 
no good explanation for the cause and effect of this 
enrichment has yet been provided. Sporulation, i.e., a 
metabolic event that is expected to occur in gram-posi-
tive bacteria such as Clostridia [43], which was relatively 
more enriched in normal tissues, as shown in Fig. 1c, may 
partially explain this observation.

Correlation analysis between mRNA expression levels 
and proportions of bacteria
We then attempted to investigate the functional classes 
of genes that are differentially expressed in tumor tissues 
compared to normal tissues, which were conjectured to 
have been affected by changes in the composition of the 
microbiota. Briefly, DEGs were estimated by comparing 
mRNA gene expression in tumor tissues to that in nor-
mal tissues, in which functional classes thought to have 
altered expression together were identified by ssGSEA. 
Second, a correlation analysis was performed between 
each of the functional classes in ssGSEA and the propor-
tions of the five bacterial features we selected in Fig.  2 
(1 genus; Fustobacterium, 4 species; B. fragilis, F. nucle-
atum, F. prausnitzii, B. vulgatus). As a result, we found 
that the expression levels of host genes had a significant 
positive or negative correlation with the proportions of 
tumor-enriched bacteria or normal tissue-enriched bac-
teria (Fig.  4a), as expected. Interestingly, genes involved 
in tumor formation, including the cell cycle, cell adhe-
sion, and the Wnt signaling pathway, were positively cor-
related with pathogenic bacteria, including F. nucleatum 
and B. fragilis, whereas normal tissue-enriched bacteria 
including F. prausnitzii and B. vulgatus were positively 
correlated with genes involved in starch and sucrose 
metabolism, the intestinal immune network and ABC 
transporters.

We also tried to investigate which cell types are likely 
to interact with microbial communities during tumor 
formation. After the cell types expected to contribute 
to bulk RNA-sequencing data were deconvoluted using 
a program called xCell [44], a correlation analysis was 
performed in the same way as was done for the DEGs 

described above. Interestingly, we found that lymphoid 
cells, including both B and T cells, were positively cor-
related with normal tissue enriched bacteria, whereas 
myeloid cells, including monocytes and pericytes were 
positively associated with tumor-enriched bacteria 
(Fig. 4b).

Enrichment of pathogenic bacteria can be a biomarker 
for better CRC prognosis
We next wondered whether the microbial composition 
could predict the prognosis of CRC patients. The pro-
portions of tumor-enriched bacteria and normal tissue-
enriched bacteria were compared between the ‘crc_RC’ 
(patients with recurrence) and ‘crc_nRC’ groups (patients 
without recurrence). Since normal and tumor tissues 
were collected from the same individuals, comparisons 
(‘crc_RC’ vs. ‘crc_nRC’) were performed separately for 
the normal tissue-derived microbiome (i.e., ‘N_crc_RC’ 
vs. ‘N_crc_nRC’) and for the tumor-derived microbi-
ome (i.e., ‘T_crc_RC’ vs. ‘T_crc_nRC’). Surprisingly, we 
found that tumor-enriched bacteria, including B. fragilis 
and F. nucleatum, were significantly more abundant in 
‘crc_nRC’ than in ‘crc_RC’, indicating that the enrichment 
of these well-known pathogenic bacteria was associated 
with better prognosis of CRC patients (Fig.  5), which is 
contradictory with what has been previously reported 
[8, 18, 45–47]. To exclude the possibility that these unex-
pected observations were due to the nonrandom dis-
tribution of patients with early or late TNM stages into 
‘crc_RC’ and ‘crc_nRC’, the comparison was conducted 
again after the TNM stages were controlled; comparison 
of ‘crc_RC’ vs. ‘crc_nRC’ was performed only for patients 
with TNM stage 2 (Fig. 6) and similarly only for patients 
with TNM stage 3. The samples from TNM stages 1 and 
4 were removed because the number of samples was too 
small (< 9) (Additional file  1: Table  S1). Nevertheless, 
even in the stage-fixed sets, the conclusion was consist-
ent, in that enrichment of pathogenic bacteria was asso-
ciated with better prognosis of CRC patients.

Discussion
In the present work, we showed that alterations in the 
compositions of the microbiome were significantly asso-
ciated with changes in the host tissue states from normal 
tissue to tumors, coupled with changes in the levels of 
some genes expressed in host tissues.

The method of comparing the microbiome com-
positions obtained under two different physiological 
conditions is basically similar to many other genomic, 
transcriptomic, and proteomic data analyses performed 
in the control-case design. However, finding biologi-
cally meaningful associations between the composition 
of the microbiome and human disease is not easy for 
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several reasons. First, microbiomes are highly hetero-
geneous, to the extent to which even the same individ-
ual can carry varied microbiomes depending on diets 
or physiological states, not to mention that different 

individuals have different microbial compositions in 
the same tissue type. Second, various sample sources, 
such as fecal samples, mucus samples or tissue sam-
ples of patients, are used to isolate the microbiome. 

Fig. 4  Correlations between the expression levels of host genes and the microbiome composition. a The relationship between the abundance of 
some selected bacteria enriched differently between normal and tumor tissues and the pathways of genes expressed in CRC tissues estimated by 
ssGSEA. b Correlation between the composition of cell types deconvoluted by xCell and the bacteria used in a. The color of the squares indicates 
the magnitude of the correlation according to the scales indicated in the bar on the right side, and asterisks indicate the significance of the 
correlation (***P < 0.001, **P < 0.01, *P < 0.05)

(See figure on next page.)
Fig. 5  Comparison of the microbiome composition in four different tissue types. a Patients were divided into four subgroups by adding prognostic 
information that was retrospectively determined (RC: recurrence; nRC: nonrecurrence), accompanied by normal tissue- and tumor-derived 
microbiomes, i.e., ‘N_crc_RC’, ‘N_crc_nRC’, ‘T_crc_RC’, and ‘T_crc_nRC’, as described in the main text. Differences in microbial composition are 
displayed at the phylum (left) and species levels (right). b Box plot analysis of the relative abundance of selected OTUs at the phylum level (top) and 
the species level (bottom) between ‘N_crc_RC’ and ‘N_crc_nRC’. c Box plot analysis of the relative abundance of selected OTUs at the phylum level 
(top) and the species level (bottom) between ‘T_crc_RC’ and ‘T_crc_nRC’. a, b The samples used were derived from a total of 33 ‘crc_nRC’ and 18 
‘crc_RC’ samples for both normal and tumor samples (Additional file 1: Table S1)



Page 9 of 12Choi et al. Journal of Translational Medicine          (2021) 19:485 	

Fig. 5  (See legend on previous page.)
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Third, various sequencing methodologies, either whole 
genome shotgun sequencing or 16S rRNA amplicon 
sequencing methods, are chosen to generate source 
sequencing data to identify microbiome components. 
Therefore, conclusions are often inconsistent regard-
ing the increase or decrease in certain bacterial spe-
cies associated with a given human disease, and the 
microbiome related to CRC is no exception. However, 
two bacterial species, F. nucleatum and B. fragilis, are 
consistently reported to increase in feces or mucus 
from CRC patients compared to healthy individuals or 
at increased levels in tumor tissue compared to nor-
mal tissue of the same CRC patient [8, 48, 49]. It seems 
that F. nucleatum is the most studied bacterial species 
related to the onset or progression of CRC. Our present 
study also drew the same conclusion. Taken together, 
the two bacteria, F. nucleatum and B. fragilis, may have 
a causal relationship in provoking inflammatory dis-
eases and cancers.

As expected, these pathogenic bacteria have been 
reported to be associated with poor prognosis in CRC 
patients. For instance, patients with a high amount of 
F. nucleatum tended to have shorter survival times than 
patients with a low amount of F. nucleatum [45–47]. Yu 
et al. [50] showed that F. nucleatum was more enriched 
in chemoresistant recurrent CRC patients than in che-
mosensitive nonrecurrent patients by triggering the 
autophagy pathway via the TLR4/MYD88 pathway, 
which is consistent with the results of Zhang et al. [51]. 
However, we observed otherwise in the present work, 
showing that these two pathogenic bacteria were more 
enriched in CRC patients without recurrence (i.e., ‘crc_
nRC’) than in CRC patients with recurrence (i.e., ‘crc_
RC’). As shown in Figs.  5 and 6, patients with higher 

levels of pathogenic bacteria in their tissues had a con-
sistently better prognosis, regardless of the sources of 
microbiomes (i.e., tumor- or normal tissue-derived 
microbiomes).

Interestingly, some studies have reported a good 
prognostic association of F. nucleatum in CRC. For 
instance, according to Oh et  al. [52], the survival of F. 
nucleatum-high CRC patients was better than that of 
F. nucleatum-low CRC patients, when only a subgroup 
of microsatellite-stable CRC patients with nonsigmoid 
colon cancers treated with oxaliplatin-based chemo-
therapy were separately investigated. Notably, both Oh 
et  al.’s samples and ours are based on microbiome data 
generated by the 16S rRNA amplicon sequencing method 
for tissue samples of homogenous Korean-only CRC 
patients. Saito et al. [53] showed that F. nucleatum could 
be associated with a good prognosis in a subgroup of 
CRC patients with FOXP3lo non-Treg cell infiltration.

Unfortunately, no good explanation has yet been pro-
posed for this unexpected link between pathogenic 
bacteria and a good prognosis, unlike the case for the 
association with a poor prognosis. It is possible that 
there are strain-to-strain differences in the bacterial spe-
cies present in different ethnic populations or that dif-
ferences in the genetic makeup or local diet can cause 
the same pathogenic bacteria to have a different effect 
in the individuals tested. In addition, another possibil-
ity can be clued from the relationship between the den-
sity of F. nucleatum and the density of tumor-infiltrating 
lymphocytes (TILs); the density of F. nucleatum was 
reported to be positively correlated with the density of 
TILs in some CRCs [54], and the high density of TILs was 
shown to be associated with a better prognosis in CRC 
[55]. Therefore, it will be a great opportunity to develop a 

Fig. 6  Difference in bacterial abundance between ‘crc_RC’ and ‘crc_nRC’ when the TNM stages were controlled. a Comparison of the abundances 
of selected OTUs for patients with TNM stage II (from 12 ‘crc_nRC’ and 3 ‘crc_RC’ samples) and b Comparison of the abundances of selected OTUs for 
patients with TNM stage III (from 17 ‘crc_nRC’ and 6 ‘crc_RC’ samples). a, b Refer to Additional file 1: Table S1 for the numbers of samples used
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microbiome-based prognostic marker in the future if we 
can determine how these pathogenic bacteria can inhibit 
the recurrence of cancer after surgical treatment and 
chemotherapy.

Conclusions
We investigated whether alterations in the composi-
tions of the microbiome were significantly associated 
with changes in the host tissue states from normal tis-
sue to tumors, coupled with changes in the levels of 
some genes expressed in host tissues. We showed that 
the two pathogenic bacteria, F. nucleatum and B. fragilis, 
that were more abundant in tumor tissues than normal 
tissues were surprisingly more abundant in the patients 
without recurrence than in the patients with recurrence. 
We believe that our study will contribute to exploring the 
composition of tissue microbiomes that is critical in pre-
dicting the prognosis of CRC patients.
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