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Abstract 

Background:  The characterization of the immune component of the tumor microenvironment (TME) of human epi-
dermal growth factor receptor 2 positive (HER2+) breast cancer has been limited. Molecular and spatial characteriza-
tion of HER2+ TME of primary, recurrent, and metastatic breast tumors has the potential to identify immune mediated 
mechanisms and biomarker targets that could be used to guide selection of therapies.

Methods:  We examined 15 specimens from eight patients with HER2+ breast cancer: 10 primary breast tumors 
(PBT), two soft tissue, one lung, and two brain metastases (BM). Using molecular profiling by bulk gene expression 
TME signatures, including the Tumor Inflammation Signature (TIS) and PAM50 subtyping, as well as spatial characteri-
zation of immune hot, warm, and cold regions in the stroma and tumor epithelium using 64 protein targets on the 
GeoMx Digital Spatial Profiler.

Results:  PBT had higher infiltration of immune cells relative to metastatic sites and higher protein and gene expres-
sion of immune activation markers when compared to metastatic sites. TIS scores were lower in metastases, particu-
larly in BM. BM also had less immune infiltration overall, but in the stromal compartment with the highest density of 
immune infiltration had similar levels of T cells that were less activated than PBT stromal regions suggesting immune 
exclusion in the tumor epithelium.

Conclusions:  Our findings show stromal and tumor localized immune cells in the TME are more active in primary 
versus metastatic disease. This suggests patients with early HER2+ breast cancer could have more benefit from 
immune-targeting therapies than patients with advanced disease.
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Background
Human epidermal growth factor receptor 2 positive 
(HER2+) breast cancer accounts for 20–25% of all breast 
cancers [1, 2]. These tumors were historically associ-
ated with poor prognosis [1, 2]. With more effective 
HER2 targeted therapy the outcomes of these patients 
have improved markedly [3, 4]. However, there is still an 
unmet need to prevent recurrences in patients with early 
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stage breast cancer [5, 6] and to achieve more durable 
responses in those with metastatic disease [7–9].

The molecular subtypes and spatial interactions of 
immune, stroma, and tumor cells in the tumor microen-
vironment (TME) are not well defined in HER2+ breast 
cancer. HER2 is a natural antigen and the effect of some 
HER2-directed therapies could be potentiated with 
immune checkpoint inhibitors (ICI) [10, 11]. A bet-
ter understanding of molecular biomarkers and spatial 
characterization of immune cells in HER2+ breast can-
cer environment could help for selection of combination 
therapies, targeting both HER2 and the immune compo-
nents, that would be most effective [10, 11]. Metastatic 
triple negative breast cancers (TNBC) have been shown 
to be more immunologically quiescent than primary 
tumors though deep profiling of spatial characterization 
of immune cells in HER2+ disease has yet to be done 
[12–14].

Immunotherapy has revolutionized the treatment para-
digm of several malignancies but its use has been limited 
in breast cancer and mostly studied in the TNBC subtype 
[15–17]. Two ICIs have been approved in combination 
with chemotherapy for selected patients with advanced 
TNBC; program cell death ligand 1 (PD-L1) expression 
allows for the selection of patients that more likely to 
respond to ICI [15, 16]. The combination of HER2 tar-
geted agents with ICI have shown promising results in 
patients with advanced PDL1-positive disease and there 
is growing interest in utilizing these treatments for this 
breast cancer subtype [18, 19]. Since PD-L1 assays iden-
tify a single immune checkpoint pathway, further char-
acterization of the state of immune cells in the TME at 
different stages of disease both by bulk gene expression 
profiling and spatial analysis could allow us to identify 
mechanisms of tumor immune escape and other poten-
tial therapeutic targets [20].This could help determine 
the optimal combinations as well as the stage and line of 
treatment in which immunotherapy is most effective.

In this study we utilized bulk tissue gene expression 
profiling [21] and digital spatial profiling (DSP) of pro-
teins to characterized the TME of HER2+ primary and 
metastatic tumors from multiple patients and tissue 
regions to understand changes in immune contexture as 
tumors evolve after metastatic migration during therapy.

Materials and methods
Patients and samples
Samples of patients with HER2+ breast cancer between 
2001 and 2019 were analyzed by the Georgetown Uni-
versity Histopathology Tissue Shared Resource and 15 
formalin fixed paraffin embedded (FFPE) samples were 
selected for this study. Deidentified archival samples 
were selected through Georgetown University Hospital 

Institutional Review Board (IRB) approved protocols 
(1992-048, 2007-345 and Pro00000007).

Samples included 15 specimens from eight patients. 
Histopathology of the specimens was obtained from the 
original pathology reports as were results of estrogen 
receptor (ER), progesterone receptor (PR), and HER2 
status.

RNA extraction and gene expression profiling
RNA was extracted from one slide of unstained FFPE 
tissue and macro-dissection to remove non-tumor was 
performed based on a sequential hematoxylin and eosin 
(H&E) staining. Approximately 50-200  ng of RNA was 
run on NanoString’s nCounter PanCancer IO 360™ assay 
(IO360) containing 770 genes with an additional 28-gene 
PAM50 spike-in. Genes were normalized using a combi-
nation of geometric means of housekeeping (HK) gene 
expression and an IO360 panel standard run on the same 
cartridge. IO360 signatures were calculated as previously 
described [22, 23].Calculation of the PAM50 subtypes 
and Tumor Inflammation Signature (TIS) scores were 
done as previously described [22, 23]. TIS status was 
binned into high and low categories based on the geo-
metric mean of the cohort (low < TIS score 6.5 < high). 
Genes were normalized using a ratio of the expression 
value to the geometric mean of all HK genes on the panel.

GeoMx digital spatial profiling
FFPE tissue from eight patients were profiled using 
GeoMx DSP as previously described [24]. An H&E slide 
was used to guide identification of tumor regions to 
select regions of interest (ROIs). Immunofluorescent vis-
ualization marker for Pan-Cytokeratin (PanCK, tumor), 
CD45 (immune) and CD3 (T cells) were used to guide 
selection of hot (highly infiltrated tumor regions), warm 
(partially infiltrated tumor regions) and cold (regions 
with low infiltration) ROIs. Each ROI was segmented for 
tumor (PanCK +) or stroma (PanCK-) areas of illumina-
tion (AOIs). For each AOI, 70 protein targets including 
housekeeping proteins and isotype controls from the fol-
lowing cores and modules [(v1.0) Human Immune Cell 
Profiling Protein Core, (v0.9) Human Cell Death Pro-
tein, (v1.0) Human Immune Activation Status Protein, 
(v1.0) Human IO Drug Target Protein, (v1.0) Human 
Pan-Tumor Protein, (v0.9) Human PI3K/AKT Signaling 
Protein, NanoString Technologies] were measured Addi-
tional file 1: Table S1. The signal-to-noise ratio for each 
of the targets included is shown in Additional file 1: Fig-
ure S1. Protein data were scaled to area and normalized 
using two housekeeping proteins (S6, Histone H3) using 
GeoMx DSP Analysis version 2.2.0.64.
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Statistical analysis
Gene expression
Differential gene expression (nCounter) is fit on a per 
gene or per signature basis using a linear mixed model 
for analyses with subject as a blocking factor to account 
for the temporal effects in the model. The statistical 
model uses the expression value or signature score as the 
dependent variable and fits a grouping variable as a fixed 
effect to test for differences in the levels of that group-
ing variable. The duplicate Correlation function within 
the limma [25] R package is used to assess the correlation 
between subsequent time points. This correlation esti-
mate is fit into the linear mixed effect model with sub-
ject as the random effect and the correlation between the 
repeated temporal measurements.

P-values are adjusted within each analysis, gene or 
signature, and on the grouping variable level difference 
t-test using the Benjamini and Yekutieli False Discov-
ery Rate (FDR) adjustment to account for correlations 
amongst the tests (FDR of 5%). All gene expression mod-
els are fit using the limma package in R [25].

GeoMx digital spatial profiling
For the GeoMx DSP protein data, hierarchical clus-
tering analyses were performed to look for broad pat-
terns within and between subjects based on TIS status, 
PAM50 subtype, timepoint (primary or metastatic), ROI 
type (immune cold, warm, hot), and AOI type (tumor, 
PanCK + ; stroma, PanCK-). For hierarchical clustering, 
the HK protein-based normalized expression values were 
first log2 transformed and the resulting values were then 
centered and scaled. The Z-scores for each protein were 
then used as input to the hierarchical clustering in the R 
package pheatmap [26].

Differential expression analyses for DSP data were used 
to look for specific protein differences between three dif-
ferent groupings: (1) Primary vs metastatic tumor, (2) 
Breast vs brain tumors, and (3) timepoint (three differ-
ent samples of a single patient). To account for multiple 
observations (i.e., ROIs) within a given patient, a linear 
mixed effects model was used in the R package lmerT-
est [27]. Specifically, the log2 transformed normalized 
expression values for a given protein were used as the 
dependent variable and a single fixed effect was used 
(e.g., primary vs metastatic; 2 levels). Patient ID was 
used as the random effect (with random intercept). For 
each resulting model (1 model for each of the 64 proteins 
-plus housekeeping proteins and isotype controls-), the 
degrees of freedom were estimated using Satterthwaite’s 
method [27].To account for multiple hypothesis testing 
(i.e., 64 hypotheses), raw P-values were adjusted based 
on an FDR level of 0.05 using the Benjamini-Hochberg 

(BH) procedure [28]. This procedure was done for the 
primary vs metastatic tissue comparison and for the nar-
rower breast vs brain comparisons—both of which had 
two levels. To compare time series data, a single model 
for each protein was used with timepoint as a single fixed 
effect with three levels: Primary 1, Primary 2, and Meta-
static. As before, Patient ID was used as a random effect 
to account for multiple observations within a subject. For 
each model, the three pairwise log2 fold changes were 
derived using the marginal means method (i.e., “least 
squared means”) in lmerTest. BH P-value adjustment for 
time series data was performed for a given pairwise con-
trast (e.g., Primary 1 vs Primary 2).

Boxplots were used to better visualize the protein 
expression for a given patient across time using the R 
package ggplot2 [29]. This was done for 2-time point and 
3-time point data (Table 1).

Results
Study cohort
Fifteen specimens from eight patients were analyzed, 
including 10 primary breast tumors, two soft tissue 
tumors, two brain metastases and one lung metasta-
sis. Eight patients were receiving cancer-directed thera-
pies (details in Table  1 and Additional file  1: Figures  S2 
and S3) at the time of the sample collection while seven 
were not. Two of the patients had three matching time-
points, three patients had two matching timepoints. 
Finally, three patients had a single time point each which 
included two patients with brain metastases. Additional 
patient and sample characteristics are summarized on 
Table 1.

Primary versus metastatic tumors
We compared all primary breast cancer tumors to each 
metastatic tissue to look at differential expression of 
genes and protein by sample and tissue type. We exam-
ined gene expression, IO360 signatures, TIS status (which 
measures a periphery suppressed anti-tumor immune 
response) and PAM50 subtypes from bulk tumor tissue 
(Fig. 1a).

Metastatic disease and primary samples clustered sep-
arately based on IO360 signatures, with 8/10 primary 
tumors having high TIS score status (Fig.  1a, Table  1). 
The B cell abundance signature was significantly higher 
in the primary compared to metastatic tumors (Fig. 1B). 
Several lymphocyte-related signatures trended toward 
having higher expression in primary tumors includ-
ing TIGIT, CTLA4, T cells, CD8 T cells, PD1, cytotoxic 
cells, lymphoid cells, TH1, natural killer cells, cytotoxic-
ity, TIS, exhausted CD8, PD-L2, and B7-H3, but did not 
reach statistical significance with an adjusted p-value 
(Fig.  1B, Additional file  1: Table  S2). Individual genes 
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associated with immune activation and trafficking were 
significantly higher (adjusted p-value < 0.05) in primary 
tumors, including CD79A, CXCL12, CD28, and, SFRP4 
(Fig.  1C, Additional file  1: Table  S3). When examining 
the 18 individual genes in TIS, there was clustering of the 
metastatic tissue from brain having the lowest expres-
sion of all genes (Fig. 1D). There was also a significantly 
higher expression of immune signatures including B cells, 
exhausted CD8, TIGIT, T cells, T regulatory, lymphoid, 
stroma, CTLA4, CD8 T cells, cytotoxic cells, TGF-beta, 
mast cells, cytotoxicity, TIS, and B7H3 in primary tumors 
compared to brain metastases (Fig. 1E, Additional file 1: 
Table S4).

We then looked for differences between primary and 
metastatic lesions by spatially profiling ROIs of varying 
immune infiltrate (i.e., cold, warm, hot) in tumor rich 
(PanCK +) and stromal (PanCK−) compartments. A 
schematic of the DSP experimental design is shown in 
Fig.  2A. When combining tumor and stroma compart-
ments to look at immune hot, warm and cold regions by 
primary and metastatic status and sample tissue location, 
breast, lung, brain and soft tissue we saw higher expres-
sion of immune-related protein in primary tumors. Espe-
cially for tumor infiltrating lymphocytes (CD3, CD8) 
relative to any other metastatic tissue (Fig.  2B). Hot, 
warm and cold ROIs from each of the patients revealed 
varied immune infiltration in the cohort. Primary tumors 

had the highest number of immune cells and the meta-
static site the lowest (Fig.  2B; Primary and metastatic 
ROIs collapsed via geometric mean; CD3: Wilcox test 
W = 30, P < 0.004; CD8: Wilcox test W = 29, P < 0.009).

Figure 2C shows principle components analysis of the 
30 proteins with the highest coefficient of variation fac-
eted by primary vs metastatic site, ROI immune status 
(cold, warm and hot) and AOI type (PanCK + or −). In 
ROIs of each immune type tumor AOIs cluster separately 
from metastatic samples despite tissue type. Interest-
ingly, in immune hot ROIs primary breast samples not 
only cluster separately from metastatic samples they also 
have clear differences in protein expression in the stromal 
(PanCK-) and tumor (PanCK +) segments.

Both tumor and stroma regions of primary tumors had 
higher expression of immune activation and checkpoint 
markers—including Tim-3, CD27 and 4-1BB—compared 
to metastases located in all tissues (Fig.  2D). Metastatic 
tumors had higher expression of HER2 and prolifera-
tive marker Ki-67. We also found that B cell related pro-
teins (CD20, BAD, BCL-2, CD27, BIM) were most highly 
expressed in the stromal compartments (Fig.  2E) while 
expression of lymphocyte-related markers (CD3, CD8, 
CD4, Tim-3) were elevated in tumor compartments 
(Fig. 2F, Additional file 1: Table S5).

We assessed the TIS for each sample. Nine of our sam-
ples had high TIS (> 6.5) and six had low TIS (< 6.5). One 

Table 1  Summary of patient and tumor characteristics

DCIS: ductal carcinoma in situ; DCIS: ductal carcinoma in situ; ER: estrogen receptor; HER2: human epidermal growth factor 2; IDC: invasive ductal carcinoma; IDC: 
invasive ductal carcinoma; PR: progesterone receptor; TDM1: ado-trastuzumab emtansine; TIS: tumor inflammation score
* Neoadjuvant therapy in the ISPY2 clinical trial
** HER2/CEP17 ratio: 2.13 (amplified by FISH)

Patient Tissue Diagnosis ER(%)/
PR(%)/
HER2( +)

PAM50 Subtype TIS Status Treatment at the time of sample collection

1 Breast IDC, DCIS 2/0/3 Luminal A High Gemcitabine and trastuzumab

1 Breast Tumor emboli N/A Luminal A High Nab-paclitaxel and trastuzumab

1 Lung Metastatic 0/0/3 HER2 enriched High Nab-paclitaxel and trastuzumab

2 Breast ICD, DCIS 0/0/3 HER2 enriched Low None. Initial diagnosis

2 Breast Residual IDC 0/0/N/A HER2 enriched High TDM1, pertuzumab, doxorubicin and cyclophosphamide*

2 Soft tissue Local recurrence 0/0/3 HER2 enriched Low Trastuzumab and pertuzumab

3 Brain Metastatic 15/0/3 HER2 enriched Low None. Discontinued due to toxicities

4 Breast IDC 0/0/3 Basal like High None. Initial diagnosis

4 Breast Local recurrence N/A Luminal A High Doxorubicin, cyclophosphamide, paclitaxel and trastuzumab

5 Brain Metastatic 0/0/3 Basal like Low TDM1 and anastrozole

6 Breast IDC, DCIS 80/70/2** Luminal A High None. Initial diagnosis

7 Breast IDC, DCIS 0/0/3 HER2 enriched High None. Initial diagnosis

7 Breast Local recurrence N/A Basal like High None. Completed neoadjuvant and adjuvant therapy

8 Breast IDC, DCIS 10/15/1 Luminal A Low None. Initial diagnosis

8 Soft tissue Local recurrence 0/0/3 Basal like Low Nab-paclitaxel and atezolizumab (previously had triple negative 
disease)
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Fig. 1  IO360 gene expression analysis of primary and metastatic lesions. A Unsupervised hierarchical clustering of IO360 signatures for each 
sample. B Differential expression of IO360 signatures comparing primary breast and metastatic samples. C Differential expression of IO360 genes 
comparing primary breast and metastatic samples. D Unsupervised hierarchical clustering of the 18 TIS genes. E Differential expression of IO360 
genes comparing primary breast and brain metastases. For B,C,E vertical dotted lines represent a onefold log change and the horizontal line 
marks an unadjusted p-value of p < 0.05. Dots in grey are not significant, dots in blue have an unadjusted p-value of < 0.05 and dots in red have an 
unadjusted p-value of < 0.05
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patient (patient 2) had discordant TIS, meaning that 
the primary tumor and soft tissue recurrence had low 
TIS status and the residual disease had high TIS status 
(Table  1). Finally, we assessed the four intrinsic PAM50 
subtypes: Luminal A, Luminal B, HER2-enriched (HER2-
E) or basal-like [30, 31] and identified six (40%) HER2-E, 
five (33%) Luminal A, and four (27%) basal like tumors 
in our cohort, no Luminal B tumors were identified 
(Table1). Four out of five patients with paired samples 
had discordant PAM50 subtypes between primary and 
metastatic tumors (Table  1). Then we analyzed gene 
signatures for each of the PAM50 subtypes within our 
cohort (Additional file 1: Figure S4) showing HER2E sub-
types had higher proliferation and ERBB2 compared to 
Luminal A (adjusted p = 0.0004 and 0.017, respectively). 
The Luminal A tumors had higher expression of TH1 
cells, PD1, dendritic cells, stroma, IL10 (Additional file 1: 
Figure S4). There was a trend towards higher expression 
of CD8 T cells, endothelial cells, T cells, inflammatory 
chemokines, natural killer CD56 dim, B-cells, NOS2, and 
TGF-beta signatures in Luminal A tumors. There were 
not statistically significant differences between HER2-E 
and Basal like tumors (Additional file 1: Figure S4).

Paired samples
Three patients in our cohort had samples from two time-
points (Table  1; Additional file  1: Figure S3). Patient 4 
was diagnosed with HER2+ early breast cancer (initial 
sample), received neoadjuvant chemotherapy and HER2-
targeted therapy and then was found to have residual 
disease (second sample). Patient 7 was diagnosed with 
early stage breast cancer (initial sample), received neoad-
juvant chemotherapy and HER2-targeted therapy which 
was followed by surgery and trastuzumab and two years 
after the completion of these therapy she developed a 
local recurrence (second sample). Patient 8 was diag-
nosed with a left breast HER2+ breast cancer (initial 
sample) and after 13 years she was diagnosed with a left 
breast TNBC for which she received neoadjuvant chemo-
therapy followed by surgery and adjuvant capecitabine. 
Two years later, she developed a TNBC local recurrence 
(second sample). There were differences in the expression 

of immune protein in these samples, patient 4 and 7 had 
a more similar history and we saw an increase in Bcl-2, 
CD20, LAG3, MET (PanCK-), PTEN, AKT (PanCK−) 
after therapy, the protein expression of patient 8 is differ-
ent however this patient was heavily pretreated and the 
samples are over 15 years apart and the tumor was TNBC 
(Additional file 1: Figure S3).

Two of the patients analyzed in this study had speci-
mens from three timepoints, biopsy from primary tumor, 
residual disease after neoadjuvant chemotherapy, and 
later advanced metastatic disease (Additional file 1: Fig-
ure S2). We performed a matched analysis to identify 
changes in the TME after therapy and after undergoing 
metastatic migration.

Patient 1—Six years after her initial diagnosis of 
HER2+ left breast cancer and after developing a chest 
wall recurrence for which she was receiving gemcit-
abine and trastuzumab, the patient was found to have 
a right breast mass. A biopsy revealed HER2+ invasive 
ductal carcinoma and this was the initial biopsy ana-
lyzed in our study (Fig.  3A, subpanels a–c). She then 
received nab-paclitaxel and trastuzumab and under-
went a mastectomy that revealed residual disease 
(second biopsy; Table  1, Fig.  3A, subpanels d–f ). Two 
years later, she developed metastatic disease to the lung 
(third sample; Table 1, Fig. 3A, subpanels g–i). Expres-
sion of immune related proteins clustered by timepoint 
with the lung metastases having lower overall expres-
sion compared to both the primary and recurrent pri-
mary samples (Fig. 3A, B).

Immune marker expression was highest in the stromal 
compartment of the residual disease timepoint suggest-
ing that treatment may have increased immune activ-
ity in the TME. We also observed increased expression 
of B7-H3, Bcl-2, CTLA4, LAG3, Tim-3, PD1, PDL1 and 
STING in the second sample compared with the first 
sample (and some differences appear contingent upon 
the tumor or stroma compartment; Fig. 3C).

Patient 2—the first biopsy was collected at diagnosis 
with early stage HER2+ breast cancer (Fig. 4A, subpan-
els a–c). She then received neoadjuvant therapy with 
ado-trastuzumab emtansine and pertuzumab followed 

Fig. 2  Digital spatial profiling of primary and metastatic tumors. A Visualization markers for Pan-Cytokeratin (PanCK, tumor—green), CD45 (total 
immune—red) and CD3 (T cells—yellow). Each ROI segmented tumor (PanCK +) or stroma (PanCK-) areas of illumination (AOI). Scale bar (white) 
is 250 microns. B Normalized Protein expression of CD3 and CD8 in primary and each metastatic site (lung, brain and soft tissue). C Principle 
components analysis of the 30 proteins with the highest coefficient of variation faceted by primary vs metastatic site and immune status (cold, 
warm and hot). D Differential expression of proteins from all ROI types and segments comparing primary breast and all metastatic. E Differential 
expression of proteins from all ROI types from the PanCK negative stromal segments comparing primary breast and all metastatic. F Differential 
expression of proteins from all ROI types from the PanCK positive tumor segments comparing primary breast and all metastatic. For D-F vertical 
dotted lines represent a onefold log2 change and the horizontal line marks an unadjusted p-value of p < 0.05. Dots in grey are not significant, dots 
in blue have an unadjusted p-value of < 0.05 and dots in red have an adjusted p-value of < 0.05

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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by doxorubicin and cyclophosphamide prior to bilat-
eral mastectomies when residual disease was detected 
and the second sample was collected (Fig. 4A, subpan-
els d–f ). She then received adjuvant radiation as well 
as trastuzumab and pertuzumab but two years later 
was found to have a soft tissue chest wall recurrence 
(third sample; Table 1, Fig. 4A subpanels g–i). Interest-
ingly, for patient 2 the primary time point we observed 
generally higher overall immune protein expression 
compared to both the residual and metastatic samples, 
suggesting reduction in presence of immune cells after 
neoadjuvant chemotherapy (Fig. 4B). This was particu-
larly striking when looking at specific checkpoint mark-
ers in her specific case. Indeed, there was a decrease in 
the expression of B7-H3, Bcl-2, CTLA4, LAG3, PD1, 
PDL1 in the second sample (residual disease) and then 
these increased at recurrence, close to the levels noted 
at the time of the diagnosis (Fig. 4C).

Brain metastases
After observing the significant differences in immune-
related gene expression from primary disease and 
brain metastases (Fig.  1C, D), we examined total and 
tumor/stroma compartment protein expression using 
DSP (Fig.  5A). Similar to the gene expression results, 
we found that total immune infiltration (CD8, CD4, 
CD45), cytotoxicity (GRZMA, GZMB), T cell acti-
vation (CTLA4, GITR, TIM3, CD25, LAG3, CD27, 
OX40L, PD-L1, PD1, PD-L2) and antigen present-
ing cell activation presence (CD11c, HLA-DR, CD80, 
CD40) were significantly lower in brain metastases 
compared to primary tumors in all compartments 
and ROI types (Fig.  5A, B). Interestingly we found 
in the immune hot ROIs that protein expression and 
immune cell presence was drastically different between 
the tumor and stroma compartments for primary and 
brain metastases. The tumor compartment of primary 
samples had significantly higher expression of immune 
cell markers CD45, CD8, ARG1, GZMB, BIM, BCL2, 
showing brain metastases have very few immune cells 
infiltrating in the tumor epithelium (Fig.  5C). In con-
trast, when we examined the stromal compartment of 
immune hot ROIs, expression of overall immune mark-
ers (CD3, CD8) did not reach significance, suggesting 
there are immune cells in the stroma of primary and 
brain metastases are similar but that they are not able 

to infiltrate the brain metastasis tumor epithelium 
(Fig. 5D). The stromal compartment of primary tumors 
did have higher expression of lymphocyte activation 
markers (CD27, GITR, CD25, cytotoxicity (GRMA, 
GRMB), B cell markers (BIM, BCL2) and checkpoint 
molecules (PDL2, PDL1, CTLA4) (Additional file  1: 
Table SVI).

Discussion
In this study we described the TME and gene expres-
sion profiling of 15 HER2+ breast tumors. We observed 
that primary samples had higher immune cells relative to 
metastatic sites. Primary breast tumor samples also had 
higher expression of immune activation and checkpoint 
markers when compared with metastatic samples. These 
findings suggest that metastatic tumors are less immu-
nogenic than primary breast cancers and could explain 
the limited efficacy of ICIs in metastatic HER2+ breast 
cancer [18, 19, 32]. Similar findings have been described 
in TNBC in which primary tumors tend to have higher 
numbers of immune cells [12, 14].

Metastatic tumors had lower expression of immu-
notherapy response predictive signatures, relative to 
primary tumors. Figure  1E shows the immune protein 
expression of the 15 samples and the metastatic sites had 
lower expression of these markers, suggesting that the 
primary tumors are more immunogenic than the meta-
static ones. When looking at gene expression profiling 
in this cohort, primary tumors had greater B cell abun-
dance. However, the protein profiling provides additional 
spatial context. Namely, B cells were increased in stroma 
and not in tumor compartments. This suggests a possible 
role of tertiary lymphoid tissue formation and not B-cell 
TILs. The role of tertiary lymphoid tissue in the progno-
sis of solid tumors remains controversial [33]. These find-
ings underscore the importance of DSP in understanding 
not only the cell signatures present in the tumor but also 
their location as their function and prognostic signifi-
cance may variate in different settings.

Our cohort was unique in that we had paired samples 
of five patients. When we analyzed the samples of the 
three patients with two timepoints and their treatment 
history, patients 4 and 7 had a somewhat similar clinical 
presentation. Patient 8 had a HER2+ and an early TNBC 
and years later developed a triple negative local recur-
rence. When analyzing protein expression of immune 

(See figure on next page.)
Fig. 3  Analysis of primary, residual breast tumor and metastatic of patient 1. A Shows immune cold, warm and hot regions of interest for the three 
timepoints for patient 1 at primary, residual breast tumor and metastatic stages. Pan-cytokeratin is stained in green, CD45 in red and CD3 in yellow. 
B Unsupervised hierarchical clustering showing differences in protein expression profiling for each timepoint for patient 1. C Longitudinal plots 
showing log2 normalized protein expression for B7-H3, Bcl-2, CTLA4, LAG2, Tim3, PD1, PD-L1 and STING. The red boxplots with circles are PanCK− 
and blue boxplots with triangles are PanCK+ segment
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markers, we found similar patterns for patients 4 and 7 
with an increase in expression Bcl-2, CD20, LAG3, MET 
(PanCK-), PTEN, AKT (PanCK-) after therapy (Addi-
tional file  1: Figure S3). We found that metastatic sam-
ples had lower numbers of immune cells and immune 
activation markers than primary tumors. It is possible 
that patients 4 and 7 had an increase in activation mark-
ers as an effect of therapy. The protein expression analysis 
of patient 8 is different, however this patient was heav-
ily pretreated and the samples are over 15  years apart 
and different subtypes. The HER2+ sample had higher 
expression of several immune markers relative to the 
TNBC sample, including CD20, CTLA4, MET, Tim3 and 
AKT.

Patients 1 and 2 had three timepoints. Figures 3A and 
4A illustrate the higher levels of immune cells noted in 
the primary tumor when compared to metastatic sites 
in patients 1 and 2. Although the patients were receiv-
ing different therapies these findings were consistent. 
Similar findings have been reported in TNBC, primary 
triple negative tumors have shown to have high numbers 
of immune cells, such as CD8 and naïve CD4 [12]. The 
protein expression analysis for patient 1 revealed higher 
expression of potentially targetable immune markers 
after the initial therapy (Timepoint 2), similar to what 
we saw with patients 4 and 7. However the markers were 
lower in the metastatic sample (Timepoint 3), suggesting 
that decreased expression of immune markers allows for 
immune escape of the cancer cells into distant organs, 
such as the lungs. This pattern was not seen in patient 
2 who had soft tissue chest wall metastases. Figures  3C 
and 4C illustrate the variable expression of potentially 
targetable immune related markers in the different time-
points for patients 1 and 2.

DSP allows for a comprehensive analysis of protein 
expression by which we were able to assess immune 
markers that have been proposed as markers of response 
to ICI, such as PD-L1, and other potential therapeu-
tic markers, such as B7H3 or LAG3. Larger studies are 
needed to determine if this technology can be used to 
guide treatment decisions in the future with the goal to 
provide individualized care to our patients.

The breast cancer intrinsic subtypes have shown to 
provide prognostic [34] and predictive [35] information 
in breast cancer. There is growing interest to understand 
the role of these subtypes in clinical practice. In this study 

we analyzed PAM50 for breast cancer subtypes, 40% of 
the patients had HER2-E tumors, 33% Luminal A and 
27% Basal like. HER2-E tumors had higher expression of 
the ERBB2 and proliferation subtypes, while Luminal A 
tumors had higher expression of immune activation and 
checkpoint markers. Suggesting that these tumors may 
benefit from ICI but further confirmatory investigation is 
needed.

ICIs have shown central nervous system penetration 
in lung cancer [34, 35] and melanoma [36, 37] however, 
patients with unstable and untreated breast cancer brain 
metastases have not been included in ICI breast cancer 
studies [15, 16]. Our cohort included two HER2+ brain 
metastases samples. These samples had the lowest num-
bers of immune cells and a low TIS. It is difficult to 
determine if the use of systemic therapy had an impact 
in the TME and gene expression profiling of these sam-
ples. Further studies are needed to determine the optimal 
combination of treatment for HER2+ breast cancer brain 
metastases and if there is a role for ICIs in this setting.

Several studies have shown efficacy of the combina-
tion of ICI with HER2-targeted agents in PD-L1 posi-
tive HER2+ breast cancer [18, 19, 40]. Multiple trials 
are ongoing to determine the role of PD-1 and PD-L1 
blockers in HER2+ breast cancer. There is also growing 
interest in studying other potential targets in breast can-
cer. Examples of immune targets under investigation for 
the treatment of specific breast cancer subtypes include 
B7-H3, LAG3 and CTLA4; there is also interest in assess-
ing the role of Bcl-2 inhibition in selected patients with 
breast cancer. We describe variations in expression of 
these proteins in paired samples suggesting that there 
may be a role for protein expression testing at different 
stages of the disease to guide therapy which could allow 
us to provide personalized care for our patients [41].

Limitations of this study include the small sample 
size, which restricts the correlation between the tumor 
immune characteristics, treatment, and outcomes. Even 
though our study is small the strength is the paired sam-
ples. Also, we will contribute our data to the GeoMx 
Breast Cancer Consortium for a meta-analysis with other 
investigators examining primary and metastatic breast 
cancer to increase the data set. Another limitation is 
that the ROI selection might not capture the heteroge-
neity of the entire tissue. We chose to look at DSP with 
proteins, other analyses can be done using in  situ RNA 

Fig. 4  Analysis of primary, residual breast tumor and metastatic samples of patient 2. A Shows immune cold, warm and hot regions of interest for 
the three timepoints for patient 2 at primary, residual breast tumor and metastatic stages. Pan-cytokeratin is stained in green, CD45 in red and CD3 
in yellow. B Unsupervised hierarchical clustering showing differences in protein expression profiling for each timepoint for patient 2. C Longitudinal 
plots showing log2 normalized protein expression for B7-H3, Bcl-2, CTLA4, LAG2, Tim3, PD1, PD-L1 and STING. The red boxplots with circles are 
PanCK− and blue boxplots with triangles are PanCK+ segment

(See figure on next page.)
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examination of up to 18,000 genes using DSP, which gives 
spatially resolved information on signaling pathways as 
opposed to the bulk gene expression presented in this 
paper.

This study underscores the importance of spatial reso-
lution of the tumor or stroma within the TME to see dis-
tinct differences in immune activation markers. A better 
understanding of the TME and gene expression profiling 
of HER2+ breast cancer will allow us to tailor the treat-
ment of patients to continue to improve outcomes.
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