
Ni et al. J Transl Med          (2021) 19:441  
https://doi.org/10.1186/s12967-021-03101-z

REVIEW

The recruitment mechanisms and potential 
therapeutic targets of podocytes from parietal 
epithelial cells
Lihua Ni1, Cheng Yuan2* and Xiaoyan Wu1*   

Abstract 

Podocytes are differentiated postmitotic cells which cannot be replaced after podocyte injury. The mechanism of 
podocyte repopulation after injury has aroused wide concern. Parietal epithelial cells (PECs) are heterogeneous and 
only a specific subpopulation of PECs has the capacity to replace podocytes. Major progress has been achieved in 
recent years regarding the role and function of a subset of PECs which could transdifferentiate toward podocytes. 
Additionally, several factors, such as Notch, Wnt/ß-catenin, Wilms’ tumor-1, miR-193a and growth arrest-specific pro-
tein 1, have been shown to be involved in these processes. Finally, PECs serve as a potential therapeutic target in the 
conditions of podocyte loss. In this review, we discuss the latest observations and concepts about the recruitment of 
podocytes from PECs in glomerular diseases as well as newly identified mechanisms and the most recent treatments 
for this process.
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Podocytes are terminally differentiated cells and gener-
ally do not replicate, presenting a major obstacle to their 
restoration [1–4]. Replacing lost podocytes is a therapeu-
tic opportunity to limit and reverse glomerular scarring 
and proteinuria. Previous studies have demonstrated 
that some glomerular parietal epithelial cells (PECs) act 
as progenitors of podocytes in healthy glomeruli and fol-
low a decreased number of podocytes under healthy and 
disease conditions [5]. Romagnani’s group was the first 
to characterize progenitor cells of the Bowman’s cap-
sule, providing novel insight into glomerular physiology 
[6–8]. In Bowman’s capsule, they isolated and charac-
terized CD24+CD133+ PECs as multipotent progenitor 
cells. These cells could be triggered to generate mature 
and functional tubular cells in human. Several signaling 

pathways regulate PEC proliferation and differentiation 
toward podocytes [9]. In this review, we summarize the 
current progress about the roles and functions, involved 
mechanisms and potential therapeutic targets for podo-
cyte recruitment from PECs.

Introduction of podocyte injury
Podocytes maintain the glomerular filtration barrier. 
Podocyte injury causes proteinuria and terminally glo-
merulosclerosis. The critical factor preventing podo-
cyte injury may be the lack of regenerative capacity in 
podocytes.

Some podocyte progenitors were activated in the 
human Bowman capsule after podocyte injury (Fig.  1). 
PECs are the well known source for podocyte progeni-
tors. Besides, the cell of renin lineage (CoRL) is a new-
found candidate for the podocyte progenitor.

A current study [10] suggests the CoRL transdiffer-
entiate to podocytes in acute FSGS, 5/6 nephrectomy-
induced chronic kidney disease, and uninephrectomy 
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models. However, only podocyte loss, rather than a 
decrease in nephron mass, triggers CoRL of juxtaglomer-
ular origin to move to the injury site.

Interestingly, the podocyte depletion paradigm have 
raised concerns these years. Puelles et  al. [11] collected 
kidneys at autopsy from Caucasian American adults, and 

Fig. 1  Schema representing the fate of PECs and cells of renin lineage as podocyte progenitors. Both of them could acquire podocyte-like qualities. 
PECs: parietal epithelial cells
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they suggested that older age and hypertension are asso-
ciated with podocyte depletion, which is more obviously 
when both older age and hypertension are present.

Above all, podocyte injury was a complex outcome for 
defending cell death under different pathological condi-
tions. These postmitotic cells has limited capacity for 
regeneration. PECs and CoRL were candidates for the 
podocyte progenitor after podocyte injury.

Introduction of PECs
PECs in glomerular development
PECs emerge late during nephrogenesis. Presumptive 
PECs and podocytes share a common phenotype until 
the S-shaped body stage after the mesenchymal to epi-
thelial differentiation. Between the late S-shaped body 
and capillary loop stage, some PECs constitute Bowman’s 
capsule. The others upregulate podocyte-specific genes, 
gradually differentiating into podocytes in mouse [5]. 
Once PECs differentiate into podocytes, they lose their 
ability to proliferate and amplify [5].

The function of PECs
PECs serve important roles in the process of replacing 
injured podocytes. PECs and podocytes derived from 
the common mesenchymal progenitors and ultimately 
develop different phenotypes during glomerulogenesis 
[12]. Studies have identified CD133+CD24+ cells located 
in Bowman’s capsule that were capable of podocyte and 
tubular differentiation in  vitro [6, 8]. Some PECs coex-
press proteins unique to both podocytes and PECs [13–
16]. Lasagni et al. demonstrated that PEC differentiation 
into podocytes can be enhanced by the glycogen synthase 
kinases 3-α and 3-β (GSK3) inhibitor BIO (6-bromo-
indirubin-3’-oxime) both in  vivo and in  vitro. Further-
more, BIO could increase retinoic acid (RA) binding to 
its specific RA response elements (RARE) and strengthen 
PEC sensitivity to the differentiation effect of endoge-
nously produced RA.

PECs show hierarchical differentiation based on their 
location. At urinary pole, PECs express CD133 and 
CD24 without podocyte markers (nestin, complement 
receptor-1, and podocalyxin), which were defined as 
CD133+CD24+PDX− PECs; In the same way, they were 
defined as CD133−CD24−PDX+ PECs in the vascular 

pole and CD133+CD24+PDX+ PECs in the rest of regions 
[8]; In the case of progressive podocyte depletion, PECs 
begin to express podocyte proteins, including those 
related to focal segmental glomerular sclerosis (FSGS), 
aging nephropathy, and membranous nephropathy [13, 
14]. PECs expressing CD133 and CD24 can alleviate 
renal damage by promoting tubular regeneration and 
podocyte substitution. They can also induce glomerular 
injury, such as crescent formation and glomerulosclerosis 
[17, 18]. Several studies have shown that the invasion of 
activated PECs contribute to FSGS [19]. Adhesion of the 
glomerular tuft to Bowman’s capsule occurs in the early 
stage of FSGS development, serving as a bridge for PEC 
migration [20]. Hence, detecting activated PECs could be 
an auxiliary diagnostic method for early FSGS.

Studies have shown that PECs play an important role 
during normal glomerular development and normal 
function under healthy and disease conditions [9, 21]. 
First, PECs are progenitors of podocytes. Second, the 
intracellular tight junctions of PECs can restrict glomeru-
lar filtrate to the urinary space. Third, PECs can possibly 
synthesize and repair the basement membrane of Bow-
man’s capsule [21].

Although PECs are important for health and disease, 
in some disease states, the reaction of PECs directly 
contributes to the deterioration of glomerular function. 
On the one hand, the abnormal proliferation of PECs 
could lead to crescentic glomerulonephritis and col-
lapsing glomerulopathy. Proliferation of PECs leads to a 
substantial increase in cell number within crescents in 
murine nephrotoxic serum nephritis and collapsing glo-
merulopathy [17]. On the other hand, PECs are involved 
in glomerular scarring [22]. It is currently believed that 
extracellular matrix accumulation likely arises from acti-
vated PECs, and podocyte injury is the mechanism of 
segmental scarring in FSGS [23, 24]. The functions of 
PECs are summarized in Table 1.

PECs can transdifferentiate toward podocytes
Under physiological conditions
In juveniles, PECs can migrate to the vascular pole and 
differentiate into mature podocytes. Appel et al. [25] gen-
erated triple-transgenic juvenile mice that allow irrevers-
ible and specific labeling of PECs through administration 

Table 1  The functions of PECs

Useful functionality Harmful functionality

1. Progenitor function for podocytes 1. Abnormal proliferation leads to crescentic 
glomerulonephritis and collapsing glomeru-
lopathy

2. Intracellular tight junctions restrict glomerular filtrate to urinary space 2. Participate in glomerular scarring

3. Possible synthesis and repair of Bowman’s basement membrane
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of doxycycline for 14 days. They observed that all geneti-
cally labeled cells coexpressed podocyte marker pro-
teins. Wanner et  al. [26] genetically labeled PECs with 
membrane-tagged enhanced green fluorescent protein 
(mG) in inducible hPODXL1.rtTA;tetO-Cre;mT/mG mice 
exposed to doxycycline from embryonic day (E) 8.5 to 
postnatal day (P) 28. Interestingly, mG-labeled podocytes 
were observed in mouse kidney sections after postna-
tal kidney development. Additionally, the PEC-derived 
podocytes were measurable in P1 kidneys.

Interestingly, the number of PEC-derived podo-
cytes gradually increased with age in animals [27]. In 
the mature kidney, PECs can serve as precursor cells 
to differentiate into mature podocytes and supple-
ments to podocyte deletion. PECs can be divided into 
three subtypes according to their location as mentioned 
above. Injection of CD133+CD24+PDX− cells, but not 
CD133−CD24−PDX+ or CD133+CD24+PDX+ cells, into 
mice with Adriamycin-induced nephropathy reduced 
proteinuria and improved chronic glomerular damage 
[8]. Then, Kietzmann et  al. established an immortal-
ized polyclonal human PEC line [28]. These researchers 
observed that human PECs highly expressed PEC-spe-
cific markers but did not express or weakly expressed 
podocyte-specific markers. Using a preclinical model of 
FSGS, Schneider et al. showed that the podocyte density 
was lower in aged mice than in young mice. However, the 
percentage of activated PECs was higher in aged mice 
[27]. Additionally, the percentage of phosphorylated ERK 
(pERK)-stained PECs was highest in aged FSGS mice, 
suggesting that phosphorylated pERK might be a poten-
tial mechanism needing further exploration.

In summary, PECs can migrate to the vascular pole 
and differentiate into mature podocytes in juvenile kid-
neys. Additionally, PECs can serve as precursor cells to 
differentiate into podocytes and supplements to podo-
cyte deletion in mature kidneys. However, is the replace-
ment of podocytes by PECs sufficient in aged kidneys? 
Podocyte numbers were lower in aged mice than young 
mice. The capacity for PEC-to-podocyte transition was 
reduced with aging. This is a multifactorial process, and 
the cell fate of PECs is multivariable and in need of thor-
ough study.

Under pathophysiological conditions
Podocyte injury and deletion, which lead to PEC activa-
tion and matrix secretion, are key factors in glomeru-
lar sclerosis [29–31]. Many glomerular diseases, such 
as FSGS and diabetic nephropathy (DN), are associated 
with podocyte injury.

FSGS is characterized by initial injury to podocytes, 
with secondary activation in the neighboring glomeru-
lar PECs. Smeets et  al. demonstrated the function of 

PEC-producing matrix proteins by utilizing PEC-reporter 
mice, which contribute to the segmental scarring process 
[19]. These researchers demonstrated that PECs were 
activated following primary podocyte injury in mice. The 
extracellular matrix proteins produced by activated PECs 
result in thickening of the Bowman’s basement mem-
brane. Similar observations in human biopsies have also 
been reported [32]. Thus, the mechanisms of segmen-
tal scarring in FSGS may be activated PECs followed by 
podocyte injury.

Glomerular PECs can serve as the progenitor niche 
of podocytes, which involved in the regression of DN 
[9]. Activated PECs are increased in patients with DN, 
especially in advanced stages. Podocyte populations can 
regenerate, which is linked to the regression of DN; con-
current reversal of DN is an attainable goal. PECs could 
be a progenitor cell population for the restoration of 
podocytes in DN [33, 34]. In the late phase of diabetes, 
the endothelium is terrible injured, which might lead to 
leakage of plasma and subsequently induce PECs activa-
tion [9].

Interestingly, the remission of podocyte loss is closely 
related to the differentiation of PECs into podocytes 
[33, 35, 36]. When many podocytes are lost, PECs can 
migrate to the capillary loops, and phenotypic changes 
occur. PECs are activated in the early stage of disease, 
which promotes glomerular sclerosis. During the recov-
ery period, they differentiate into podocytes, replenish 
injured podocytes and promote disease repair.

After podocyte injury, the number of podocyte can 
be partially or completely recovered without podocyte 
proliferation. There are two major candidate progeni-
tor sources for podocyte: PECs and CoRL. Circulating 
and bone marrow derived progenitors seemed to be out 
of this role. Some studies [8, 25] strongly supported that 
some PECs served as podocyte progenitors, while some 
studies [37, 38] suggested a different paradigm. They 
showed that the cells co-expressing PECs and podocytes 
specific markers at the Bowman’s capsule is that they 
originate from migrating cells of podocyte, not PECs. The 
expression of podocyte-specific proteins in PECs could 
be associated with protein degradation [39]. We pro-
pose a model that PECs progenitors mainly located in the 
tubular pole, and CoRL primarily situated in the vascu-
lar pole. However, their functions are not limited by their 
anatomic situations.

Finally, one might be puzzled that whether the replace-
ment of PECs-derived podocytes is sufficient after podo-
cyte loss? Although a subtype of PECs might differentiate 
into podocytes, the magnitude of regeneration may not 
fully replace with the depletion of podocyte [40]. The fact 
that the decreased number of podocyte in disease sug-
gest that the ability of the potential podocyte progenitors 
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to restore podocyte loss is quite restricted. We assumed 
that mechanism of transition are multi-factorial. When 
the podocyte injury is persistent and severe, the regen-
eration is not observed, and the matrix production and 
hyperplastic cellular lesion do occur, which finally lead to 
glomerulosclerosis and FSGS.

Mechanism involved in the transition of PECs 
to podocytes
The mechanisms involved in the process of PEC-to-podo-
cyte transition are partially understood, and observations 
are continually emerging [28, 41]. A better understanding 
of these factors could provide novel horizons for clinical 
therapeutics. We sum up the major signals as follows.

Notch signaling
The Notch receptor family is evolutionarily conserved 
[42, 43]. Upon ligand binding, the Notch receptor initi-
ates a series of proteolytic cleavage events, ultimately 
inducing the synthesis of Notch target genes.

Notch signaling regulates cell differentiation in kid-
ney development [44]. Blockade of Notch signaling sig-
nificantly alleviated PEC hyperplasia in a mouse model 
of FSGS [45]. Additionally, inhibition of Notch signaling 
suppressed the migration and mesenchymal phenotypic 
transition of cultured PECs, indicating that Notch-regu-
lated mesenchymal phenotypic transformation and cell 
migration could replenish podocyte deficiency [46].

The podocyte loss-induced Notch activation in PECs 
requires further research, and TGF-β may be a candidate 
[45]. Properly regulating Notch expression might provide 
a novel strategy for the treatment of renal disease.

Wnt/β‑catenin signaling
Wnt/β-catenin signaling is a widely recognized path-
way that mediates cell proliferation and differentiation, 
inflammation, angiogenesis, tumorigenesis and fibrosis. 
The activity of Wnt/β-catenin is necessary for lineage 
specification during the late stages of nephrogenesis [47, 
48], and the Wnt pathway is activated in injured glomer-
uli. Activated Wnt/β-catenin signaling leads to decreased 
podocyte differentiation markers and increased PEC-
specific markers, whereas β-catenin deletion promotes 
podocyte marker expression [49, 50].

Thus, the Wnt/β-catenin signal is likely involved in the 
transition from PECs to podocytes. The specific mecha-
nisms require further investigation.

Wilms’ tumor 1 (WT1)
Emerging studies have demonstrated that WT1 muta-
tions are associated with complex developmental syn-
dromes involving the kidney [51–53]. As a transcription 
factor, WT1 is required for normal renal development 

[52]. In adults, WT1 expression is extremely high in renal 
podocytes and lower in PECs [54]. WT1 null mice are 
unable to form kidneys [55], and WT1 mutations lead to 
a number of human renal diseases [56, 57].

Upregulated WT1 serves important roles in the differ-
entiation of PECs toward podocytes [58, 59]. In addition, 
WT1 inhibits Wnt/β-catenin signaling [60], which is con-
sidered a prerequisite for the differentiation of PECs to 
podocytes.

MiR‑193a
MicroRNAs are noncoding RNAs that are approximately 
21 nucleotides long and play an important role in RNA 
silencing by regulating mRNA degradation and protein 
translation. MicroRNAs are widely involved in glomeru-
lar disease.

Gebeshuber et  al. [61] suggested that upregulated 
miR-193a in mice decreased WT1 and markers of podo-
cytes, leading to FSGS. Leonie et  al.[28] generated a 
human immortalized PEC line that highly expressed 
PEC-specific markers. Additionally, down-regulating 
the expression of miR-193a in human PECs resulted 
in transdifferentiation toward podocyte, accompanied 
by increased levels of podocyte markers and decreased 
levels of PEC markers. Interestingly, miR-193a is widely 
expressed in human and mouse crescents. Inhibiting the 
expression of miR-193a in a rodent model of nephrotoxic 
nephritis could decreased proteinuria and crescent for-
mation. In addition, a luciferase assay suggested a puta-
tive interaction between miR-193a and apolipoprotein L1 
(APOL1) [62]. APOL1 expression and downregulation 
of miR-193a coincided with the expression of podocyte 
markers during the transition [62], and APOL1 and miR-
193a share a reciprocal feedback relationship.

Thus, miR-193a represents a master switch that modi-
fies the expression of PEC and podocyte markers in vitro 
and might also be relevant in vivo.

Growth arrest‑specific protein 1 (Gas1)
Gas1 is a pleiotropic protein with multi-functions, 
including antiproliferative and proapoptotic activities. In 
kidney, Gas is expressed during nephrogenesis, and its 
expression is regulated by WT1 [63, 64]. Diabetes favors 
a decrease in Gas1 expression and increased progenitor 
cell markers as well as WT1 in Bowman’s capsule cells 
[65]. In addition, Gas1 deficiency in renal injury in the 
early stages of diabetes promotes the activation and pro-
liferation of PECs, and they differentiate into podocytes 
[65]. Hence, Gas1 might be a novel regulator of renal 
regeneration in diabetes.

Above all, the Notch signaling, Wnt/β-catenin signal-
ing, WT1, miR-193 and Gas1 were involved in the transi-
tion of PECs to podocytes. The relationship among these 
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regulators are often neglected, which should be pay great 
attention: (1) β-catenin and WT1. β-catenin and WT1 
are main master regulators which exhibits opposite func-
tions in podocyte injury. Kim and colleague identified a 
gene, CXXC5, as a novel WT1 transcriptional target [66]. 
WT1 negatively controls Wnt/β-catenin pathway via 
CXXC5 in nephrogenesis. As study went deeper, Zhou 
et al. showed that β-catenin could target WT1 for ubiq-
uitin-regulated degradation of protein, and the decreased 
of WT1 further in turn activated β-catenin [67]. The bal-
ance between β-catenin and WT1 could determine the 
state of podocyte. (2) Notch and WT1. Asfahani et  al. 
suggested that loss of WT1 in mature podocytes regu-
lated podocyte Notch activation, which control early 
events in WT1-associated glomerulosclerosis [68]. (3) 
Gas1 and WT1. Gas 1 is expressed in nephrogenesis and 
could be regulated by the transcription factor WT1.

The regeneration of terminally differentiated podocytes 
is a novel frontier. Accumulating evidence suggested that 
mechanisms involved in the process of PECs to podo-
cyte transition are complex. The interplay among these 
stimulating factors for the recruitment of podocytes from 
PECs still need further research. An improved under-
standing of the mechanism is beneficial for the develop-
ment of targeted drug in clinic.

PECs as a potential therapeutic target
Numerous studies have shown that targeting PECs might 
have some therapeutic value [7, 69, 70]. Administering 
retinoids to animal models of membranous nephropathy 
or FSGS increased the amount of PECs, which express 
podocyte proteins [16]. Thus, retinoids can enhance the 
progenitor capacity of PECs under certain conditions. 
Vitamin D, which is expressed in PECs, participating in 
the differentiation of PECs to podocytes in vitro [18, 71]. 
Additionally, Notch inhibitors can modulate glomerular 
regeneration in animal models of FSGS, which influences 
glomerulosclerosis and proteinuria [72].

Interestingly, the Angiotensin-converting enzyme 
inhibitors (ACEi) also had potential therapeutic effects. 
ACEi, a well-known drug for hypertension and pro-
teinuria, could reduce the proliferation of PECs in ani-
mal models of human immune deficiency-associated 
nephropathy (Tg26 mice). Additionally, ACEi enhanced 
the ability of PECs to turn into progenitor cells in Munich 
Wistar Frömter rats (which develop progressive glomeru-
lar injury) [37, 73].

Prednisone limits podocyte loss by increasing regener-
ation by augmenting the number of podocyte progenitors 
in experimental FSGS mouse model [15]. And the effects 
were accompanied by increasing p-ERK expression.

Other potential therapeutic goals cannot be ignored, 
which include CXCL12 [74], epidermal growth factor 

(EGF) and its receptor (EGFR) [75, 76], and amino acid 
transporter 2 (LAT2) [77].

CXCL12 [74] is highly expressed in normal glomerular 
podocytes. Suppression of CXCL12 could activate PECs 
that integrate into glomeruli, express podocyte specific 
markers, and interdigitate with existing cells.

EGFR is ubiquitously expressed in PECs and podocytes. 
In addition, EGFR was found to be specifically expressed 
in human glomerulonephritis, with proliferation and 
dedifferentiation of these cells. In a mouse model of 
RPGN, EGFR deficiency in podocytes significantly allevi-
ated RPGN and prevented renal failure and death [75].

LAT2 is upregulated in PECs and podocytes in advance 
of the crescent formation as well as in the crescent lesion. 
Seven days after LAT inhibitor administration, the cres-
cent formation of CGN was remarkably alleviated.

Conclusion
Increasing attention has been given to the biological role 
of PECs in health and disease as a result of PEC lineage 
tracing technology in animals, the exploration of specific 
cell markers, the isolation and identification of cultured 
PECs. Based on these advances, a better understanding of 
the potential role of activated PECs is urgent (Fig. 2).

First, replacing lost podocytes is a treating target to 
curb and reverse proteinuria and glomerular scarring. A 
subpopulation of PECs could compensate podocyte loss. 
However, how to identify and apply these specific PECs 
has been a challenge.

Second, PEC activation is manifested in both normal 
and disease conditions. Understanding what triggers and 
regulates PEC-to-podocyte transition is important and 
might promote repair and reduce the progression of glo-
merular disease. More studies are needed to improve the 
theoretical basis. Besides, the number of activated PECs 
were inadequate to fully replace the podocyte loss. The 
actually cues and mechanisms were worthy to be studied 
further.

Third, the PEC-to-podocyte transition lays the founda-
tion for pharmacologic strategies, which aimed at accel-
erating podocyte, and thereby, glomerular regeneration. 
Novel therapeutics aiming to reduce podocyte loss or 
enhance PEC-to-podocyte transition might prevent glo-
merular disease. Further studies were needed to find new 
therapeutic targets for these glomerular diseases.

Fourth, PECs and CoRL are two candidates for podo-
cyte progenitor after podocyte loss. PECs progenitors 
located mainly at the tubular pole of the glomerulus, 
while the CoRL mainly at the vascular pole. We should 
explore the differences between them upon podocyte 
injury.
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Finally, there were compelling opinions that support 
the role of PECs as adult podocyte progenitors. We 
need to be cautious that there might be two-way pro-
cesses that are occurred, where PECs differentiate into 
podocytes, and vice versa.
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