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Abstract 

Background: Cystic fibrosis (CF) patients present with a variety of symptoms, including mood and cognition deficits, 
in addition to classical respiratory, and autonomic issues. This suggests that brain injury, which can be examined with 
non-invasive magnetic resonance imaging (MRI), is a manifestation of this condition. However, brain tissue integrity 
in sites that regulate cognitive, autonomic, respiratory, and mood functions in CF patients is unclear. Our aim was 
to assess regional brain changes using high-resolution T1-weighted images based gray matter (GM) density and 
T2-relaxometry procedures in CF over control subjects.

Methods: We acquired high-resolution T1-weighted images and proton-density (PD) and T2-weighted images from 
5 CF and 15 control subjects using a 3.0-Tesla MRI. High-resolution T1-weighted images were partitioned to GM-tissue 
type, normalized to a common space, and smoothed. Using PD- and T2-weighted images, whole-brain T2-relaxation 
maps were calculated, normalized, and smoothed. The smoothed GM-density and T2-relaxation maps were compared 
voxel-by-voxel between groups using analysis of covariance (covariates, age and sex; SPM12, p < 0.001).

Results: Significantly increased GM-density, indicating tissues injury, emerged in multiple brain regions, including 
the cerebellum, hippocampus, amygdala, basal forebrain, insula, and frontal and prefrontal cortices. Various brain 
areas showed significantly reduced T2-relaxation values in CF subjects, indicating predominant acute tissue changes, 
in the cerebellum, cerebellar tonsil, prefrontal and frontal cortices, insula, and corpus callosum.

Conclusions: Cystic fibrosis subjects show predominant acute tissue changes in areas that control mood, cognition, 
respiratory, and autonomic functions and suggests that tissue changes may contribute to symptoms resulting from 
ongoing hypoxia accompanying the condition.

Keywords: Cognition, Mood, Gray matter density, T2-relaxometery, Magnetic resonance imaging

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Cystic fibrosis (CF) is a progressive genetic disorder pre-
dominately affecting lungs, liver, and the pancreas and 
intestine exocrine glands. Approximately 1000 new CF 
cases are diagnosed each year, totaling more than 30,000 
people in the United States and 70,000 worldwide [1, 
2]. CF is caused by mutations in the CF transmembrane 
conductance regulator (CFTR) gene, which is located on 

chromosome 7 and provides the synthesis of the CFTR 
protein that is responsible for the transport of chlo-
ride ion at the cell membrane level to regulate salt, fluid 
absorption, and secretion, and broadly classified into I–
VI classes based on their effects on the CFTR protein [3, 
4]. The CFTR gene mutation can cause the CFTR protein 
to malfunction and affect multiple organs and systems, 
including lungs, upper respiratory tract, gastrointestinal 
tract, pancreas, liver, sweat glands, and genitourinary 
tract [5], and may also affect brain.

Although CFTR mutations are present at birth, some-
times there are delayed diagnosis due to late onset 
of symptoms. Due to implementation of newborn 
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screening program in recent years, 92.3% of CF diag-
noses are among less than 6-months old [2]. The clini-
cal features of CF patients predominantly include, 
respiratory, digestive, and reproductive disorders, with 
evidence of disease progression in digestive and res-
piratory systems can be observed mostly by 6  months 
of age, worsening of lung function from 6  months to 
1  year of age, and accumulation of lung damage by 
1 year of age [6]. Other symptoms include poor weight 
gain/growth, persistent cough, shortness of breath, and 
repeated lung infections. In addition, CF patients with 
clinically stable severe lung disease show impaired neu-
rocognitive functions, including cognitive and mood 
deficits, autonomic issues, and daytime sleepiness [7], 
and disease exacerbation further worsens their neu-
robehavioral performance [8]. High rates of anxiety and 
depression found in CF lead to non-adherence of pre-
scribed treatment, affecting health outcomes and health 
related quality of life [9]. Such psychological, including 
mood and cognitive functions, and autonomic deficits 
[10, 11] might result from tissue dysfunction in multi-
ple brain regions; however, there are no previous stud-
ies examining brain changes in CF patients.

Subtle brain tissue changes are often challenging to 
visualize on routine brain magnetic resonance imaging 
(MRI), including T1-weighted and T2-weighted imag-
ing. High-resolution T1-weighted imaging based voxel-
based morphometry (VBM), and T2-relaxometry based 
on proton density (PD)- and T2-weighted imaging can be 
used to examine subtle brain tissue changes. VBM pro-
cedures can exhibit localized gray matter (GM) density 
that reflects the proportion of GM relative to other tissue 
types within an examined region. However, T2-relaxom-
etry measures free-water content within the tissue [12] by 
acquiring a series of images at different echo times, and 
has the potential to detect brain tissue microstructural 
changes, with higher specificity than conventional MRI. 
Immuno-histochemical evidence shows that decreased 
T2-relaxation values are associated with increased 
glial activation [13], and reduced T2-relaxation values 
emerged in bipolar disorder [14, 15], and spinocerebel-
lar ataxia type 3 [16]. In addition, the main etiologies of 
increased T2-relaxation values in the brain are vasogenic 
edema, demyelination, gliosis, or neuronal loss [17–19], 
observed in tumor [20], chronic epilepsy [21], congenital 
central hypoventilation syndrome [22], traumatic brain 
injury [23], and multiple sclerosis [17]. Such MRI tech-
niques are simple and rapid, utilizes data acquired from 
routine T1-weighted, proton-density, and T2-weighted 
imaging, and can be implemented on standard clinical 
MR systems, and the quantitative measures make them 
advantageous in examining brain tissue integrity.

Average survival of CF patients has improved recently, 
and this improvement is due to the advancement in treat-
ment, emphasis on early diagnosis, as well as effective 
differential disease management, though there is still no 
cure for the disease. In order to increase the life span and 
life quality of CF individuals, detection of brain changes 
are of utmost importance. Identifying the structural 
brain changes associated with cognitive and mood defi-
cits in CF patients may provide new insights into health-
care management and long-term clinical strategies.

Our study aimed to examine regional GM density 
changes, as well as tissue changes using T2-relaxometry 
procedures in CF patients over healthy controls. Based 
on the severity of psychological and autonomic changes 
exhibited in CF patients, we hypothesized that GM den-
sity and T2-relaxation values would differ from healthy 
population, indicating brain damage, in autonomic, 
mood, and cognition control areas.

Materials and methods
Subjects
This is a cross-sectional, comparative study of five 
CF patients (mean age ± SD, 29.7 ± 3.7  years; male, 3) 
recruited from the University of California Los Angeles 
(UCLA) Adult Cystic Fibrosis Center and 15 control sub-
jects (mean age ± SD, 33.9 ± 4.5 years; male, 10) recruited 
through advertisements at the UCLA campus and Los 
Angeles area. All study procedures were followed in 
accordance with institutional guidelines, and the study 
was approved by the UCLA Institutional Review Board 
(IRB # 14-000967). Subjects were fully informed about 
the study procedures and provided written informed con-
sent prior to data collection. CF patients were confirmed 
for CF genotype, were with mutation class I–III, and 
had mild to moderate CF lung disease. None of the CF 
patient underwent lung transplant, were not on any ster-
oid therapy, and their oxygen saturation at rest was > 94% 
on room air. CF patients with history of stroke, seizure 
disorder, or head trauma, diagnosed psychiatric disease 
(clinical depression, schizophrenia, manic-depressive), 
airway or chest deformities that would interfere with 
breathing were excluded from the study. Control subjects 
were healthy, with no sleep disturbances, neurological or 
cardiovascular issues that would introduce brain damage, 
or drug dependency that would modify brain tissue.

Assessment of depression and anxiety
All CF and control subjects were assessed for anxiety 
and depression using the Beck anxiety inventory (BAI) 
and the Beck depression inventory (BDI-II), respectively 
[24, 25]. The BAI and BDI-II inventories are self-admin-
istered questionnaires, composed of 21 multiple-choice 
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questions (each question score ranged 0–3), with total 
scores ranging from 0 to 63 based on symptom severity 
[24, 25].

Cognition examination
CF and control subjects underwent for cognition evalu-
ation using the Montreal Cognitive Assessment (MoCA) 
[26]. The MoCA test was used for rapid evaluation of 
various cognitive domains, including attention and con-
centration, executive functions, memory, language, 
visuo-constructional skills, conceptual thinking, cal-
culations, and orientation. A score < 26 was considered 
abnormal [26].

Magnetic resonance imaging
All brain imaging studies were performed in a 3.0-Tesla 
MR scanner (Magnetom Tim-Trio and Prisma Fit, Sie-
mens, Erlangen, Germany). We used foam pads on either 
side of the head to minimize head motion. Proton den-
sity (PD) and T2-weighted images were acquired using 
a dual-echo turbo spin-echo sequence in the axial plane 
[repetition time (TR) = 10,000  ms; echo-time (TE1, 
TE2) = 12, 123/124  ms; flip angle (FA) = 130°; matrix 
size = 256 × 256; field-of-view (FOV) = 230 × 230  mm; 
slice thickness = 3.5 mm; inter-slice gap = no]. Two high-
resolution T1-weighted images were collected using a 
magnetization prepared rapid acquisition gradient-echo 
(MPRAGE) sequence (TR = 2200  ms; TE = 2.3/2.4  ms; 
inversion time = 900 ms; FA = 9°; matrix size = 320 × 320; 
FOV = 230 × 230 mm; slice thickness = 0.9 mm; number 
of slices = 192).

Data processing
We used the statistical parametric mapping package 
SPM12 (Wellcome Department of Cognitive Neurology, 
UK; http:// www. fil. ion. ucl. ac. uk/ spm/), and MATLAB-
based (The MathWorks Inc, Natick, MA) custom soft-
ware to process MRI data. Also, we used the MRIcroN 
software to visualize images.

Visual examination
High-resolution T1-weighted, PD-weighted, and 
T2-weighted images of CF and control subjects were 
examined for any visible brain changes, including cystic 
lesions, infarcts, tumors, or other types of brain lesions. 
All images were also assessed for motion-related or any 
other imaging artifacts before GM density and T2-relax-
ation calculations.

Calculation of GM density
Both high-resolution T1-weighted image series were 
realigned to remove any potential variations between 
scans, and averaged to improve signal-to-noise ratio. The 

averaged images were segmented into GM, white matter, 
and cerebrospinal fluid tissue types, using the Diffeomor-
phic Anatomical Registration through Exponentiated Lie 
algebra algorithm (DARTEL) toolbox [27], and created 
flow fields and template images. The flow fields and final 
template images were normalized to Montreal Neuro-
logical Institute (MNI) space (unmodulated, re-sliced 
to 1 × 1 × 1  mm3) and smoothed with a Gaussian filter 
(8 mm kernel).

Calculation of T2‑relaxation
Using PD and T2-weighted images, whole-brain pixel-
by-pixel T2-relaxation values were calculated [22, 28]. 
We calculated the average noise level outside the brain 
tissue from PD- and T2-weighted images, and was used 
as a noise threshold to exclude non-brain areas. The same 
noise threshold was used for the PD and T2-weighted 
images in all subjects. The following equation was used to 
calculate T2-relaxation values [22, 28, 29]:

where  TE1 and  TE2 are the echo-times for PD and 
T2-weighted images, and  SI1,  SI2 denote PD and 
T2-weighted images signal intensities, respectively. 
Whole-brain T2-relaxation maps were generated from 
each voxel value. T2-relaxation maps were normalized to 
the standard MNI space and smoothed using a Gaussian 
filter (8 mm).

Statistical analyses
We used the statistical package for social sciences  (SPSS® 
v26) for data analyses. The independent samples t-tests 
were used to examine the demographic and clinical 
characteristics with continuous variables, and the Chi-
square tests to assess categorical variables between CF 
and control subjects. The MoCA, BDI-II, and BAI scores 
were examined with analysis of covariance (ANCOVA; 
covariates; age and sex). A p value < 0.05 was considered 
statistically- significant.

We performed whole-brain voxel-based analyses pro-
cedures to examine regional brain changes between 
CF and control subjects. For assessment of regional 
brain GM density and tissue changes, the normalized 
and smoothed whole-brain GM density and T2-relax-
ation maps were compared voxel-by-voxel between 
groups using ANCOVA, with age and sex as covariates 
[SPM12; p < 0.001; uncorrected; minimum extended 
cluster size, 10 voxels]. The extended cluster size 10 
was chosen to avoid brain sites with less than 10 vox-
els appearing as a cluster. Brain clusters with signifi-
cant GM density and T2-relaxation value differences 

T2 =
(TE2 − TE1)

ln

(

SI1
SI2

) ,

http://www.fil.ion.ucl.ac.uk/spm/
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between CF and control subjects were overlaid onto 
the normalized mean anatomical images for structural 
identification.

Regional brain GM density and T2-relaxation values 
were calculated from region of interest (ROI) analyses 
and examined for significant magnitude differences 
between CF and control subjects.

Results
Subject characteristics
Demographic and clinical variables of CF and control 
subjects are summarized in Table 1. No significant differ-
ence in age (p = 0.08), sex (p = 0.79), or body mass index 
(p = 0.33) appeared between the groups.

Mood and cognitive scores
The BDI-II and BAI scores were significantly higher 
in CF over control subjects (Table  1). The total MoCA 
scores were significantly lower in CF as compared to con-
trol subjects (p = 0.04), and the visuospatial was the most 
affected sub-scale (p = 0.02).

Regional GM density changes
After controlling for age and sex, several brain areas 
showed increased GM density in CF subjects compared 
to healthy controls (Table 2). Very few sites emerged with 
significantly low GM density in CF compared to control 
subjects. Brain regions with increased GM density in CF 
subjects emerged in the right cerebellum, hippocam-
pus, amygdala, parahippocampal gyrus, ventral medial 
prefrontal cortices, superior temporal cortices, bilateral 
basal forebrain, insula, parietal cortices, left mid and 
superior frontal, and prefrontal cortices, compared to 
controls (Fig.  1). Brain regions showing decreased GM 
density in CF patients emerged in the right inferior tem-
poral cortices and bilateral occipital cortices.

Table 1 Demographics and other variables of CF and control 
subjects

SD standard deviation, BMI body mass index, BDI-II Beck depression inventory II, 
BAI Beck anxiety inventory, MoCA Montreal cognitive assessment

Variables CF (n = 5)
Mean ± SD

Controls (n = 15)
Mean ± SD

p-values

Age (years) 29.7 ± 3.7 33.9 ± 4.5 0.08

Sex [male] (%) 3 (60%) 10 (67%) 0.79

BMI (kg/m2, mean ± SD) 22.0 ± 0.8 23.8 ± 3.9 0.33

BAI 7.8 ± 4.4 1.7 ± 4.2 0.02

BDI-II 5.0 ± 3.0 1.3 ± 2.8 0.03

Total MoCA scores 26.5 ± 1.5 28.2 ± 1.4 0.04

MoCA: visuospatial 4.1 ± 0.6 4.8 ± 0.5 0.02

MoCA: naming 3.0 ± 0.0 3.0 ± 0.0 –

MoCA: attention 5.9 ± 0.8 5.5 ± 0.8 0.34

MoCA: language 2.4 ± 0.5 2.8 ± 0.4 0.17

MoCA: abstraction 1.6 ± 0.5 2.0 ± 0.4 0.13

MoCA: delayed recall 4.1 ± 1.0 4.2 ± 1.0 0.85

MoCA: orientation 5.7 ± 0.4 5.9 ± 0.3 0.30

Table 2 Regional brain gray matter density (mean ± SE,  mm3/voxel) of CF patients and control corrected for age and sex

CF cystic fibrosis, SE standard error, L left, Prefr prefrontal, Cor cortex, R right, Vent ventral, Med medial, Mid middle, Sup superior, Temp temporal

Brain areas CF (n = 5) Controls (n = 15) p-values
Mean ± SE (95% confidence interval) Mean ± SE (95% confidence interval)

L Prefr Cor 0.44 ± 0.013 (0.42–0.47) 0.38 ± 0.007 (0.37–0.40) 0.001

R Prefr Cor 0.47 ± 0.012 (0.44–0.49) 0.41 ± 0.007 (0.40–0.43) 0.001

R Vent Med Prefr Cor 0.57 ± 0.012 (0.54–0.59) 0.52 ± 0.006 (0.50–0.53) 0.002

L basal forebrain 0.49 ± 0.011 (0.47–0.52) 0.44 ± 0.006 (0.42–0.45)  < 0.001

R basal forebrain 0.45 ± 0.012 (0.43–0.48) 0.39 ± 0.007 (0.38–0.41) 0.001

R amygdala 0.38 ± 0.009 (0.36–0.40) 0.34 ± 0.005 (0.33–0.35) 0.001

R hippocampus 0.71 ± 0.006 (0.70–0.72) 0.68 ± 0.003 (0.68–0.69) 0.002

R parahippocampus 0.59 ± 0.007 (0.57–0.60) 0.55 ± 0.004 (0.54–0.56)  < 0.001

R cerebellar Cor 0.75 ± 0.010 (0.73–0.77) 0.70 ± 0.005 (0.69–0.71) 0.001

L insula 0.63 ± 0.015 (0.60–0.66) 0.56 ± 0.008 (0.55–0.58) 0.001

R insula 0.61 ± 0.013 (0.59–0.64) 0.55 ± 0.007 (0.54–0.57) 0.001

L mid frontal Cor 0.60 ± 0.007 (0.58–0.61) 0.55 ± 0.004 (0.55–0.56)  < 0.001

L sup frontal Cor 0.62 ± 0.011 (0.60–0.64) 0.57 ± 0.006 (0.55–0.58) 0.001

L sup parietal Cor 0.69 ± 0.019 (0.65–0.73) 0.61 ± 0.010 (0.58–0.63) 0.002

R sup parietal Cor 0.59 ± 0.016 (0.56–0.63) 0.51 ± 0.009 (0.49–0.53) 0.001

R sup temp Cor 0.67 ± 0.008 (0.65–0.69) 0.63 ± 0.005 (0.62–0.64) 0.001
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Brain regions with T2-relaxation value differences
Several brain areas in CF participants showed 

significantly lower T2-relaxation values, indicating acute 
tissue injury, compared to control subjects (Table 3). Few 

Fig. 1 Brain regions with higher gray matter density in CF patients over control subjects. Sites with increased gray matter density included the 
bilateral insula (a, b), left frontal cortices (c), bilateral basal forebrain (d, e), right hippocampus (f), right cerebellum (g), and right amygdala (h). All 
images are in neurological convention (L left; R right; M middle). Color bar indicates t-statistic values

Table 3 Regional brain T2-relaxation values (mean ± SE, ms) of CF patients and control corrected for age and sex

CF cystic fibrosis, ms millisecond, SE standard error, L left, Prefr prefrontal, Cor cortex, R right, Sup superior, Temp temporal, WM white matter

Brain areas CF (n = 5) Controls (n = 15) p-values
Mean ± SE (95% confidence interval) Mean ± SE (95% confidence interval)

L Prefr Cor 139.5 ± 3.3 (132.6–146.4) 162.5 ± 1.8 (158.7–166.3)  < 0.001

R Prefr Cor 162.6 ± 7.7 (146.2–179) 199.2 ± 4.3 (190.2–208.3) 0.001

L cerebellum 123.6 ± 4.3 (114.5–132.6) 149.3 ± 2.4 (144.3–154.3)  < 0.001

R cerebellum 123.3 ± 2.4 (118.1–128.4) 136.0 ± 1.3 (133.1–138.8)  < 0.001

L cerebellar tonsil 126.9 ± 4.8 (116.6–137.1) 160.8 ± 2.7 (155.2–166.5)  < 0.001

R cerebellar tonsil 127.5 ± 5.1 (116.7–138.3) 159.1 ± 2.8 (153.1–165)  < 0.001

R insula 157.6 ± 5.5 (146–169.1) 182.7 ± 3.0 (176.4–189.1) 0.001

Brainstem 138.1 ± 6.5 (124.4–151.8) 168.2 ± 3.6 (160.6–175.7) 0.001

L frontal Cor 133.8 ± 3.3 (126.9–140.8) 155.4 ± 1.8 (151.6–159.3)  < 0.001

L parietal Cor 152.4 ± 6.2 (139.2–165.6) 182.6 ± 3.4 (175.3–189.8) 0.001

R parietal Cor 128.0 ± 4.6 (118.4–137.7) 148.9 ± 2.5 (143.6–154.3) 0.001

L Sup Temp Cor 142.6 ± 4.8 (132.4–152.8) 166.0 ± 2.7 (160.4–171.6) 0.001

R Sup Temp Cor 132.1 ± 3.2 (125.3–138.9) 153.6 ± 1.8 (149.9–157.3)  < 0.001

Corpus callosum 121.3 ± 7.0 (106.4–136.2) 154.5 ± 3.9 (146.3–162.8) 0.001

L frontal WM 119.7 ± 2.4 (114.7–124.7) 134.2 ± 1.3 (131.5–137)  < 0.001



Page 6 of 9Roy et al. J Transl Med          (2021) 19:419 

brain sites showed significantly higher T2-relaxation 
values in CF compared to controls. Regions with signifi-
cantly reduced T2-relaxation values in CF participants 
appeared in the bilateral cerebellum, cerebellar tonsil, 
prefrontal and superior temporal cortices, parietal corti-
ces, left frontal cortices, and right insula (Fig. 2). Other 
sites, including white matter areas, were also detected 
with reduced T2-relaxation values in CF over controls 
in regions that link important gray matter regions asso-
ciated with cognition, anxiety, and depression, includ-
ing frontal white matter, corpus callosum, and medulla 
(Fig.  2). Brain regions showing prolonged T2-relaxation 
values in CF emerged in the bilateral hippocampus and 
left para-hippocampal gyrus.

Discussion
People with chronic diseases, such as CF, are at 
increased risk of depression and autonomic deficits. 
In addition, many aspects of the disease itself can lead 
to high levels of anxiety. We report significantly high 
scores of BAI and BDI-II in CF patients over healthy 
controls, consistent with previous studies [30, 31]. Also, 
we found that CF patients had a lower overall MoCA 
scores and this change was most significant in the visu-
ospatial/executive sub domains. Several brain sites, 

including cerebellum, hippocampus, amygdala, insula, 
prefrontal, and temporal sites showed tissue changes 
based on GM density or T2-relaxometry procedures, 
areas that are involved in cognition, mood, and auto-
nomic functions. Neuronal damage meditated through 
hypoxia and/or hypercapnia is considered to be one of 
the key mechanisms in pulmonary diseases [32, 33]. 
Both hypoxia and hypercapnia are often present in CF 
patients along with mutated CFTR gene and are poten-
tial underlying causes for the observed neural findings.

CF patients showed cognitive dysfunction, includ-
ing the executive function, and mood deficits. Execu-
tive function is associated with skills requiring higher 
mental activities, such as setting goals, abstract logical 
thinking, planning, taking into account the long-term 
consequences, initiating intentional actions, creating dif-
ferent possible alternative reactions, or modifying own 
activity in response to changing conditions. Abnormal 
executive function has been found in other diseases 
with respiratory compromise, such as chronic obstruc-
tive pulmonary disease, asthma, obstructive sleep apnea 
[34–36], and abnormal function in CF patients may 
contribute to such diminished actions. Depression and 
anxiety, as observed in our study, affects disease man-
agement, including clinic attendance and adherence to 

Fig. 2 Brain sites with decreased T2 relaxation values in CF patients over control subjects. Reduced T2 relaxation values appeared in multiple 
regions and included in the right insula (a), bilateral prefrontal cortices (b, d), bilateral cerebellum (c, f), right corpus callosum (e), and left frontal 
cortices (g)
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prescribed treatments, leading to increased hospitaliza-
tion and healthcare costs, worse pulmonary function, 
and decreased health-related quality of life [31, 37–39]. 
These findings reiterate the need for annual screening for 
depression and anxiety in patient with CF.

Although cognitive and mood symptoms are consid-
ered to be due to aspects surrounding the diagnosis of the 
disease, our findings show that CF patients have a brain 
structural basis for these symptoms. CF patients showed 
increased GM density and reduced T2-relaxation values 
in several brain areas, though GM density measures indi-
cated more changes over T2-relaxometry. Such particu-
lar brain tissue changes were evident in the cerebellum, 
hippocampus, amygdala, superior temporal cortices, 
basal forebrain, insula, parietal cortices, and frontal and 
prefrontal cortices. The increased GM density or reduced 
T2-relaxation values in our patient population might be 
due to increased neuronal and axonal swelling (although 
the disease is chronic, the condition is associated with 
ongoing hypoxia), increased size neurons, increased 
glial cell size or number, higher vascular density to sup-
port sustained increased metabolic demand, more con-
nective tissue, dendritic outgrowth, or synaptogenesis 
[40, 41]. Higher neuronal numbers may result from an 
abnormal developmental process, including accentuated 
neuronal birth rate or the survival of excess neurons [40]. 
In addition, the elevated GM density may be related to 
pre-apoptotic osmotic changes or hypertrophy, mark-
ing areas of early neuronal deficits. Previous depression 
studies indicated increased glucose metabolism [42, 43] 
resulting from the inhibition of reciprocal connections 
between the prefrontal cortex and the amygdala in lim-
bic-thalamic-cortical circuit or limbic-cortical-striatal-
pallidal-thalamic circuit enlarging amygdala [41, 44], and 
such processing may be operating in other structures as 
observed here.

The hippocampus, prefrontal cortices, and amyg-
dala regions are highly interconnected and constitute 
the neuroanatomical network for mood regulation [44, 
45], and these areas showed increased GM density or 
altered T2-relaxation values in our study. Activation 
of the amygdala has been demonstrated to increase 
dopamine in the nucleus accumbens and other motor 
control centers, resulting in increased fear behaviors 
and anxiety and might be plausible explanation for 
higher anxiety in CF patients. The amygdala and hip-
pocampus have projections from the prefrontal cortices 
and other limbic-related forebrain structures that are 
involved in several cognitive domains, and increased 
GM volume or altered T2-relaxation values in these 
sites, as found in our study, may suggest abnormal cog-
nition. The superior temporal gyrus has connections to 
limbic and prefrontal regions [46], and right superior 

temporal structures in particular have been associated 
with responses to emotional prosody [47]. The superior 
temporal lobe along with insula and cingulate regions 
form a part of the salience network that is involved 
in the coordination of the behavioral responses. The 
anterior insula displays altered functional connectivity 
within the salience network and with other brain net-
work in depression condition. Another brain region 
that showed increased GM density and tissue changes 
was cerebellum, where climbing fiber codes error sig-
nal reflecting the motor performance failure and works 
to depress the synaptic transmission between paral-
lel fibers and Purkinje cell that can lead to depression 
and autonomic deficits [48, 49]. Furthermore, the cer-
ebellum contributes to cognitive processing in several 
cognitive domains, including executive and visuospatial 
functioning and extensively interconnected with the 
cerebral hemisphere, both in feed-forward and feed-
backward directions, and provides a structural basis for 
cognitive deficits in CF patients.

Patients with CF experience a wide spectrum of 
chronic pain, including headache, chest pain, back pain, 
abdominal pain, and limb pain [50]. Brain regions that 
showed increased GM density or altered T2-relaxation 
values, including the insula and hippocampus, are sub-
jected to pain modulation and stress-induced changes 
[51, 52]. Stress can lead to microglial proliferation in 
areas around the third ventricle, including hippocampus, 
and activate microglia that can cause neuronal damage 
with the release of proinflammatory and cytotoxic fac-
tors and plausibly increase GM density or alter T2-relax-
ation values as observed in our study. Several brain areas 
showed reduced T2-relaxation values in CF patients 
which could result from increased astrocyte and micro-
glial activation due to chronic pain. Earlier human post-
mortem studies reported reduced T2-relaxation values 
due to pronounced reactive microgliosis and astrogliosis 
[13], and showed the association between chronic pain 
and prolonged astrocyte activation at the level of the pri-
mary afferent synapse [53, 54].

Multiple diseases have demonstrated altered GM and 
white matter volume and tissue integrity [14–16, 55, 56]. 
However, this is the first study that shows significant 
brain structural (GM density and brain tissue integrity) 
changes in CF patients, which could account for the 
symptomatology reported in the condition. Several basic 
and clinical studies, particularly those using neuroimag-
ing techniques, report that specific brain regions play 
essential roles in cognitive, autonomic, depression, and 
anxiety regulation [55, 56]. The altered brain regions we 
encountered in CF patients have a considerably impor-
tant role in their cognitive and mood wellbeing. With 
a high incidence of psychological symptoms in adult 
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CF patients, this study highlights the importance for 
improved early identification and management strategies 
for adult CF patients.

One of the limitations of this study is the small sam-
ple size that may affect the statistical analyses with 
findings not corrected for multiple comparisons, and 
may limit the magnitude of the significant alterations, 
as well as with type 1 error that we observed in various 
brain regions of CF patients. Therefore, further studies 
are needed to validate these findings. T2-relaxometry 
procedures had poor resolution in slice thickness direc-
tion, resulting to less sites with damage over GM den-
sity measures. Thus, procedures with higher resolution 
would be required with bigger sample size to examine 
the extent of tissue damage. We used MoCA, BDI-II, 
and BAI screening instruments to identify cognitive 
impairment and symptoms of depression and anxiety, 
combined with comprehensive clinical tests should be 
used for future studies.

Conclusions
Patient with CF showed significant brain structural 
changes, as evidenced by altered GM density or T2 
relaxation values, indicative of tissue injury, in brain 
regions that control cognitive, autonomic, and mood 
functions. These sites included the cerebellum, hip-
pocampus, amygdala, superior temporal cortices, 
basal forebrain, insula, parietal cortices, frontal and 
prefrontal cortices, and corpus callosum. In addition, 
CF patients exhibited significant anxiety and depres-
sion symptoms and impaired cognitive abilities, and 
brain regions regulating such functions showed altered 
brain structural integrity. Integration of mental health 
screening and early identification and targeted treat-
ment of CF patients can improve the mortality and 
morbidity seen in the condition.
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