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Abstract 

Background:  The diversity and plasticity behind ER+/PR−/HER2− breast cancer have not been widely explored. It is 
essential to identify heterogeneous microenvironment phenotypes and investigate specific genomic events driving 
the formation of these phenotypes.

Methods:  Based on the immune-related gene expression profiles of 411 ER+/PR−/HER2− breast cancers in the 
METABRIC cohort, we used consensus clustering to identify heterogeneous immune subtypes and assessed their 
reproducibility in an independent meta-cohort including 135 patients collected from GEO database. We further 
analyzed the differences of cellular and molecular characteristics, and potential immune escape mechanism among 
immune subtypes. In addition, we constructed a transcriptional trajectory to visualize the distribution of individual 
patient.

Results:  Our analysis identified and validated five reproducible immune subtypes with distinct cellular and molecular 
characteristics, potential immune escape mechanisms, genomic drivers, as well as clinical outcomes. An immune-cold 
subtype, with the least amount of lymphocyte infiltration, had a poorer prognosis. By contrast, an immune-hot sub-
type, which demonstrated the highest infiltration of CD8+ T cells, DCs and NK cells, and elevated IFN-γ response, had 
a comparatively favorable prognosis. Other subtypes showed more diverse gene expression and immune infiltration 
patterns with distinct clinical outcomes. Finally, our analysis revealed a complex immune landscape consisting of both 
discrete cluster and continuous spectrum.

Conclusion:  Overall, this study revealed five heterogeneous immune subtypes among ER+/PR–/HER2− breast can-
cer, also provided important implications for clinical translations.
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Background
Hormone receptor (HR) positive breast cancer, a clini-
cally and biologically heterogenous disease [1], has been 
categorized into two major groups, known as luminal A 
and B subtypes [2]. These two molecular entities have 
significant differences in prognosis and response to ther-
apies [3]. In terms of endocrine sensitivity, clinical data 
suggest that luminal A and B tumors benefit equally, but 
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that patients with luminal A tumors have a better base-
line prognosis than those with luminal B tumors [4, 5]. 
On the other hand, luminal A tumors are proved less 
sensitive than luminal B tumors in terms of chemo-
therapy benefit [6]. Progesterone receptor (PR) positiv-
ity, especially high expression of PR, is more frequently 
observed in tumors with favorable prognosis (i.e., lumi-
nal A) than those with poor outcomes (i.e., luminal B) 
[7]. It is important to note that a substantial number of 
luminal B tumors are PR negative, albeit merely consti-
tute ~ 10–15% of all breast cancers. Patients with estro-
gen receptor (ER) positive and PR-negative (ER+/PR−) 
tumors experienced higher risk of mortality than tumors 
with ER+/PR+ status [8, 9], suggesting that ER+/PR− 
tumors are a more aggressive phenotype and may benefit 
from more escalated therapies.

Efforts have been made to understand the molecu-
lar mechanisms that promote the aggressive phenotype, 
accompanied by the loss of PR expression. Initially, PR 
was recognized as the downstream gene of ER, and the 
lack of PR expression in ER+ tumors was considered 
predictive of limited endocrine responsiveness [10]. 
Therefore, the molecular nature of ER+/PR− phenotype 
was attributed to ER inactivity or low circulating estro-
gen. This hypothesis, however, did not fully explain why 
some ER+/PR− tumors remain sensitive to endocrine 
therapy, even respond nearly as well to anastrozole as 
tumors that are ER+/PR+ [5, 11]. Later, several clinical 
data have suggested that elevated growth factors, such as 
human epidermal growth factor receptor 2 (HER2), may 
activate the PI3K-Akt-mTOR signaling pathway, so as to 
shape the ER+/PR− phenotype and lead to tamoxifen 
resistance [12, 13]. Nevertheless, HER2 positivity rate 
in ER+/PR− breast cancers ranges from 15 to 20% [14], 
indicating that a large amount of ER+/PR− tumors are 
HER2-negative and their etiology may not be explained 
by HER2 amplification. To date, the diversity and plas-
ticity behind ER+/PR−/HER2− breast cancer have not 
been widely explored.

Immunotherapy is emerging as a pillar of modern 
cancer treatment. Importantly, immune checkpoint 
inhibitors (ICIs), such as anti-PD-L1 antibodies, have 
demonstrated durable response and unprecedented clini-
cal benefit across multiple solid tumors [15]. Recently, 
IMpassion130, the first phase III trial of ICI in meta-
static triple-negative breast cancer (TNBC, ER−/PR−/
HER2−) has achieved a striking clinical success [16]. The 
encouraging results obtained in this trial have reignited 
interest in immunotherapeutic approaches for breast 
cancer. In spite of this, the clinical experience with ICIs 
in HR+ breast cancer, which are more immunologi-
cally cold than its TNBC counterpart, has been marginal 
[17]. Considering the prevalence of HR+/HER2− breast 

cancer, identifying even a small subset of immunologi-
cally hot HR+/HER2− tumors could still be of great 
practical value. As mentioned above, the loss of PR could 
translate tumors with HR+/HER2− status into a more 
aggressive disease and poor prognosis [8, 9]. In addi-
tion, ER+/PR−/HER2− breast cancers, are proved less 
endocrine responsive and more chemosensitive than 
other luminal tumors [10]. These data raise the possibil-
ity that ER+/PR−/HER2− breast cancer should be closer 
to TNBC than to luminal subtype, at both clinically and 
biologically. Therefore, we hypothesized that ER+/PR−/
HER2− breast cancer has heterogeneous microenviron-
ment phenotypes and specific genomic events drive the 
formation of these phenotypes.

In this study, we classified ER+/PR−/HER2− breast 
tumors into five immune subtypes based on consensus 
clustering of immune-related gene expression profiles, 
and further validated their reproducibility in an inde-
pendent meta-cohort. Each of the five immune subtypes 
was associated with distinct gene expression pattern, cel-
lular and molecular characteristics, potential immune 
escape mechanisms, genomic drivers, as well as clinical 
outcomes.

Methods
Patients and datasets
The first cohort, from the Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) data-
base, consisted of 411 cases of primary operable ER+/
PR−/HER2− breast cancer with gene expression, GIS-
TIC-processed copy number variation and mutation 
annotation files and corresponding clinical information 
(downloaded from cBioPortal, http://​www.​cbiop​ortal.​
org/) (Additional file 1: Table S1). Gene expression pro-
files were generated using the Illumina_Human_WG-v3 
array platform and normalized by quantile normaliza-
tion with linear modeling batch correction. Copy num-
ber levels were generated on the Affymetrix SNP Array 
6.0 and normalized using the supervised normalization 
of microarrays framework and also using DNAcopy to 
define low- and high-level copy number thresholds. The 
values were defined as follows: −  2 = homozygous dele-
tion; −  1 = hemizygous deletion; 0 = neutral/no change; 
1 = gain; 2 = high level amplification. A 173-gene exome 
sequencing panel was used to identify somatic gene 
mutations and generate measures of tumor mutation 
burden (package maftools). The second cohort was from 
the University of Texas MD Anderson Cancer Center 
(Houston, TX, USA), including three independent data-
sets (GSE25066, GSE20271, GSE20194). Normalized 
expression microarray and clinical data for 135 ER+/
PR−/HER2− breast cancer cases were obtained from 
the Gene Expression Omnibus (GEO, https://​www.​ncbi.​
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nlm.​nih.​gov/​geo/) database (Additional file  1: Table  S1). 
Microarray data were generated using Affymetrix HG-
U133A and normalized by MAS5 algorithm. The combat 
function was applied to remove the batch effects in com-
bining the data of 135 samples from 3 studies (package 
sva) (Additional file  1: Figure S1). Each gene expression 
was transformed by log2 and z-scoring across patients in 
these two cohorts.

Identification of immune subtypes and gene modules
To uncover unbiased immune subtypes, first we curated a 
compendium of microenvironment genes reflecting vari-
ous immunological processes. We focused on two aspects 
in the gene selection: first, microenvironment cell-spe-
cific genes derived from two signatures, TCIA [18] and 
MCP-counter [19]; second, immune-related genes such 
as cytokines, cytokine receptors, and genes related to the 
antigen processing and presentation, downloaded from 
the ImmPort database (https://​immpo​rt.​niaid.​nih.​gov) 
[20]. As a result, 1480 genes measured by all platforms 
were selected. After constructing the immune-related 
gene profiles, we then applied the k-means algorithm 
with the Euclidean distance metric and performed 
100 bootstraps each encompassing 80% patients in the 
METABRIC cohort. A maximum evaluated K of 8 were 
selected for clustering, and the cumulative distribution 
function and consensus matrix were used to assess the 
optimal K (package ConsensusClusterPlus). To identify 
gene modules, we also applied consensus clustering using 
PAM algorithm with 1-Pearson correlation distance met-
ric, and the remaining setting and parameters were the 
same. We further validated the immune subtypes in an 
independent meta-cohort collected from GEO. The in-
group proportion (IGP) was used to quantitatively meas-
ure the consistency in subtype identification at patient 
level in discovery and validation cohorts (package clus-
terRepro). Next, the genes in each gene module were 
annotated in terms of GO biological processes by a web-
accessible database [21], Metascape (http://​metas​cape.​
org). In addition, we assessed the prognostic value of 
immune subtypes, and combined it with available clinical 
and pathologic variables in multivariate Cox proportional 
hazard model, using overall survival (OS) and breast can-
cer-specific survival (BCSS) as the endpoints.

Assessing cellular and molecular features of immune 
subtypes
We analyzed the relation between the immune subtypes 
and 34 immune-related cellular and molecular features. 
The composition of microenvironment cell (24 immune 
cells and 2 stromal cells) in the malignant tumors were 
evaluated by ImmuCellAI [22] and MCP-counter [19] 
algorithm, respectively. We also applied the univariate 

Cox analysis to evaluate the prognostic value of each cell 
subset within each immune subtype and in the whole 
cohort. In addition, eight molecular signatures were 
included. Signatures of immune and stromal cell infil-
tration were derived from ESTIMATE algorithm (pack-
age ESTIMATE) [23]. Macrophage regulation score was 
evaluated by 112 macrophage colony-stimulating factor 
1 (CSF1) response genes [24]. Lymphocyte infiltration 
signature score was determined by a linear model based 
on 18 specific lymphocyte marker genes [25]. IFN-γ [26] 
and TGF-β [27] response signatures were defined as co-
expressed gene module and the pathway activation level 
of TGF-β, respectively. Inflammation score was calcu-
lated as the combination of 4 genes related to inflam-
mation initiation [28]. Signature of cytolytic activity was 
computed as the mean of GZMA and PRF1 gene expres-
sion [29].

Comparison of immunogenomic indicators and enriched 
oncogenic pathways among immune subtypes
The breast tumor-specific potential neoantigens pre-
dicted by NetMHCpan 4.0 were available from TSNAdb 
[30], by which the mutation alternation file was filtered to 
compute the neoantigen load (gene count) in each patient 
(package maftools). To assess the activity of oncogenic 
pathways, first we constructed a compendium containing 
335 genes (representing 10 oncogenic pathways) by refer-
ring to a published article [31]. Subsequently, we applied 
single sample gene set enrichment analysis (ssGSEA) on 
these genes to calculate enrichment scores for each path-
way in each sample (package GSVA).

Defining the immune landscape
Considering the dynamic nature of the immune system, 
we conducted the graph learning-based dimensionality 
reduction analysis using reduceDimension function to 
illustrate the intrinsic structure and distribution of indi-
vidual patients (package monocle). The discriminative 
dimensionality reduction with trees (DDRtree) was used 
as dimension reduction method, and the maximum num-
ber of components was set to 2. After dimension reduc-
tion and ordering, the immune landscape was finally 
inferred by plot cell trajectory function.

Statistical analysis
ANOVA or Kruskal–Wallis test were utilized to compare 
continuous variables, whereas chi-square or Fisher exact 
test were employed for the comparison of categorical 
variables. Survival analysis was performed by Kaplan–
Meier plots, and survival differences among the clusters 
were compared using log-rank test. A two-sided P-value 
less than 0.05 was considered significant unless otherwise 

https://www.ncbi.nlm.nih.gov/geo/
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stated. All statistical tests and data visualization were 
performed with R software (version 4.0.2).

Results
Immune subtypes and functional gene programmes
To facilitate visualization and uncover the underly-
ing immune subtypes of ER+/PR−/HER2− breast 
cancer, first we established a comprehensive gene set 
that including 1480 genes representing various immu-
nological processes (Additional file  2: Table  S2). We 
then applied unsupervised consensus clustering on 
microarray data of 1480 immune-related genes for 411 
ER+/PR−/HER2− tumors and identified five immune 
subtypes and seven gene programmes in the META-
BRIC cohort (Fig.  1A, B; Additional file  2: Tables S2 

and S3). Among all subtypes, cluster 4 had the lowest 
expression in the gene programmes related to immuno-
logical processes, suggesting an immune-cold pheno-
type. This bore strong resemblance to cluster 5, which 
also lacked immunological properties but with a high 
expression level of cellular response to hormone stimu-
lus programmes (GP 1). By contrast, cluster 3 had the 
highest expression in anti-tumor immune response 
programmes (GP 3), suggesting an immune-activated 
phenotype. Cluster 1 was characterized by elevated 
expression of modules involved in lymphocyte activa-
tion (GP 3), leukocyte activation (GP 5), and angiogen-
esis (GP 2), implying an immune-hot but suppressive 
microenvironment. The remaining cluster 2 demon-
strated a low level of immune response (GP 3), toward 

Fig. 1  Immune subtypes and gene programmes defining ER+/PR−/HER2− breast cancer. A Unsupervised clustering analysis of microarray 
data identified five immune subtypes. B Heatmap of gene programmes significantly enriched in ER+/PR−/HER2− breast cancer. Scores for gene 
programmes (GP scores) were defined as the average expression level of all genes in a particular module. In the heatmap, colors represent mean GP 
scores of each cluster and black dots denote modules showing highest significance for an individual subtype. C, D Kaplan–Meier analysis of patient 
survival stratified by cluster: C OS; D BCSS
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an immune-inactivated phenotype (Additional file  1: 
Table S4). Furthermore, we utilized the expression pro-
files collected from GEO to validate the repeatability 
of clustering result (Additional file 1: Figure S3). There 
was moderate to good agreement between the two 
cohorts (IGP from cluster 1 to cluster 5: 0.90, 0.65, 0.84, 
0.80 and 0.67). In brief, our analysis revealed that ER+/
PR−/HER2− breast cancer had five heterogeneous 
phenotypes that could not be fully explained by 3-gene 
classifier subtype.

Given the important role of immune microenviron-
ment in breast cancer, we investigated the clinical rel-
evance of the immune subtypes. As depicted in Fig. 1A, 
the five clusters had significant differences in clinico-
pathological features. For instance, cluster 1 mainly con-
sisted of luminal A subtype, while cluster 2 with higher 
pathological grade, was primarily made up of luminal B 
subtype. In addition, we observed significantly prognos-
tic value of the immune subtypes in METABRIC cohort 
(OS: log-rank, P = 0.025; BCSS: log-rank, P = 0.0029) 
(Fig.  1C, D). Overall, cluster 2, an immune-inactivated 
subtype, was associated with the worst prognosis for both 
OS and BCSS. This survival difference was independ-
ent of age, lymph-node status and molecular subtype 
(Table 1). Consistent with previous studies, we found that 
a higher expression of immune-activated programmes 

was significantly associated with improved survival, even 
with reactive stroma.

Cellular and molecular characteristics of the immune 
subtypes
We estimated the abundance of 26 subpopulations of 
microenvironment cells (24 immune cells and 2 stromal 
cells) and analyzed eight molecular signatures in each 
sample to systematically characterize the immune sub-
types (Fig. 2A–D and Additional file 2: Table S5). Tumors 
in cluster 4 were characterized with relatively low degree 
of microenvironment cell infiltration, which was consist-
ent with their immune-cold phenotype. Cluster 3 with 
immune-hot tumors was not only enriched with innate 
and adaptive immune cells, such as CD8+ T cells, DCs 
and NK cells, but also immunosuppressive cells, such 
as Tregs. In addition, cluster 3 had the highest IFN-γ 
response, inflammation and cytolytic activity signature 
scores. A closely related subtype is cluster 1, which also 
had a relatively high immune cell infiltration but with an 
increased stromal fraction including endothelial cells and 
fibroblasts, as well as the highest TGF-β response signa-
ture score. Of note, cluster 3 demonstrated the highest 
macrophage regulation signature score with an interme-
diate level of macrophage infiltration (M1-low/M2-high), 
suggesting a complex immune microenvironment 

Table 1  Multivariate Cox regression analysis of OS and BCSS in METABRIC cohort

Cluster 2 was used as the baseline for survival risk comparison for immune subtype variable. Luminal type was used as the baseline for survival risk comparison for 
PAM50 subtype.

*P < 0.05; **P < 0.01; ***P < 0.001

Variables OS BCSS

HR (95% CI) P-value HR (95% CI) P-value

Age (years) 1.04 (1.03–1.06) 4.07e−10*** 1.00 (0.98–1.02) 0.87

Positive lymph nodes 1.07 (1.04–1.11) 4.92e−07*** 1.09 (1.06–1.13) 3.46e−08***

PAM50 subtype

 Luminal Ref. – Ref. –

 Non-luminal 0.98 (0.71–1.34) 0.89 1.09 (0.71–1.67) 0.70

Immune subtypes

 Cluster 1 0.60 (0.39–0.94) 0.024* 0.49 (0.27–0.87) 0.014*

 Cluster 2 Ref. – Ref. –

 Cluster 3 0.59 (0.37–0.92) 0.021* 0.31 (0.16–0.62) 0.00090***

 Cluster 4 0.76 (0.56–1.03) 0.075 0.65 (0.44–0.97) 0.034*

 Cluster 5 0.92 (0.58–1.47) 0.73 0.56 (0.28–1.14) 0.11

(See figure on next page.)
Fig. 2  Cellular and molecular characteristics associated with immune subtypes. Enrichment scores of (A) 24 immune cells and (B) 2 stromal cells 
calculated by ssGSEA algorithm. In the violin plots, colors represent mean scores of each cluster (A), and the boxplot is drawn inside of violin plot 
(B). C Boxplots of 8 molecular signatures in each cluster. The middle bar in each box represents the median level of corresponding features in 
certain cluster. D Enrichment score distributions of three cell subsets among five clusters. E Prognostic value of each cell subpopulation evaluated 
by univariate Cox analysis for OS in whole cohort and within each cluster
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Fig. 2  (See legend on previous page.)
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accompanied by a shift from acute to chronic inflam-
mation (Fig. 2A–C; Additional file 1: Figure S4). Moreo-
ver, we analyzed the relative proportion of cell subsets 
among all clusters by plotting the abundance distribu-
tion curve (Fig. 2D). Adaptive immune cells represented 
the major proportions in the microenvironments of the 
five clusters. The relative weight of adaptive immune cell 
was increased in cluster 3, whereas the relative propor-
tion of stromal cells was increased in cluster 1. We fur-
ther investigated the prognostic value of each cell subset 
(Fig. 2E). As a whole, a higher infiltration was associated 
with a more favorable outcome for most of cell subsets, 
even immune suppressive cells. But within each cluster, 
the prognostic impact of the cell subsets varied, or even 
in the opposite direction.

Potential tumor immune escape mechanism of immune 
subtypes
The results of this study showed highly heterogenous 
immune subtypes in ER+/PR−/HER2− breast cancer at 
the cellular and molecular levels. So we got to wondering 
whether different subtypes had distinct tumor immune 
escape mechanisms. This question can be condensed into 
the notion of immunogenic differences, which can be 
classified into two aspects: extrinsic factors and intrinsic 
factors.

The extrinsic factors include infiltration of effector 
T cells and immunosuppressive cells, chemokines that 
regulate T cell recruitment and other immunomodula-
tory cytokines. As identified above, each cluster has its 
own unique pattern in the aspect of microenvironment 
cell infiltration. We then asked whether the expression of 
cytokines was consistent with the results of microenvi-
ronment cell infiltration among clusters. As depicted in 
Fig. 3A, cluster 3 had the highest expression of CCL5 and 
CXCL9, which dedicated immunoreactive and immu-
noresponsive tumors with increased cytotoxic T cell infil-
tration [32]. Also, cluster 3 had a higher concentration 
of immunoinhibitory cytokines, such as IL10; Cluster 1 
was highly correlated with platelet-derived growth fac-
tor (PDGF) and TGF-β families, which had been proved 
to trigger stromal recruitment and produce additional 
stromal modifies, respectively, to create an immune-
suppressive microenvironment [33, 34]; Cluster 2 and 5 
had an intermediate expression of cytokines; and these 
cytokines were all relatively low in cluster 4. To sum up, 
the increase of immunoinhibitory factors after immune 
activation, the chemotaxis but inactivation of immunity, 
the insufficiency and inability to attract immune cells 
might contribute to the extrinsic immune escape of the 
five clusters, respectively.

The intrinsic factors included the mutation load, 
neoantigen load and the expression levels of MHC, 

co-inhibitory and co-stimulatory molecules. As shown 
in Fig.  3B, C, cluster 3 had the lowest tumor mutation 
burden and neoantigen load, but with the highest expres-
sion of MHC molecules, indicating a slight difference in 
immunogenicity among clusters. Additionally, we exam-
ined the expression of two class of molecules: co-stimu-
latory and co-inhibitory (immune checkpoint) molecules, 
both of which were significantly increased in cluster 3 
tumors (Fig.  3B). These observations raised the ques-
tion of whether the underlying genomic variants could 
explain the differences in the expression of co-stimula-
tory and co-inhibitory molecules among the clusters. 
We found that the elevated expression of TNFRSF8 and 
TNFRSF9 in cluster 1 and 3 were significantly associated 
with somatic copy number variations (SCNVs) (Fig. 3D). 
Overall, the checkpoint molecules may be upregulated to 
enable tumor escape after immune activation. Further-
more, we investigated the relationship among molecular 
signature scores, immunogenicity and the expression lev-
els of checkpoint molecules. We found that immune infil-
tration signatures and the expression of most checkpoint 
molecules were positively correlated, whereas tumor 
mutation burden, neoantigen load and TGF-β response 
scores showed minimum correlation with these factors 
(Fig. 3E).

Genomic alternation in ER+/PR−/HER2− breast cancer
We made a comparison of the mutational profiles in 
order to pave the way to a comprehensive understanding 
of genomic characterization in ER+PR−HER2− breast 
cancer. As demonstrated in Fig.  4A, the most frequent 
cancer-related mutations [35] were found in PIK3CA 
(39%), TP53 (27%), KMT2C (16%), MUC16 (16%), 
CDH1 (13%), GATA3 (13%). Notably, PI3KCA, TP53 and 
KMT2C were differentially altered among five clusters. 
On the other hand, we evaluated the presence of patho-
logic mutation affecting homologous recombination 
genes, BRCA1 (2%) and BRCA2 (2%), of which there was 
no mutation event occurred in cluster 1. These mutated 
genes were further aggregated into 10 molecular mecha-
nisms: cell-cycle pathway (CDKN1B, RB1, CCND3 and 
CDKN2A) in 3%; PI3K-AKT signaling (PI3KCA, AKT1, 
PTEN, AKT2, STK11 and PIK3R1) in 46%; Notch sign-
aling (NCOR1, NOTCH1, NCOR2, EP300 and FBXW7) 
in 16%; TGF-β signaling (SMAD4 and SMAD2) in 2%; 
Hippo and Wnt signaling defects through NF2 and APC 
mutation, respectively (1%; 2%); RTK/RAS signaling 
(NF1, KRAS, ERBB4, ERBB2, ALK, FLK3, ERBB3, BARF 
and HRAS) in 24% and P53 pathway (TP53 and CHEK2) 
in 28%; The remaining two pathways, MYC and NRF2, 
had no significant mutation. We found that mutations 
among the Wnt, RTK/RAS, PI3K-AKT and cell-cycle 
pathway were most frequently observed in cluster 5, 
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while P53 pathway in cluster 3 (Fig. 4B). By referring to 
the published signatures [31], we further calculated the 
enrichment scores of 10 common oncogenic pathways 
among the five clusters (Fig.  4C). The cell-cycle, Notch 
and TGF-β pathways were enriched in cluster 1 (all 
P < 0.001); The NRF2 and P53 pathways were upregulated 

in cluster 2 (all P < 0.01); The score of MYC pathway was 
increased in cluster 4 (P < 0.001); The Hippo and PI3K-
AKT pathways were significantly higher in cluster 5 (all 
P < 0.001). Gene Set Enrichment Analysis validated some 
of these results (Additional file  1: Figure S5). Of note, 
cluster 3 with immune-activated tumors lacked specific 

Fig. 3  Potential tumor immune escape mechanism of immune subtypes. A Expression of chemokines, IFNs, ILs and other cytokines and their 
receptors in each cluster. B Expression of MHC and immunomodulatory molecules for each cluster. Expression values are represented by z-score 
calculated across all ER+/PR−/HER2− breast tumors. C Mutation load and neoantigen load in each cluster. D Comparison of SCNV categories 
of CD274, PDCD1LG2, TNFRSF8 and TNFRSF9. E Correlation among immune infiltration, immunogenicity and expression of immune checkpoint 
molecules
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oncogenic pathway in this study, suggesting that spe-
cific genomic alternations had the potential to induce 
immune-cold or immune-inactivated phenotype.

Immune landscape of ER+/PR−/HER2− breast cancer
Using the immune gene expression profiles, we con-
structed a transcriptional trajectory to reveal the underly-
ing structures of the distribution of individual patients, and 

find key gene expression programmes governing the tumor 
progression. Indeed, transcriptive states in the trajectory 
revealed the dynamics of immune process (Fig. 5A). Firstly, 
patients were located in separate trajectory branches, mak-
ing their distinct characteristics of tumor immune micro-
environment in the corresponding subtype. For instance, 
the immune-hot cluster 3 and immune-cold cluster 4 were 
observed to be distinctly positioned at the opposite end 

Fig. 4  The genomic landscape of ER+/PR−/HER2− breast cancer. A Mutation profile is shown in column for each sample, including known 
cancer-related genes with top 20 mutation frequencies (top) and two recurrently homologous recombination gene in breast cancer (bottom). 
B The mutation frequencies of 10 common oncogenic pathways among clusters. C Heatmap of enrichment scores of 10 common oncogenic 
pathways among clusters. Asterisks indicate association with immune subtype (somatic mutation frequencies were tested using Fisher’s exact test. 
*P < 0.05, **P < 0.01, ***P < 0.001)
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of horizontal axis in the immune landscape. Therefore, 
we assumed that the horizontal axis in the immune land-
scape may reflect the overall immune infiltration. Secondly, 
patients with certain immune subtype, formed two or more 
branched structures, revealing significant intra-cluster 
heterogeneity within each subtype. For instance, cluster 
2 could be further segregated into three subgroups based 
on their location in the immune landscape, which showed 
different immune gene expression profiles in specific 
modules (Fig.  5B, C). Similar results were also observed 
in other immune subtypes (Additional file  1: Figure S6). 
Interestingly, the three subgroups of patients stratified by 

immune landscape in cluster 2 demonstrated distinct prog-
nosis, although not statistically significant (BCSS: log-rank, 
P = 0.058) (Fig. 5D). The subset of patients with favorable 
outcomes (2C) was associated the lowest angiogenesis 
module (GP 2). Overall, these results indicated that our 
immune landscape analysis provided complementary value 
to previously identified immune subtypes.

Discussion
Here, we used an analytical strategy to present compre-
hensive characterization of five reproducible immune 
subtypes within ER+/PR−/HER2− breast cancers in a 

Fig. 5  The immune landscape of ER+/PR−/HER2− breast cancer. A The immune landscape: each point represents a patient with colors 
corresponding to the immune subtype identified previously. B Patients of cluster 2 could be further stratified into three subgroups based on their 
location in the immune landscape. C Gene programme expression patterns were shown to illustrate the intra-cluster heterogeneity of cluster 2. D 
The three subgroups of patients stratified by the immune landscape in cluster 2 were associated with distinct prognosis
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multicohort retrospective study (Additional file  1: Fig-
ure S7). We found that each of the immune subtypes 
was associated with distinct gene expression modules, 
and demonstrated widely different patterns in tumor 
microenvironment cell infiltration, molecular signatures, 
tumor immunogenicity, regulation of immunomodula-
tors, genomic alterations, and, importantly, prognos-
tic efficacy. Moreover, using the graph learning-based 
dimensionality reduction analysis, we defined immune 
landscape to facilitate visualization of the distribution of 
individual patients. Collectively, this study recapitulates 
key features of ER+/PR−/HER2− breast cancer from an 
immunogenomics perspective, and may has important 
implications for clinical translation.

In recent years, accumulating data support a key role 
of the tumor immune microenvironment on long-term 
survival in patients with breast cancer [36]. Our study 
revealed that ER+/PR−/HER2− breast cancers of clus-
ter 3 had the highest level of infiltration by immune 
effectors such as CD8+ T and NK cells, and elevated 
expression of IFN-γ response and cytolytic activity sig-
natures. Accordingly, patients in cluster 3 had a favora-
ble prognosis. By contrast, tumors of cluster 4 were 
characterized with reduced lymphocyte infiltration and 
thus these patients had relatively worse prognosis. These 
results are in accordance with previous studies showing 
higher levels of tumor infiltrating lymphocytes predict 
improved outcomes across cancer types. Moreover, the 
relative dominance between immune stimulatory and 
suppressive factors is also critical in determining prog-
nosis. In our study, tumors of cluster 1 demonstrated a 
high level of immune cell infiltration, closely following 
cluster 3, but its immune composition was dominated by 
macrophages with increased immune-suppressive fac-
tors such as TGF-β signaling and reactive stroma. Inter-
estingly, these two subtypes above showed no significant 
difference in prognosis, which may be attributed to the 
elevated immunoinhibitory factors after immune activa-
tion in cluster 3, thus weakening the dominant position 
of immune stimulation. Overall, these data suggested that 
the immune profiles played crucial roles in determining 
outcomes and could potentially stretch into future bio-
marker-based risk stratification strategy. Currently, the 
individual-based models, which requires the response to 
therapy and clinical outcomes to be known for each indi-
vidual patient, is a subject of intense research. In com-
parison, our approach is gene expression-based, which 
reveals the underlying structures of the immune land-
scape within tumors and identifies the intrinsic immune 
subtypes with distinct outcomes. Given that this strategy 
is not yet able to provide clinician with improved tools 
for decision making, it is reasonable to imagine build-
ing a hierarchical model [37], first stratifying patients 

into subgroups to reduce the major inter-tumor molec-
ular diversity and then applying subtype-specific bio-
marker panel to accurately predict prognosis within 
each subtype. Recent studies revealed that molecular-
subtype-specific biomarkers have improved prediction 
of prognosis in many malignancies. Therefore, extended 
subtyping framework, combining subtyping and individ-
ual-based model could be of great practical value in bio-
marker-based risk stratification.

The strategy of using monoclonal antibodies against 
co-inhibitory receptors, termed ICI, is being used to treat 
an increasing number of malignancies in clinical practice 
or ongoing trials [16]. Unfortunately, the clinical effi-
cacy of ICI as monotherapy has been limited to a subset 
of patients, PD-L1 inhibition with response rate of 20% 
or less in many cancer types such as breast cancer [38]. 
Several markers including predictive biomarkers such as 
PD-L1 expression by tumor cells [16, 39], tumor muta-
tion burden [40] and DNA mismatch-repair deficiency 
[41] have thus been proposed to expand enrollment of 
patient populations that are responsive to immunother-
apy. Not only that, there are ongoing efforts to develop 
therapeutic strategies to enhance and broaden the anti-
tumor activity by using combination therapy [38]. Our 
approach to deeply mine cancer transcriptome and 
genomic data revealed a number of associations sug-
gesting important biological conclusions with poten-
tial implications for cancer immunotherapy with ICI 
as monotherapy, as combination therapy with targeted 
agents, and for therapeutic vaccination. For patients with 
immune-hot tumors and elevated expression of immune 
checkpoint molecules (i.e., cluster 3), ICI might be used 
to enhance the preexisting antitumor immunity as early 
as possible. However, for patients in other subtypes, ICI 
alone might be insufficient due to the inability to induce 
immune activation or the presence of immune-suppres-
sive mechanisms. For those with immune-cold tumors 
(i.e., cluster 4), ICI should be optimally combined with 
other treatment strategies such as chemotherapy and 
radiation therapy, which indicated a potential role in elic-
iting antitumor immune response. Because cluster 2 had 
a low immune response signal but with an intermedi-
ate level of lymphocyte infiltration and IFN-γ response, 
combination of ICI with co-stimulatory molecules such 
as CD137 and CD134 might be complementary strate-
gies to enhance immune response [42]. The restoration 
of abnormal oncogenic pathways for patients in cluster 
5, such as AKT-PI3K-mTOR, might be promising strate-
gies for combining immunotherapeutic approaches. For 
the remaining patients in cluster 1, depending on their 
immune-suppressive microenvironment with active 
stroma, anti-TGFβ or anti-angiogenesis therapy might be 
used together with ICI to revert the ineffective antitumor 
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immune response. Most importantly, we defined the 
immune landscape, which revealed previously unappre-
ciated intra-cluster heterogeneity with potential clinical 
relevance. For instance, a fraction of patients in cluster 2 
were shown to have an inferior prognosis relative to oth-
ers in the same immune subtypes. This raises the ques-
tion of how to optimally modulate the immune response 
so that patients are mobilized towards more favorable 
states.

Efforts to elucidate cancer genetic program in shap-
ing immune responsiveness and its relevance to dis-
eases are increasing [43]. Recent studies in lung cancer 
demonstrated that TP53 mutation represented a state of 
adaptive immune resistance and a high immunogenic-
ity, which contributed to a probable sensitivity to PD-1 
blockade [44, 45]. In breast cancer, mutations of TP53 
were enriched in the immune favorable phenotype, in the 
analysis of The Cancer Genome Atlas (TCGA) datasets 
[46]. When the analysis was performed in each intrin-
sic molecular subtype, TP53 mutations were associated 
with the expression of immune related genes in lumi-
nal tumors [47]. These notions, to some extent, support 
our finding that TP53-mutated tumors were remark-
ably enriched in cluster 3, accompanying with increased 
PD-L1 expression, facilitated CD8+ T cell infiltration 
and augmented immunogenicity. In addition, the rela-
tionship between enrichment of oncogenic pathways and 
the prognostic and predictive role of immune pheno-
types, was observed in an TCGA pan-cancer study [48]. 
Similarly, our study revealed an immune-cold phenotype 
of cluster 4, characterized by the lowest lymphocyte infil-
tration and the highest MYC pathway enrichment. Evi-
dence from clinical and experimental studies revealed 
that some intrinsic pathways, such as activation of MYC, 
impaired T cell recruitment through failed accumula-
tion or activation of antigen-presenting cells [49, 50]. 
Therefore, we speculated that the low innate immune 
cell chemotaxis induced by MYC might be the reason 
for the poor immune infiltration in cluster 4. Strategies 
to inhibit MYC signal might potentially convert a non-T 
cell inflamed tumor into a T cell inflamed tumor, impor-
tantly, improve outcomes. Overall, beyond clinical impli-
cations, the results from this study also have important 
biological insights into the relationship between onco-
genic states and intra-tumoral immune response in ER+/
PR−/HER2− breast cancer.

Limitations of our study include its retrospective 
nature, although we have incorporated another inde-
pendent dataset for validation of our immune subtypes. 
In addition, the immune subtype assay is based on the 
gene expression profiles, which are not readily avail-
able in clinical practice as a result of cost, turnaround 
times and requirement of bioinformatics expertise. The 

surrogate definition of each immune subtype developed 
using specific markers could be of great practical values. 
Thus, we have recently designed a prospective clinical 
study, aiming to further validate the immune subtypes, 
develop the biomarker-based surrogate definitions and 
finally achieve the purpose of clinical translation.

Conclusions
In summary, we identified five reproducible immune 
subtypes of ER+/PR−/HER2− breast cancer with dis-
tinct molecular characteristics and genomic alternations. 
Our research provides theoretical supports for combined 
therapeutic strategies in the future and offers optimal 
selection of patients treated with immunotherapy, so as 
to improve the outcomes of ER+/PR−/HER2− breast 
cancer.
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