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Circadian rhythms affect bone 
reconstruction by regulating bone energy 
metabolism
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Abstract 

Metabolism is one of the most complex cellular biochemical reactions, providing energy and substances for basic 
activities such as cell growth and proliferation. Early studies have shown that glucose is an important nutrient in 
osteoblasts. In addition, amino acid metabolism and fat metabolism also play important roles in bone reconstruction. 
Mammalian circadian clocks regulate the circadian cycles of various physiological functions. In vertebrates, circadian 
rhythms are mediated by a set of central clock genes: muscle and brain ARNT like-1 (Bmal1), muscle and brain ARNT 
like-2 (Bmal2), circadian rhythmic motion output cycle stagnates (Clock), cryptochrome 1 (Cry1), cryptochrome2 (Cry2), 
period 1 (Per1), period 2 (Per2), period 3 (Per3) and neuronal PAS domain protein 2 (Npas2). Negative feedback loops, con-
trolled at both the transcriptional and posttranslational levels, adjust these clock genes in a diurnal manner. According 
to the results of studies on circadian transcriptomic studies in several tissues, most rhythmic genes are expressed in 
a tissue-specific manner and are affected by tissue-specific circadian rhythms. The circadian rhythm regulates several 
activities, including energy metabolism, feeding time, sleeping, and endocrine and immune functions. It has been 
reported that the circadian rhythms of mammals are closely related to bone metabolism. In this review, we discuss 
the regulation of the circadian rhythm/circadian clock gene in osteoblasts/osteoclasts and the energy metabolism of 
bone, and the relationship between circadian rhythm, bone remodeling, and energy metabolism. We also discuss the 
therapeutic potential of regulating circadian rhythms or changing energy metabolism on bone development/bone 
regeneration.

Keywords:  Circadian rhythm, Circadian clock gene, Osteogenesis, Bone formation, Skeleton formation, Bone, 
Metabolism, Osteoclast

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Most organisms, including humans, have a circa-
dian rhythm that exhibits an endogenous oscillation 
of ~24  h and is synchronized with light/dark cycles 
through morning food consumption or/and light expo-
sure [1]. Circadian rhythm plays a critical role in most 

physiological and behavioral processes in mammals. The 
suprachiasmatic nucleus (SCN) is the controlling center 
of mammalian rhythm oscillation, the rhythm signals of 
which are influenced by core clock genes, including mus-
cle and brain ARNT like-1 (Bmal1), circadian rhythmic 
motion output cycle stagnates (clock), cryptochrome (Cry) 
and period (Per) and orphan nuclear hormone receptors 
Rorα and Rev-erbα [2]. Molecular clocks are known as 
the mechanisms of circadian rhythms in mammals. They 
consist mainly of a series of interrelated transcription-
translation feedback loops [3]. Temporal information is 
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transmitted by the SCN to peripheral tissue oscillators, 
producing synchronous circadian rhythms in many bod-
ily processes, including bone metabolism, muscle func-
tion, and immune system function [4]. Previous studies 
have reported that the metabolism of bone and cartilage 
exhibits circadian rhythms. In an overview of related 
studies, circadian rhythms can be seen in the expres-
sion of the master genes involved in cartilage formation, 
bone mineral deposition, and bone formation [3, 5–8]. 
Serum concentrations of some hormones relating to 
bone metabolism show diurnal variation [9]. For exam-
ple, serum concentrations of calcium, calcitonin, skeletal 
alkaline phosphatase, parathyroid hormone C-telopep-
tide, tartate-resistant acid phosphatase, and osteocalcin 
show diurnal variation [10–13]. Studies have shown that 
continuous lighting can lead to a significant decrease in 
skeletal muscle function and to bone microstructure 
changes with early osteoporosis characteristics [4]. Stud-
ies have shown that chondrocyte-specific Bmal1 knock-
out mice exhibit progressive degeneration and damage in 
knee articular cartilage starting the second month after 
circadian clock activity of cartilage tissue is disturbed and 
lasting 3–6  months [14]. Studies have reported that Per 
and Cry mutant mice showed increased osteoblast activ-
ity and bone mass, while Bmal1 knockout mice showed 
ectopic calcification and abnormal cartilage reendotheli-
alization [4].

Bone, a metabolically active organ, undergoes continu-
ous remodeling due to bone formation by osteoblasts and 
bone absorption by osteoclasts [15]. In healthy situations, 
the balance between bone absorption and bone forma-
tion is consistent, maintaining bone density and bone 
strength. Some pathological conditions can affect bone 
reconstruction, which can lead to bone disease [16]. Bone 
remodeling requires energy, and growth and repair after 
bone damage requires more energy [17]. For example, 
bone healing is the main prognostic factor of oral maxil-
lofacial surgery, and adequate nutrition plays a vital role 
in fracture repair. Severely malnourished patients show 
slow wound healing and damage to wound contraction 
[18]. Studies have shown that oscillations in circadian 
rhythms lead to rhythmic changes involving physiologi-
cal processes such as nutrition and metabolism [19]. 
Moreover, studies have shown that nutritional deficien-
cies in children are often associated with developmen-
tal impairment, which can affect normal bone growth 
and development. Some defects also directly affect car-
tilage and bone production [20]. The circadian rhythms 
of bone functions are regulated by internal or external 
cues. Feeding and fasting regulate the daily rhythm of the 
bone turnover marker serum C-telopeptide fragments 
of collagen type 1 degradation (S-CTX) [21]. The levels 
of S-CTX are higher in humans during early morning, 

from 05:00 to 08:00, and lower in the late afternoon, from 
12:00 to 16:00. S-CTX have a clear daily rhythm across 
the 24  h  day under normal feeding conditions, such as 
the consumption of breakfast, lunch and dinner, while 
the amplitude of the rhythms is diminished with fasting 
[22, 23]. In addition, the generation of this diurnal vari-
ation is also observed in intake of glucose, protein, and 
fat [22]. Circadian disruption can occur with social or 
environmental factors, such as shift work, may cause dys-
functions of bone and skeletal muscle. In epidemiologi-
cal studies, the prevalence of metabolic syndrome, bone 
fractures and osteoporosis are increased in shift workers 
[24–26]. These findings indicate that the regulation of 
circadian rhythms in bone by external cues, are impor-
tant for the maintenance of homeostasis. The interactions 
involved in bone and energy metabolism are mediated 
by a variety of nutrients, hormones, and cytokines [27]. 
Therefore, we explore new ways for the circadian clock to 
regulate energy metabolism and promote bone develop-
ment/bone regeneration, and we suggest new strategies 
for bone reconstruction.

Circadian rhythm in bone
Currently, due to light pollution at night, passive or 
active wakefulness late into the night, night shift work 
and other reasons, the body’s circadian rhythm is greatly 
affected. Studies have shown that circadian rhythm disor-
ders are causes of diminished bone microstructure [28]. 
Studies have shown that circadian rhythms can affect the 
development and growth of the mandible; however, to a 
large extent, circadian dysrhythmia inhibits the growth 
of the mandible [29]. Continuous light exposure can lead 
to trabecular bone deterioration and induce a short-term 
inflammatory state [4]. Epidemiological studies have 
shown that the incidence of osteoporosis and fractures 
among shift workers is high [4]. IL-6, an important pro-
inflammatory cytokine expressed in rheumatoid arthritis 
(OA) [30], mediates osteoclast activation, thus contribut-
ing to cartilage and bone breakdown and joint destruc-
tion. Previous studies have found that plasma IL-6 levels 
in rats with collagen-induced arthritis (CIA) were higher 
at almost every sampling time compared to those in 
normal rats, and IL-6 expression showed significant 
circadian rhythms, indicating higher levels during the 
light phase and lower levels during the dark phase [31]. 
Recent studies revealed a relationship between circadian 
rhythm and osteogenesis and osteoclastogenesis. The 
study found that under the effect of the peripheral nerv-
ous system, bone-related genes and bone absorption-
related genes show periodic expression patterns [32]. 
Circadian time cues in bone affect osteoblast and osteo-
clast differentiation, and bone transformation markers 
exhibit circadian changes [33] (Fig. 1). The expression of 
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parathyroid hormone (PTH), C-telopeptide of type 1 col-
lage (CTX), calcium, bone specific alkaline phosphatase 
(BSAP), and calcitonin exhibits circadian rhythm changes 
[9]. In osteoblasts, 26% of genes show daytime expres-
sion patterns, including bone morphogenetic protein 2 
(Bmp2), insulin-like growth factor 1 (Igf1), osteocalcin 
(Oc, Bglap), and the major osteoblast transcription factor 
Runt-related transcription factor 2 (Runx2). In humans, 
circadian rhythms coordinate bone remodeling [34]. The 
circadian clock is related to bone development and the 
regulation of homeostasis in bone, molecules associated 
with osteoblast differentiation are controlled by circa-
dian rhythms, and genes including dentin matrix protein 
1(Dmp1), osteopontin(Spp1), bone sialoprotein(Bsp)and 
osteocalcin(Bglap2) involved in mineral deposition are 
expressed in circadian rhythm patterns [5, 35–37].

Bones are tissues that continue to be remodeled, and 
circadian rhythm disorders have a negative impact on 
bone health. Studies have shown that the circadian clock 
gene is related to bone formation [38]. Bmal1 plays a 
key role in regulating bone absorption and bone forma-
tion and is the core and irreplaceable component of the 
circadian rhythm molecular oscillator [39]. The over-
all absence of Bmal1 in mice led to a decrease in bone 
mass, which contributed to an increase in bone absorp-
tion [40]. Osteoclast-specific Bmal1 knockout mice 
showed high bone mass-related pelage and additional 
bone formation compared to wild-type mice because of 
reduced osteoclast differentiation [9, 40]. Studies have 

shown that Bmal1 controls bone absorption by upregu-
lating the expression of nuclear factor of activated T cells, 
cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcrip-
tion through its binding to an E-box element located in 
the Nfatc1 promoter and interacting with members of 
the steroid receptor coactivator family [41]. Studies have 
reported that the clock system also exists in osteoblasts 
[38]. Coculture experiments have shown that osteoblasts 
with Bmal1 defects exhibit a strong ability to induce the 
differentiation of osteoclasts, while overexpression of 
Bmal1/Clock inhibits the expression of calcitriol-induced 
receptor activator of NF κB ligand (Rankl), in osteoblasts 
[40]. Bone homeostasis is affected by circadian rhythms, 
with bone absorption increased at night compared to 
daytime. Bone density in the alveolar septum and cor-
tex of the mandible was lower in Bmal1−/− mice than 
in wild-type mice [42]. Moreover, the Bmal1−/− animals 
form short bones and present with osteopenia in the 
mandibular condyle and long bones [29]. The absence of 
Bmal1 promotes the differentiation of osteoclasts, inhib-
its the differentiation of osteoblasts and cartilage cells, 
and ultimately leads to a decrease in bone mass and bone 
density. Studies have found that osteogenic differentia-
tion is inhibited in bone marrow stromal cells (BMSCs) 
and that femoral bone mass is obviously reduced in 
Bmal1−/− mice [42]. Bmal1 can also affect myelin cells, 
regulate the bone mass of the discs between vertebrae 
and is closely related to the height of these discs [43]. The 
study revealed a relationship between circadian rhythm 
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Fig. 1  A pattern diagram of the circadian rhythm regulation of bone
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and the development of mineralized tissue, including 
osteoclastogenesis and osteogenesis [44, 45]. In addition 
to Bmal1, Clock, Cry and Per are also the main genes of 
the molecular clocks. Recent studies also showed that 
Cry2 and Per2 affect multiple mechanisms of adjusting 
bone volume [32]. Cry2 affects osteoclast activity [46]. 
In addition, Cry2 plays an active role in the steady state 
of the extracellular matrix of cartilage [47]. Per2, a nega-
tive regulation factor of circadian clock, is necessary for 
the maturation of bone tissue. Per2 mutation increases 
the proliferative ability of osteoblasts [48]. The bone vol-
ume was increased in Per and Cry deficient mice [42].
The bone density of mice with mutated Clock was signifi-
cantly decreased, and the apoptosis rate was increased 
[38].

Joint cartilage arranged on the surface of long bones is 
a highly specialized connective tissue. Emerging evidence 
suggests that circadian rhythm systems play key roles in 
controlling bone biology and cartilage [13]. Most core 
clock genes are rhythmically expressed in different types 
of cartilage, including sword cartilage, facial joint carti-
lage, growth plates, and rib cartilage [49, 50]. It has been 
reported that 619 genes (3.9% of expressed genes) exhibit 
circadian rhythm expression patterns in cartilage, includ-
ing genes that are involved in the stability and survival in 
cartilage, as well as genes that are potentially important 
in the pathogenesis of osteoarthritis (OA) [51]. Stud-
ies have shown that the most active proliferation stages, 
which were found by measuring cartilage cell prolifera-
tion markers, are in the early morning, causing growth 
plate expansion to peak at noon [52]. The circadian 
rhythms of living cartilage can be system-driven, similar 
to that in other tissues, or by local molecular clocks in 
cartilage cells [53]. Long-term (22-week) environmental 
disturbances affect the dark/light cycle and thus the cir-
cadian rhythms in mice, generating a condition similar 
to years of chronic jet lag or shift work, making mouse 
knees susceptible to OA-like injuries [54]. Bmal1 con-
trols the dynamic balance and integrity of cartilage [6]. 
In a mouse model of OA, several clock genes in the early 
stages of cartilage degeneration were disrupted, suggest-
ing a role for circadian rhythms in maintaining a steady 
state in cartilage. Changing the light and dark cycle of the 
environment to interfere with circadian rhythms contrib-
uted to changes that induce knee osteoarthritis in mice 
[51].

When it comes to bones, skeletal muscles will be men-
tioned. Studies have shown that mechanical loads and 
endocrine factors may be the way for bone and mus-
cles communicating with each other [55]. Studies have 
shown that skeletal muscle molecular clock are associ-
ated with skeletal homeostasis. Loss of  Bmal1  solely 
from adult skeletal muscle (iMSBmal1  −/−) results in 

severe skeletal system pathology, similar to that observed 
in the Bmal1 knockout mice. iMSBmal1  −/− have the 
appearance of misshapen tibia and fibula, flattened tar-
sals, and increased calcification throughout the rib cage 
and thoracic spine, which was related to changes in the 
endocrine/paracrine function of muscle [56]. Therefore, 
endogenous skeletal muscle molecular clock is a modula-
tor of musculoskeletal health.

Energy metabolism (glucose, amino acid, and fat) 
in bone
Glucose metabolism in bone
In bone systems, glucose is a necessary source of energy 
for bone and joint cartilage development, growth and 
maintenance (Fig.  2). During embryo growth and fetal 
development, bone morphology is particularly important 
[57]. High blood sugar levels inhibit calcium absorption 
and bone calcification [58]. Increasing evidence sug-
gests that bone metabolism is closely related to glucose 
metabolism [59]. Early studies of bone transplantation or 
isolated osteoblastic cells have shown that glucose is an 
important nutrient in osteoblasts [60]. Bone absorption 
has been shown to rely on glycolysis. Studies have shown 
that osteoclasts fueled by galactose significantly reduced 
the degradation of type 1 collagen by reducing the rate 
of glycolysis, forcing cells to rely on oxidative phospho-
rylation [61]. One study confirmed that glucose intake by 
osteoblast precursors was the earliest determining factor 
in osteoblast differentiation and bone formation [62]. Dis-
order of glucose metabolism changes the maturation pro-
cess of cartilage cells, suggesting that glucose metabolism 
plays an indispensable role in the process of bone forma-
tion in cartilage. Glucose metabolic disorders are likely 
not only associated with abnormal cartilage growth but 
also the force driving these changes [63].Abnormal bone 
metabolism is a typical phenomenon in diabetic patients 
[27]. In studies, the bone density and bone strength of 
the lower limbs were significantly reduced in type 2 dia-
betes mellitus (T2DM) mice, serum osteocalcin levels 
were significantly reduced, and serum tartrate-resistant 
acid phosphatase-5p (TRAP) levels were significantly 
increased, indicating that bone brittleness in T2DM mice 
was due to increased bone absorption and decreased 
bone formation [15, 64]. Therefore, we can know that 
glucose metabolism abnormality is very harmful to bone 
health, energy metabolism is of great significance to bone 
development and bone regeneration [65]. Studies have 
shown that bone cells, dysfunction of osteoblasts and 
collagen crosslinking induced by advanced glycation end 
products (AGEs) are associated with bone brittleness in 
diabetes. Increased levels of homocysteine and AGEs in 
the circulation of diabetic patients directly impair the 
function of osteoblasts and other bone cells, leading to 



Page 5 of 15Luo et al. J Transl Med          (2021) 19:410 	

reduced bone formation and bone remodeling. When the 
bone reconstruction process is disrupted, old bone tissue 
is not renewed and AGE-induced collagen crosslinking 
is not re-established, leading to a deterioration in bone 
quality. High blood sugar and AGEs directly or indirectly 
inhibit bone formation and differentiation of osteoblasts 
by increasing the level of sclerosis of bone cells and by 
reducing Rankl expression in osteocytes, reducing the 
degree of bone reconstruction [59]. It is thought that 
high sugar levels inhibit the differentiation of osteoblast 
precursors and osteoblasts [66, 67]. In addition, high con-
centrations of glucose can lead to excessive production 
of AGEs and reactive oxygen species (ROS) [64], result-
ing in less substantial mineralization and abnormal bone 
formation [68]. Osteocalcin has long been considered a 
marker of new bone production and is now considered 
the first hormone produced by bones. Serum osteocalcin 
levels were found to be associated with new bone forma-
tion and the number of osteoblasts [69]. Osteocalcin is 
a non-collagenous protein secreted by osteoblasts and 
odontoblasts in the final stages of differentiation and an 
important factor in mineralization, and its level reflects 

the degree of bone remodeling [17]. Therefore, bone 
can be considered closely related to glucose metabolism 
[59]. Studies have shown that glucose-dependent insuli-
notropic polypeptide (GIP) and glucagon-like peptide-1 
(GLP-1) play important roles in the stable state of glucose 
metabolism and may be associated with the regulation 
of bone metabolism [15]. Previous studies have reported 
that increased glycolysis is involved in osteoblast differ-
entiation caused by Wnt signaling. Studies have shown 
that Wnt7b increases the expression of glucose trans-
porter 1 (Glut1) and glucose consumption in primary 
cultures of osteoblasts, while the absence of Glut1 inhib-
its the in  vitro differentiation of osteoblasts. Increased 
glycolysis mediates bone formation induced by Wnt7b 
[70]. Studies have revealed a link between glycolysis and 
osteoblast differentiation [71]. Thyroid side gland-pro-
duced hormones and bone-forming Wnt proteins such 
as Wnt3a and Wnt10b stimulate aerobic glycolysis of 
osteoblasts [72, 73]. Runt-related transcription factor 2, a 
crucial transcription factor for osteoblast differentiation, 
induces the expression of Glut1 in osteoblasts, while glu-
cose intake inhibits the degradation of Runx2 to promote 
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osteoblast differentiation [62]. Therefore, the study sup-
ports the supposition that increased glucose metabolism 
is an important mechanism for osteoblast differentiation 
and function [70]. Glucose and fatty acid metabolism 
are associated with bone anabolism in response to Wnt 
signaling [74]. Osteoblasts are derived from mesenchy-
mal stem cells (MSCs) and are also ancestors of fat cells. 
Osteoclasts are derived from hematopoietic stem cells 
[75]. When glucose metabolism is impaired, peroxisome 
proliferative activated receptor gamma (PPARγ) causes 
an increase in bone transformation by shifting inter-
bone marrow-filled stem cells into fat cells [75]. A recent 
research shows that a history of night shift work and 
unhealthy lifestyle can independently or synergistically 
increase the risk of T2DM [76]. Data show that impair-
ment of glucose metabolism is an emerging risk factor 
for T2DM, which often occurs in circadian rhythm dis-
orders and sleep deprivation caused by shift work [77]. 
During shift work, due to circadian rhythm disturbance 
and sleep deprivation, energy expenditure is affected and 
energy intake increases, leading to overweight and obe-
sity, which in turn increases the risk of T2DM [78]. Study 
have shown that the circadian rhythm of bone resorption 
is regulated and maintained by the feeding and fasting 
rhythm, although the preventive effect of food intake on 
bone resorption remains to be studied in depth [79].

Amino acid metabolism in bone
Studies have shown that amino acid restriction alters 
bone growth and bone differentiation in rodents [80–83]. 
Homocysteine, formed by methionine demethylation, 
is a sulfur-containing amino acid. Hyperhomocysteine-
mia independent of bone density increases the risk of 
osteoporotic fractures [84]. In summary, methionine is 
converted into S-adenosylmethionine (SAM), which is 
a common methyl group donor that contributes to the 
synthesis of homocysteine [85]. Studies have shown that 
increases in homocysteine increase the apoptosis rate of 
osteoblast-derived cells, such as osteocytes [86], osteo-
blasts [87], and bone marrow stromal cells [88]. Homo-
cysteine can then be re-methylated or vulcanized. After 
this reaction, glutathione and cysteine are synthesized, 
which play important roles in antioxidant capacity and 
protein synthesis, respectively [85]. l-arginine (Arg) and 
l-lysine (Lys) are essential amino acids in the body and 
are closely related to osteoporosis and bone and defects 
[89]. Changes in crosslinking and hydroxy lysine level 
are related to the mechanical capacity of bones [90, 91]. 
The content of lysine in collagen plays an indispensable 
role in the composition of collagen fibred crosslinking. 
The crosslinking process of bone collagen is essential for 
bone substation formation and is considered important 
in bone reconstruction [90] and fracture healing. Bone 

conversion markers, type I pre-collagen N-end peptides 
and type I collagen C-end peptides, such as provide sen-
sitive indicators of bone formation and bone absorp-
tion, respectively [92]. Metabolomics-based studies have 
reported correlations found with amino acid and bone 
health assessments [93–95]. In a cross-sectional study 
of women aged 18–79 years, studies linked arginine, ala-
nine, glutamate and proline intake to higher bone density 
in the forearms and spine [96]. In addition to the poten-
tial impact on collagen synthesis, arginine also promotes 
the production of bone cells. Tryptophan metabolism is 
thought to affect the activity of osteoclasts [89, 97, 98]. 
Mechanistically, surface molecules on T cells (CTLA-
4) combined with CD80/86 can activate the enzyme 
indoleamine 2,3-dioxygenase (IDO) in osteoclast precur-
sors, thereby degrading tryptophan and promoting apop-
tosis [99].

Fat metabolism in bone
There is a close link between bone and fat metabolism 
[100]. The bone trabecular area is where the active 
bone remodeling process takes place. The positioning 
of bone fat in the bone trabecular area suggests that 
bone marrow fat may be involved in bone reconstruc-
tion, possibly by providing energy for hematopoietic 
and bone marrow filling [101]. Fat cells play key roles 
in maintaining energy balance, storing energy in the 
form of lipids and releasing fatty acids when metabolic 
signals or energy is low [102]. Previous studies have 
reported that adipose tissue is related to bone metab-
olism. Organ fat cells not only store energy but also 
secrete a variety of bioactive factors called fat factors 
[59]. Studies have shown that there is an inverse rela-
tionship between bone mass and fat mass in bones. 
The increase in fat content in bone was found to be 
negatively related to bone mass in ageing and nega-
tively related to the decrease in bone acquisition during 
growth [103–105]. The peroxisome  proliferator-acti-
vated  receptor 2 (PPAR-2) subtype is activated with 
natural (fatty acids and ecological steroids) or artificial 
(TZD) ligands to induce bone marrow mesenchymal 
stem cells to differentiate into fat cells at the expense of 
bone-forming-cell development, resulting in bone mass 
reduction [106–108]. Obese patients usually exhibit 
higher bone mineral density than people of normal 
weight [109–111]. Endocrine activity in fat cells leads 
to the production of fat factors, through which leptin 
and lipids regulate the calorie intake and insulin sensi-
tivity of the outer tissue, respectively; these fat factors 
are also produced in bones [101]. The main function 
of leptin is to regulate the amount of fat stored in the 
body, which regulates hunger and energy consumption 
[112]. Leptin was the first hormone found in adipose 
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tissue more than 20 years ago, and since its discovery, 
evidence has accumulated to support the hypothesis 
that adipose tissue is an endocrine organ associated 
with regulating energy metabolism [113]. Studies have 
shown that adiponectin inhibits the formation of fat 
cells, stimulates the phenotype acquisition and cell pro-
liferation of osteoblasts, and inhibits the production of 
osteoclasts in  vitro [114]. Animal studies have shown 
that leptin increases bone density, bone mineral con-
tent and bone formation [115, 116]. Studies have shown 
that Wnt, PTH and IGF signaling stimulates glycolysis 
and glutamine to induce metabolism while increasing 
bone accumulation [117]. Leptin, a fat cell-derived hor-
mone, regulates bone metabolism through the sensory 
nervous system and the central nervous system [118]. 
Fat levels have been found to be associated with bone 
density and fracture risk [119]. Studies in animals have 

shown that fat-muscle-bone relationships may be asso-
ciated with circulating osteocalcin, a bone cell- and 
osteoblast-specific peptide [120].

The circadian clock regulates energy metabolism
The circadian rhythm regulates several activities, includ-
ing energy metabolism, feeding time, sleep, and endo-
crine and immune function [147]. In recent years, a great 
number of studies have emphasized that the circadian 
clock system is closely related to the maintenance of 
energy metabolism [148–153] (Table  1). The circadian 
clock has been shown to regulate the daily fluctuations 
of certain human metabolites, such as glucose [154] 
amino acids and fatty acids, regardless of the fasting/eat-
ing cycle [155]. These metabolites control and regulate 
physiological processes at the cell, organ and biological 
levels, integrating signals received from outside the cell 

Table 1  Metabolic phenotypes of clock disorders in mice

Mouse/experiment/mutation Phenotype/mechanism References

Chronic jet lag (6 h advance/week) Weight gain [121]

SCN lesion Loss of behavioral and molecular rhythms, obesity, hyperphagy [122]

Light exposure at night Metabolic and behavioral phase shifts, weight gain [123, 124]

Per3 knockout Increased fat mass [125]

Liver Bmal1 knockout Hypoglycemia during fasting period [126]

Pancreas Bmal1 knockout Hypoinsulinemia [127]

Cry1/2 double knockout Loss of behavioral rhythms, hyperinsulinemia [126, 128]

global Bmal1 knockout cataract, sarcopenia, arthropathy, and so on [129]

Clock Δ19 mice and the Clock/Npas2 double knockout spontaneously calcifying tendons [130]

Cry CRY also inhibits the transmission of signals downstream of glucagon recep-
tors, thus affecting the production of glycosomes at specific time

[131]

REV-ERB and HNF6 REV-ERB and HNF6 interact to regulate lipid metabolism [132]

Npas2−/− mice Lack nap-type rest periods during the activity Period and cannot be adjusted 
properly when the eating Time suddenly changes

[133]

Global Per1/2 knockout Reduced total hepatic triglycerides lever [134]

Clock, Bmal1, Cry2 Single nucleotide polymorphisms in Cry2, Bmal1 and Clock can alter an indi-
vidual’s risk of type 2 diabetes, abnormal blood lipids

[135–137]

Clock mutant, Bmal1−/− and Rev-erbα−/− mice Hyperlipidemic
Age-related skeletal muscle loss
Fiber-type shift
Impaired muscle regeneration

[129, 138, 139]

liver-specific Bmal1 or
Rev-erbα deletion

Levels of triglycerides, cholesterol and free fatty acids increased during circula-
tion

[140, 141]

Global Clock Δ 19  mutation Decreased glucose tolerance. Reduced plasma free fatty acids [142]

Clock mutant lack the circadian pattern of enterocyte gene expression and lipid absorption
The disruption of myofiber architecture
Reduction in muscle strength. Reduction in mitochondria

[143]

Muscle-specific Bmal1 knockout Insulin resistance and glucose intolerance
Impaired insulin stimulated glucose uptake
Increased muscle mass and size
Decreased muscle strength

[144]

Per2 knockout or Per2 mutant No change in muscle mass and lower exercise tolerance [8]

Rev-erbaα knockout Disruption of myofiber architecture
Lower exercise capacity
Slight fiber-type shift

[145, 146]
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and generated during normal metabolism with differ-
ent control mechanisms to accommodate possible local 
disturbances while maintaining circadian rhythms, opti-
mizing energy distribution in most cases [147]. Tran-
scription studies have shown that many genes involved 
in biosynthetic and metabolic processes are rhythmic 
and that their expression changes throughout the physi-
ological cycle [156–159]. A 48-h assessment of human 
plasma samples revealed that most metabolites (109 
clock metabolites of 171 metabolites) oscillated during 
a full 24-h waking/sleep cycle [160]. Thus, for humans, 
most circulating metabolites exhibit rhythmic circadian 
oscillations under normal physiological conditions [161].

Rhythm disorders lead to a decline in quality of life and 
are involved in metabolic syndrome, the development 
of obesity and neuro-psychiatric disorders [147]. Work 
associated with circadian rhythm disorders is shift work 
and air travel across meridians (jet lag). Shift work can 
disrupt central and outer biological clocks synchroniza-
tion, further disrupting glucose metabolism by reducing 
insulin sensitivity, independent of sleep loss [162, 163]. 
Under dynamic equilibrium conditions, the clock rhythm 
is the driving force of biological metabolism [164]. Glu-
cose metabolism is a complex physiological process. In 
humans, daily changes in insulin sensitivity and insulin 
secretion within 24 h were shown to fluctuate according 
to significant daily rhythms [165]. Studies have shown 
that the circadian clock system may maintain a dynamic 
balance of sugar metabolism by regulating the activity of 
key enzymes in glucose metabolism [166]. Pax6 mutant 
mice (Pax6Leca2) have disorganized melanin-positive 
intrinsically photosensitive retinal ganglionic cells in eye-
like structures and show loss of circadian rhythm. In vivo 
studies have shown that Pax6Leca2 mice had reduced liver 
glucose production and reduced hepatic function, pos-
sibly due to a loss of rhythm in the metabolic process 
[167]. In mice, the absence of liver-specific Bmal1 led 
to reduced liver glucose production and increased glu-
cose tolerance [168]. Therefore, as observed in the Pax-
6Leca2 mice, the loss of circadian rhythms may result in 
inhibition of liver function [167]. In addition, the loss of 
Bmal1 and Clock may lead to increased insulin sensitiv-
ity, which may be due to interruption to the core clock 
composition in living individuals [165, 168, 169]. At the 
cellular level, mitochondrial redox reactions [170], phos-
phate oxide [171, 172], and antioxidant defences [173] 
are regulated not only by circadian rhythms but also by 
feedback signaling to the core clock. Studies by Ashley 
et  al. have shown that models of multifunctional amino 
acid-substituted cells obtained from patients with Sny-
der-Robinson syndrome indicate that mitochondrial 
dysfunction is a potential cause of bone defects [174]. 
Studies by T aira Wada et  al. have shown that Bmal1 

regulation of skeletal muscle metabolism provides more 
insight into the link between obesity/diabetes and the 
circadian clock system in energy metabolism [175]. Stud-
ies by Ik Dong Yoo et al. have shown that overexpression 
of Clock and Bmal1 significantly inhibited aerobic sulfa-
tion and lactic acid production by reducing the protein 
expression levels of hexokinase 1 (HK1) and lactate dehy-
drogenase A (LDHA) [176]. Redox stress is an important 
metabolic regulation factor [177]. Circadian rhythm dis-
orders alter a variety of proteins that are known to regu-
late glucose stability and/or energy metabolism and are 
involved in changes in metabolic physiology. The find-
ings of Christopher M. Depner et al. demonstrated that 
studying the circadian clock, behavioral food intake-fast-
ing/waking-sleep cycles, and the interactions between 
these processes help in identifying mechanisms that can 
lead to metabolic disorders and regulate the 24-h pat-
tern in human plasma protein expression [178]. Many 
of the rate-limiting steps in metabolic pathways associ-
ated with metabolic diseases are regulated by circadian 
rhythms [179], further suggesting circadian rhythm dis-
order roles in metabolic disorders. Eun Roh et al. found 
that clock genes mediate the regulation of neuropeptide 
Y (NPY) and agouti-related protein (AGRP) transcription 
and suggested a new mechanism explaining the associa-
tion between clock genes and system metabolic regula-
tion. Overexpressed nicotinamide adenine dinucleotide 
(NAD) may help obese mice restore day and night fluc-
tuations in retarded metabolic behaviors by enhanc-
ing the interaction of clock genes with NPY and AGRP 
[180]. CREB, hepatocyte specific (CREBH)  regulates 
the acute stage response and energy balance of the liver 
under stress conditions and is regulated by the circadian 
clock [170]. Circadian rhythms are produced through 
a network of clock-controlled genes at the level of gene 
transcription that form an automatically regulated feed-
back loop [181]. The Clock/Bmal1 heterogenic dimer 
drives the circadian rhythm expression of many other 
transcription factors, enhancing and extending other cir-
cadian rhythm- adjusted functions. Liver nuclear targets 
or transcriptional regulators may be direct links between 
circadian rhythms and metabolic pathways [175]. Ze 
Zheng et al. showed that CREBH activation is regulated 
by circadian oscillations in the liver and that CREBH is 
an organ-specific circadian rhythm regulator of lipid 
metabolism. The dysfunction of CREBH led to impaired 
rhythms of triglyceride and fatty acid expression. The 
study found that the core circadian oscillator Bmal1 
regulated the activation/cracking of CREBH via AKT-
GSK3β signaling (Fig.  3). Core circadian oscillations 
regulate CREBH activity: (1) Core circadian oscillation 
Bmal1 regulates CREBH protein hydrolytic activation; 
(2) the output circadian rhythm regulator DBP or E4BP4 
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interacts with the activated CREBH protein to inhibit or 
synergize with CREBH activity [182]. In a two-year study, 
Leticia Goni and others found a significant interaction 
between the melatonin receptor 1B (MTNR1B) gene and 
dietary fat intake, affecting changes in obesity level, body 
composition and fat distribution [183]. The role of circa-
dian rhythm systems in controlling energy balance has 
long been thought to be associated with the regulation 
of body fat [184]. Circadian Clock-mutant mice showed 
a decrease in transcript expression of specific hypotha-
lamic peptides encoded to participate in energy balance 
[183]. Mice fed a high-fat diet with a mutation in circa-
dian clock developed obesity at a young age, as well as 
metabolic and endocrine abnormalities consistent with 
metabolic syndrome [129]. Studies have shown that the 
transcription factor co-activation by PGC-1a is an impor-
tant function of the liver and muscle circadian clock and 
is the main regulator of mitochondrial biological occur-
rence and energy metabolism. There is a regulatory cir-
cuit between the clock machinery and metabolism [161]. 
The fat cell-derived hormone leptin plays a vital role in 
metabolic control by reducing food intake and increas-
ing energy consumption. Studies by Alisa Boucsein 
et  al. show that leptin sensitivity is controlled within a 
24-h rhythm, in which diet-induced obesity (DIO) is 
disrupted, causing impaired energy metabolic regula-
tion [185]. Feeney et  al. reported a novel physiological 
function of Mg2+ in cell circadian rhythm regulation. 

They observed rhythmic changes in the concentration 
of magnesium ions in cells that regulate cell timing and 
energy balance. Mg2 + is an important rate-limiting fac-
tor for many metabolic effects; therefore, we think that 
the differential expression level of PRL2 (a member of the 
phosphatase family expressed in regenerating liver) can 
regulate the concentration of Mg2+ in cells to balance the 
energy needs of cells. The results of noriko Uetani et al. 
suggest a model in which the daily oscillations caused by 
PRL2 expression produce rhythmic Mg2+ currents, which 
lead to an appropriate daily metabolic cycle [186].

Circadian rhythm and bone energy metabolism
Circadian rhythms regulate activities such as eating 
time, sleep, energy metabolism, and endocrine-related 
case conditions under the action of a circadian clock 
located in the central nervous system and peripheral 
cells [187]. The study also found an interesting phenom-
enon in which methotrexate raises the important cell 
circadian rhythm gene, leading to the apoptosis of slid-
ing membrane fibroblasts. The link between circadian 
rhythms of the disease and time therapy for rheumatoid 
arthritis is promising [188, 189]. Bone reconstruction is 
a continuous process of bone formation by osteoblasts 
and bone absorption by osteoclasts to maintain balance 
[190]. The development and differentiation of these two 
different cells are strictly regulated by many endoge-
nous substances, including growth factors, hormones, 
cytokines and neurotransmitters [191]. Glucose is the 
main source of energy for most mammalian cells. Glu-
cose is metabolized in the cytoplasm through glycoly-
sis. Glycolysis produces many intermediate metabolites 
that are essential for various biosynthetic pathways. 
Pyruvate, the final product of glycolysis, can be con-
verted into lactic acid or further oxidized in the tricar-
boxylic cycle [60]. The intermediates of tricarboxylic 
acid are usually extracted from the cycle through a pro-
cess called quenching to support biosynthesis, redox 
regulation and the apparent genetic regulation of lipids 
and amino acids [192–194]. There is growing evidence 
to show that glycolysis in osteoblast cells is directly 
stimulated by a variety of anabolic signaling pathways 
in bone [60]. Parathyroid hormone signaling was pre-
viously shown to stimulate lactic acid production and 
glucose consumption in bone implants before it was 
clinically used to promote bone formation in osteo-
porotic patients [195]. The activity of osteoblasts and 
osteoclasts is regulated by a series of signaling path-
ways, including parathyroid hormone signaling path-
ways, and more importantly, parathyroid hormones are 
expressed via circadian rhythms [190]. In addition to 
hormones, other factors that regulate bone reconstruc-
tion are also rhythmically expressed, such as calcium, 
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Fig. 3  The core molecular circadian clock is present in all mammalian 
cells and consists of a single unit of positive (CLOCK and BMAL1) and 
negative (CRY, PER, and REV-ERB alpha). Molecular clocks regulate 
the expression of hundreds of clock control genes (CCGs), including 
metabolic media. BMAL1 regulates the activation/cracking of CREBH 
via AKT-GSK3β signaling. Core circadian oscillations regulate CREBH 
activity: (1) The core circadian oscillation BMAL1 protein regulates 
CREBH protein hydrolytic activation; (2) the output circadian rhythm 
regulator DBP or E4BP4 interacts with the activated CREBH protein to 
inhibit or synergize with CREBH activity
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osteocalcin, C-telopeptide, bone alkaline phosphatase, 
and calcitonin [10–12]. So we can make a bold guess 
that circadian rhythms can affect bone building by reg-
ulating the energy metabolism of the bone.

Summary and outlook
The circadian clock is associated with bone development 
and the regulation of bone homeostasis; most molecules 
involved in osteoblast differentiation are controlled by 
circadian rhythms, and most genes associated with min-
eral deposition appear in circadian rhythm patterns [5, 
35–37]. In bone systems, glucose is a necessary source of 
energy for bone and joint cartilage development, growth 
and maintenance. During embryo growth and fetal devel-
opment, bone morphology is particularly important 
[57]. At the same time, amino acid metabolism and fat 
metabolism also play important roles in bone differentia-
tion [117, 196]. Therefore, energy metabolism is of great 
significance for bone development/bone regeneration. In 
recent years, many studies have emphasized that the cir-
cadian clock system is closely related to the maintenance 
of energy metabolism [148–153]. These reports show 
that circadian rhythms can regulate bone activity, which 
is important for bone development/bone regeneration, 
and that the circadian clock regulates energy metabolism. 
However, the relationship between circadian rhythms 
and bone energy metabolism has not been well articu-
lated, and further evidence is needed to advance the 
understanding of the interaction between the circadian 
clock and bone energy metabolism.
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