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tumor immunity and prognosis of patients 
with colorectal cancer
Yan‑Jie Chen1  , Shu‑Neng Luo1, Ling Dong1, Tao‑Tao Liu1, Xi‑Zhong Shen1, Ning‑Ping Zhang1* and 
Li Liang2*   

Abstract 

Background:  Since interferon regulatory factor (IRF) family functions in immune response to viral infection, its role 
in colorectal cancer (CRC) has not been inspected before. This study tries to investigate members of IRF family using 
bioinformatics approaches in aspect of differential expressions, biological function, tumor immune infiltration and 
clinical prognostic value for patients with CRC.

Methods:  Transcriptome profiles data, somatic mutations and clinical information of CRC were obtained from COAD/
READ dataset of The Cancer Genome Atlas (TCGA) as a training set. Gene expression data (GSE17536 and GSE39582) 
were downloaded from the Gene Expression Omnibus as a validating set. A random forest algorithm was used to 
score the risk for every case. Analyzing gene and function enrichment, constructing protein–protein interaction and 
noncoding RNA network, identifying hub-gene, characterizing tumor immune infiltration, evaluating differences 
in tumor mutational burden (TMB) and sensitivity to chemotherapeutics or immunotherapy were performed by a 
series of online tools and R packages. Immunohistochemical (IHC) examinations were carried out validation in tissue 
samples.

Results:  Principal-component analysis (PCA) suggested that the transcript expression levels of nine members of 
IRF family differed between normal colorectum and CRC. The risk score constructed by IRF family not only acted as 
an independent factor for predicting survival in CRC patients with different biological processes, signaling pathways 
and TMB, but also indicated different immunotherapy response with diverse immune and stromal cells infiltration. 
IRF3 and IRF7 were upregulated in CRC and suggested a shorter survival time in patients with CRC. Differentially 
expressed members of IRF family exhibited varying degrees of immune cell infiltration. IHC analysis showed a positive 
association between IRF3 and IRF7 expression and tumor-infiltrating immune cells, including CD4+ T cell and CD68+ 
macrophages.

Conclusions:  On account of differential expression, IRF family members can help to predict both response to immu‑
notherapy and clinical prognosis of patients with CRC. Our bioinformatic investigation not only gives a preliminary 
picture of the genetic features as well as tumor microenvironment, but it may provide a clue for further experimental 
exploration and verification on IRF family members in CRC.
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Background
Colorectal cancer (CRC) is one of the leading causes of 
cancer-related deaths worldwide [1]. Approximately 1.8 
million new CRC cases and > 860,000 CRC-related deaths 
occurred globally in 2018, making CRC the third most 
frequent cancer worldwide [1, 2]. CRC develops through 
a multistep process characterized by accumulated genetic 
and epigenetic abnormalities that cause genomic insta-
bility and mutations in tumor-suppressor and oncogenic 
genes [3]. Most CRC lesions show little sensitivity to 
immune-checkpoint inhibitor-based therapies, although 
immunologic parameters may have prognostic value [4]. 
Therefore, further research on the tumor immunity of 
CRC will provide a theoretical basis for developing CRC 
immunotherapeutic.

Interferons were first discovered as antiviral pro-
teins, and subsequently, interferon regulatory factors 
(IRFs) were discovered and studied intensively. IRFs are 
transcription factors participating in interferon gene 
regulation [5]. The amino termini of IRFs contain a 
DNA-binding domain (DBD) composed of 115 amino 
acids (like DBD of Myb) and can bind promoter regions 
in DNA. The carboxyl termini of IRFs have a variable 
region that serves various biological functions [6]. Ten 
IRFs (IRF1 to IRF9 and virus IRF) have been discov-
ered. IRFs are found in various tissues and play impor-
tant roles in cell-cycle regulation, cell differentiation, 
apoptosis, and tumor immune regulation [6]. Future 
studies on IRFs will provide a theoretical basis for their 
mechanistic roles in tumor development and tumor 
immunity and for choosing drug therapies.

The roles of IRFs in CRC have not been investigated 
using bioinformatics analysis. Here, we used public 
databases to analyze IRF expression levels and muta-
tions in CRC patients to determine distinct prognostic 
values, study tumor immunity regulation, and identify 
potential functions of IRFs in CRC. We verified these 
results via immunohistochemistry (IHC) analysis with 
our own cohort of CRC patients.

Methods
Data acquisition
Data regarding fragments per kilobase million (FPKM) 
values and microRNA (miRNA)-expression levels of 

patients with CRC were downloaded from the COAD/
READ datasets of The Cancer Genome Atlas (TCGA) 
Genomic Data Commons website (https://​portal.​gdc.​
cancer.​gov/) and used as the training dataset. FPKM 
values were converted to transcripts per million val-
ues and divided into mRNA- and long noncoding RNA 
(lncRNA)-expression groups. “Masked Somatic Muta-
tion” data of patients with CRC were downloaded, pre-
processed using VarScan software, and visualized using 
the R software package, maftools [7]. The clinicopatho-
logical features and prognoses of patients with CRC, 
such as gender, age, and stage, were downloaded from 
the UCSC Xena website (http://​xena.​ucsc.​edu/). After 
removing samples with missing clinical information, 
597 tumor samples and 51 normal tissue samples were 
obtained. Table 1 and Additional file 5: Table S6 shows 
the baseline clinical information of patients with CRC 
from TCGA-COAD/READ datasets. The likelihood of 
each response to immunotherapy was predicted using 
the Tracking of Indels by DEcomposition (TIDE) algo-
rithm (http://​tide.​dfci.​harva​rd.​edu) [8]. Gene expres-
sion data from different organizations and in different 
cell lines were downloaded from TCGA and the Cell 
Line Cancer Encyclopedia (CCLE) databases (https://​
porta​ls.​broad​insti​tute.​org/​ccle/​about) to compare IRF 
expression levels between tumor and normal tissues.

Gene expression data in GSE17536 [9] and GSE39582 
[10] and clinicopathological patient characteristics 
were downloaded as validation datasets from the Gene 
Expression Omnibus (GEO) database. The data were 
downloaded from Homo Sapiens; this platform is based 
on the GPL570 [HG-U133_PLus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array. GSE17536 included 177 
colon cancer tissue samples, and GSE39582 included 
566 colon cancer tissue samples and 19 colon non-
tumor tissue samples.

Genetic characteristics of the IRF family and validation 
by constructing clinical prediction models
We incorporated the expression levels of IRF family 
genes into a random forest model. The random forest 
package of R [11] was used to develop an IRF-based 
risk-assessment model for patients with CRC. Patients 
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were divided into high- and low-IRF risk groups, based 
on the median value.

To assess patient prognosis by combining the IRF risk 
score with clinicopathological features, univariate and 
multivariate Cox proportional-hazards analyses were 
used to analyze the independent predictive power of 
risk scores for overall survival (OS) and disease-free 
survival (DFS). Subsequently, a survival-prediction 
nomogram was constructed for patients in TCGA data-
set and was validated for patients in the GEO dataset. 
To quantify differentiation performance, Harrell’s con-
sistency index (C-index) was measured. A calibration 
curve was generated to evaluate the performance of 
the line map by comparing the predicted value of the 
line map with the observed OS rate. In the calibration 
curve, the abscissa shows the survival rate predicted 
by the model, and the ordinate shows the survival rate 

observed. Theoretically, the prediction should be con-
sistent with the observation, which is the diagonal line. 
However, there is still a gap between the actual pro-
cess and the theory. The closer the line and the dashed 
line between the points, the better the consistency of 
the model. We used the above methods to evaluate the 
quality of the model.

Differentially expressed genes (DEGs) and clinical 
correlation analysis
Data of patients with CRC were downloaded from 
TCGA and the GEO databases, and the patients were 
divided into high- and low expression groups, accord-
ing to the IRF score. The DESeq2 package of R [12] was 
used to analyze DEGs in both groups, where a log fold-
change (logFC) more than 1.0 and P value less than 

Table 1  The baseline information of patients with colorectal cancer (CRC) and scoring interferon regulatory factor (IRF) family by 
random forest algorithm from The Cancer Genome Atlas (TCGA) database of COAD/READ datasets

Patients from COAD/READ All patients
(n = 597)

Low
(n = 298)

High
(n = 299)

P value

Gender 0.904

 Female 277 (46.4%) 139 (46.6%) 138 (46.2%)

 Male 320 (53.6%) 159 (53.4%) 161 (53.8%)

Age 0.378

 < 60 170 (28.5%) 80 (26.8%) 90 (30.1%)

 ≥ 60 427 (71.5%) 218 (73.2%) 209 (69.9%)

Pathologic stage  < 0.001

 I 108 (18.1%) 69 (23.1%) 39 (13.1%)

 II 225 (37.7%) 120 (40.3%) 105 (35.1%)

 III 177 (29.6%) 86 (28.9%) 91 (30.4%)

 IV 87 (14.6%) 23 (7.7%) 64 (21.4%)

T 0.002

 T1 19 (3.2%) 11 (3.7%) 8 (2.7%)

 T2 105 (17.6%) 65 (21.8%) 40 (13.4%)

 T3 408 (68.3%) 201 (67.5%) 207 (69.2%)

 T4 65 (10.9%) 21 (7.0%) 44 (14.7%)

N  < 0.001

 N0 342 (57.3%) 191 (64.1%) 151 (50.6%)

 N1 145 (24.3%) 71 (23.8%) 74 (24.7%)

 N2 110 (18.4%) 36 (12.1%) 74 (24.7%)

M  < 0.001

 M0 453 (75.9%) 249 (83.6%) 204 (68.2%)

 M1 85 (14.2%) 22 (7.4%) 63 (21.1%)

 MX 59 (9.9%) 27 (9.0%) 32 (10.7%)
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0.05 was considered a threshold value with statistical 
difference for DEGs.

We compared the expression levels of IRF family 
genes at different TNM stages. The Human Protein 
Atlas (HPA, https://​www.​prote​inatl​as.​org) provides 
immunohistochemical expression data for nearly 20 
different cancers [13] and enables the identification of 
tumor type-specific differential protein expression pat-
terns, where protein expression levels of all IRF fam-
ily genes were compared between normal and CRC 
tissues.

Functional enrichment analysis and gene set enrichment 
analysis (GSEA)
Gene Ontology (GO) analysis is commonly used for 
large-scale functional enrichment research of biologi-
cal processes (BPs), molecular functions, and cellular 
components. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a widely used database containing 
information regarding genomes, biological pathways, 
diseases, and drugs. GO and KEGG pathway-enrich-
ment analyses were performed with signature genes 
using the clusterProfiler R package [14]. A false-
discovery rate of < 0.05 was considered statistically 
significant.

To investigate differences in BPs among differ-
ent subgroups, GSEA was performed using the gene 
expression profiles of patients with CRC. GSEA can 
be used to identify the statistical differences between 
two groups in a gene set and estimate changes in path-
ways and BP activities [15]. The gene set “C2.CP.kegg. 
V6.2.-symbols” [15] was downloaded from the Molecu-
lar Signatures Database for GSEA. An adjusted P value 
of < 0.05 was considered statistically significant.

Constructing a protein–protein interaction (PPI) network 
and screening hub genes
We used the Search Tool for Retrieving Interacting 
Genes (STRING) database [16], which predicts PPIs, to 
construct PPI networks for the selected genes. Genes 
with scores > 0.4 were selected to construct a network 
model, which was visualized with Cytoscape V3.7.2 
[17]. In the co-expression network, the maximum 
clique centrality (MCC) algorithm most effectively 
located the node in a set. The MCC of each node was 
calculated using CytoHubba plugins [18] in Cytoscape, 
and genes with the highest eight MCC values were 
selected as hub genes.

Constructing a competing endogenous RNA (ceRNA) 
network based on miRNA‑mRNA and miRNA‑lncRNA 
interactions
LncRNA-miRNA interaction data were downloaded 
from the miRcode database and miRNA-mRNA inter-
action data were downloaded from the miRTarBase, 
miRDB, and TargetScan databases. The DESeq2 pack-
age of R [12] was used to analyze miRNA and lncRNA 
expression differences between the high-IRF and 
low-IRF risk groups. LogFC > 1.0 and P < 0.05 were 
set as criteria for a statistically significant difference. 
Cytoscape (V3.7.2) was used to construct a ceRNA net-
work by analyzing the correlations between lncRNA- 
and mRNA-regulated miRNAs simultaneously.

Tumor immune estimation resource (TIMER) database 
analysis and comparison of immune‑correlation scores 
between both groups
The TIMER database (https://​cistr​ome.​shiny​apps.​io/​
timer/) enables users to estimate B-cell, CD4+ T cell, 
CD8+ T cell, macrophage, neutrophil, and dendritic-
cell infiltration into different tumor types [19]. We used 
the TIMER database to analyze correlations between 
the expression levels of different IRF genes and immune 
cell infiltration in COAD/READ samples.

The R estimate package [20] quantifies immune cell 
infiltration levels in tumor samples, based on gene 
expression profiles, and was used to assess the immune 
activity and stromal score of each tumor sample. 
Immune cell infiltration levels between both groups 
were compared using the Mann–Whitney U test.

Analysis of anticancer therapy sensitivity
The Genomics of Drug Sensitivity in Cancer (GDSC) 
database (https://​www.​cance​rrxge​ne.​org/) enables 
exploration of gene mutations and targeted can-
cer therapies. We downloaded gene expression data 
from cell lines and IC50 values to analyze correlations 
between differentially expressed IRF genes and antican-
cer drug sensitivities.

Calculating tumor‑mutation load fractions and analyzing 
genetic variations of IRF family members in CRC​
The tumor mutational burden (TMB) of each tumor 
sample was defined as the number of somatic cell 
mutations identified, excluding silent mutations. 
Patients with CRC were divided into high-TMB and 
low-TMB groups according to the median TMB value. 

https://www.proteinatlas.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://www.cancerrxgene.org/
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The Wilcoxon rank-sum test was used to compare the 
risk scores of IRF family genes between both groups.

Patients and specimens in the validation cohort
Tumor specimens were obtained from 114 CRC 
patients who underwent treatment at Zhongshan Hos-
pital (Fudan University) between 2008 and 2016. The 
inclusion criteria were as follows: (a) a clear pathologi-
cal diagnosis of CRC, (b) complete follow-up data until 
December 2019, (c) suitable formalin-fixed and paraf-
fin-embedded tissues, and (d) agreeing to participate in 
the study and provide signed informed consent. CRC 
diagnosis was based on the World Health Organization 
criteria, and tumor stages were classified according to 
the 7th edition of TNM classification of International 
Union Contra Cancrum. Ethical approval was obtained 
from the Research Ethics Committee of Zhongshan 
Hospital. The clinical characteristics of the 102 patients 
with follow-up data are presented in Additional file  5: 
Table S1.

IHC staining evaluation
Cancer and adjacent normal tissues were formalin-
fixed, paraffin-embedded, and prepared as tissue 
microarrays (TMAs) after hematoxylin and eosin stain-
ing and histopathology-guided location. Five-micron-
thick TMA sections were deparaffinized and rehydrated 
in 0.1 M citrate buffer (pH 6.0), followed by high-tem-
perature antigen retrieval in a microwave for 15  min. 
The sections were incubated overnight at 4 °C with pri-
mary antibodies against IRF3 and IRF7 (Abcam, Cam-
bridge, UK), CD4 (Servicebio Technology, Wuhan, 
China), CD8 (Servicebio Technology), CD19 (Service-
bio Technology), CD68 (Servicebio Technology), MPO 
(Servicebio Technology) and CD21 (Servicebio Tech-
nology). The sections were incubated for 30  min with 
a secondary antibody at room temperature and immu-
nostained based on avidin biotin complex formation, 
using 3,3′-diaminobenzidine. Hematoxylin was used as 
a counterstain.

Antigen–antibody complexes in whole sam-
ples were detected using a panoramic slice scanner 

(3DHISTECH, Hungary) and viewed with CaseViewer 
2.2 (3DHISTECH). H-scores were calculated to 
evaluate gene expression levels using Quant Center 
2.1 (3DHISTECH): H-score = Σ (PI × I) = (% of 
weakly stained cells × 1) + (% of moderately stained 
cells × 2) + (% of strongly stained cells × 3), where PI is 
the proportion of the positive area, and I is the staining 
intensity.

Statistical analysis
The data were analyzed with R software (V4.0.2). The 
independent Student t test was used to estimate the 
statistical significance of normally distributed vari-
ables, and the Mann–Whitney U test was used to ana-
lyze differences in non-normally distributed variables 
between two groups of continuous variables. The chi-
squared test or Fisher exact test was used to analyze 
statistical significance between two groups of categori-
cal variables. Correlation coefficients between different 
genes were calculated via Pearson correlation analysis. 
The survival package of R was used for survival analy-
sis, Kaplan–Meier survival curves were used to deter-
mine survival differences, and the log-rank test was 
used to evaluate significant differences in survival times 
between two groups. Univariate and multivariate Cox 
analyses were used to determine independent prognos-
tic factors. The pROC package of R [21] was used to 
draw receiver operating-characteristic (ROC) curves, 
and area under the curve (AUC) values were calcu-
lated to assess the accuracy of risk scores for prognosis 
estimations. All statistical P values were bilateral, and 
P < 0.05 was considered statistically significant.

Results
Differential transcriptome expression of IRF family in CRC 
and the prognostic value
At first, we investigated the transcript level expression 
of IRF family in pan-cancer of tumor cells as well as 
tumor tissues in the CCLE and TCGA database (Addi-
tional files 3, 4: Figure S3 and S4). Then, principal com-
ponent analysis of the transcriptomic expression levels 
suggested that the tumor and normal cases of CRC 

Fig. 1  Interferon regulatory factor (IRF) family differentially expressed in patients with colorectal cancer (CRC) from The Cancer Genome Atlas 
(TCGA) database of COAD/READ datasets. A Principal Component Analysis (PCA) based on the expression of the members suggested that the 
colorectum and CRC could be well separated by the IRF family. B A Heat map showed IRF family members differentially expressed in patients 
with colorectal cancer (CRC). C Significant differential expression of IRF3, IRF4, IRF7 and IRF9 were observed between CRC and paired normal 
cases, with receiver operating-characteristic (ROC) curves suggesting that the expression could help to distinguish tumor and normal tissues. D, F 
Representative immunohistochemistry (IHC) staining from the The Human Protein Atlas database for IRF3 and IRF7 in normal and tumor colorectal 
tissue were shown. E, G IHC analysis of cancer and para-cancerous tissues in 12 patients confirmed the IRF3 and IRF7 protein levels in CRC tissues, 
revealing that IRF3 was upregulated in CRC, whereas IRF7 did not meet significant statistical level. **p < 0.01; ***p < 0.001

(See figure on next page.)
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could be well separated by nine members of IRF fam-
ily (Fig. 1A). IRF3, IRF4, IRF7 and IRF9 were identified 
differentially expressing in CRC (Fig.  1B). Specifically, 
IRF3, IRF7, and IRF9 were significantly upregulated 
in tumor tissues, whereas IRF4 was downregulated 
(P < 0.001; Fig.  1C). ROC analysis showed that their 
expression levels had good diagnostic value for CRC 
(IRF3: AUC: 0.904, IRF4: AUC: 0.911, IRF7: AUC: 
0.625, IRF9: AUC: 0.659, Fig. 1C).

Analyzing protein expression levels in CRC and nor-
mal tissues with the HPA database (Fig.  1D, F; Addi-
tional file  1: Figure S1) revealed that IRF3 and IRF7 
were upregulated in cancer tissues. IHC confirmed 
these results and suggested that the IRF3 protein was 
more highly expressed in cancer tissues than that in 
normal tissues (Fig. 1E, G).

Increased IRF3 and IRF7 expression related to worse 
prognosis of patients with CRC​
The mRNA expression levels of IRF3 and IRF7 were 
significantly correlated with OS (Log-rank test, P = 0.04 
and P = 0.05), respectively (Fig.  2A, C). IHC verified 
these results at the protein level in a cohort of 102 
patients with recurrent or advanced CRC. IRF3 and 
IRF7 protein upregulation showed significant negative 
correlations with OS (P = 0.026 and 0.033), respectively 
(Fig. 2B, D).

An IRF risk model predicted OS and DFS in patients 
with CRC​
We compared IRF expression levels with tumor stages 
in patients with CRC. IRF1 and IRF6 expression signifi-
cantly varied (IRF1: P < 0.001, Fig. 3A; IRF6: P = 0.041, 
Fig. 3B), whereas the other members of IRF family did 
not. It was also found that the more advance the clini-
cal stage, the higher the expression of IRF6 (Fig.  3B). 
Conversely, IRF1 had the highest median expression in 
stage II patients (Fig. 3A). A random forest model was 
applied and patients from TCGA and GEO datasets 

were divided into high- and low-IRF score groups, 
based on the median risk score (Fig.  3C). Patients in 
the low-IRF score group showed a better prognosis 
(TCGA: log-rank P < 0.001, Fig.  3D; GEO: log-rank 
P = 0.045, Fig. 3E).

Univariate and multivariate Cox analyses showed 
that IRF risk score was an independent risk factor for 
OS and DFS (Tables 2 and 3; Fig. 3F, G). IRF risk scores 
and clinicopathological features were used to construct 
a nomogram to predict OS and DFS (Fig. 3H, J). Based 
on the C-index, the nomogram showed high discrimi-
nability in TCGA and GEO datasets (OS: TCGA: 0.928 
[0.910–0.945]; GEO: 0.610 [0.571–0.649]; DFS: TCGA: 
0.940 [0.922–0.958]; GEO: 0.656 [0.616–0.65]). A cali-
bration curve showed good consistency between the 
nomograms and the recorded 1-, 3-, and 5-year OS and 
DFS rates (Fig. 3I, K).

Relationship between IRF scores and gene expression 
profiles
Analysis of data of patients in the high- and low-IRF 
score groups identified 126 DEGs (|logFC|> 1.0 and 
P < 0.05; Fig.  4A, B, Additional file  5: Table  S2). GO 
analysis showed that the DEGs were closely related 
to BP terms such as Gas Transport, Antimicrobial 
Response, Humoral Immune Response, and Sen-
sory Organ Morphogenesis (Fig.  4C; Additional file  5: 
Table S3). Differentially expressed IRF genes were asso-
ciated with enriched KEGG terms such as Nitrogen 
Metabolism, JAK-STAT Signaling Pathway, Staphylo-
coccus Aureus Infection, and Cytokine Receptor Inter-
action Pathways (Fig. 4D; Additional file 5: Table S4).

GSEA suggested that upregulation of KEGG_RIBO-
SOME and KEGG_CARDIAC_ MUSCLE_CON-
TRACTION were significantly enriched, while 
downregulation of KEGG_ HEMATOPOIETIC_
CELL_LINEAGE, KEGG_INTESTINAL_IMMUNE_
NETWORK_ FOR_IGA_ PRODUCTION and 
KEGG_CHEMOKINE_SIGNALING_PATHWAY were 

Fig. 3  Clinical-prediction models were established based on IRF family expression levels. A, B Clinical-correlation analysis showed that IRF1 and 
IRF6 expression is significantly correlated with different clinical stages. C A random-forest model was constructed based on expression levels 
of IRF family. The weighted values of each member were shown. D, E Survival analysis showed that patients with low IRF score had a good 
prognosis according to data from both The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. F The predictive power 
of multivariate Cox analysis of IRF scores combined with clinicopathological features for OS. G The predictive power of multivariate Cox analysis 
of IRF scores combined with clinicopathological features for predicting disease-free survival (DFS). H A histogram for predicting OS based on 
IRF scores and clinicopathological features. I Calibration curve for the OS nomogram; J A histogram for predicting DFS based on IRF scores and 
clinicopathological features. K Calibration curve for the DFS nomogram. *p < 0.05; **p < 0.01; ***p < 0.001

(See figure on next page.)
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significantly enriched in high IRF scores group (Fig. 4E; 
Additional file  5: Table  S5). Figure  4F displays enrich-
ments for the related pathways.

Expression of IRF family related to tumor immune 
infiltration
For patients with CRC, IRF expression levels corre-
lated positively, in most cases, with the infiltration lev-
els of different immune cells. The expression of IRF3 in 

patients with colon cancer was negatively correlated 
with the infiltration level of B cells, CD8+ T cells, and 
macrophages, and positively correlated with the infil-
tration of CD4+ T cells. IRF3 expression in patients 
with rectal cancer was negatively correlated with the 
infiltration level of CD8+ T cells, and positively corre-
lated with the infiltration level of CD4+ T cells. IRF7 
expression was positively correlated with the infiltra-
tion of CD4+ T cells, macrophages, neutrophils, and 

Table 2  Univariate and multivariate Cox analyses of overall survival prediction, based on IRF scores calculated by cases from TCGA​

HR hazard ratio, CI confidence interval

Variable Univariate Cox analysis Multivariate Cox analysis

HR (95% CI) P value HR (95% CI) P value

Age (≥ 60 vs. < 60) 1.73 (1.09–2.77) 0.020 1.42 (0.86–2.33) 0.171

Gender (male vs. female) 1.08 (0.74–1.56) 0.678 0.69 (0.47–1.04) 0.075

T stage (T3 and T4 vs. T1 and T2) 3.08 (1.50–6.33) 0.002 1.23 (0.59–2.57) 0.584

N stage (N1 and N2 vs. N0) 2.82 (1.93–4.14)  < 0.001 0.64 (0.25–1.62) 0.341

M stage (M1 and MX vs. M0) 2.86 (1.98–4.15)  < 0.001 1.83 (1.18–2.82) 0.006

Stage (III + IV vs. I + II) 3.22 (2.18–4.77)  < 0.001 2.77 (0.99–7.76) 0.052

IRF score (high vs. low) 2216.68 (654.36–7509.12)  < 0.00 2401.99 (624.22–9242.82)  < 0.001

Table 3  Univariate and multivariate Cox analyses of disease-free survival prediction, based on IRF scores calculated by cases from 
TCGA​

HR hazard ratio, CI confidence interval

Variable Univariate Cox analysis Multivariate Cox analysis

HR (95% CI) P value HR (95% CI) P value

Age (≥ 60 vs. < 60) 1.00 (0.60–1.69) 0.975 1.02 (0.59–1.78) 0.934

Gender (male vs. female) 1.15 (0.72–1.84) 0.567 0.75 (0.46–1.24) 0.263

T stage (T3 and T4 vs. T1 and T2) 8.40 (2.06–34.31) 0.003 3.41 (0.82–14.17) 0.091

N stage (N1 and N2 vs. N0) 4.77 (2.77–8.24)  < 0.001 0.74 (0.28–1.96) 0.547

M stage (M1 and MX vs. M0) 5.57 (3.45–8.99)  < 0.001 2.99 (1.72–5.18) 0.001

Stage (III + IV vs. I + II) 6.52 (3.57–11.91)  < 0.001 3.32 (1.04–10.61) 0.043

IRF score (high vs. low) 1585.65 (372.03–6758.19)  < 0.001 1855.25 (335.16–10,269.55)  < 0.001

(See figure on next page.)
Fig. 4  Differentially expressed gene (DEG) and functional-enrichment analysis between high- and low-IRF groups. A, B Volcano and heat 
maps showed 126 DEGs between high- and low-IRF groups. C The Gene Ontology analysis suggested that DEGs were closely correlated to the 
terms such as gas transport, antimicrobial humoral response, humoral immune response, and sensory organ morphogenesis. D The five most 
significant pathways, including Cytokine-cytokine receptor interaction, JAK-STAT signaling pathway, Nitrogen metabolism, Salivary secretion, 
and Staphylococcus aureus infection, and their corresponding gene information were shown after Kyoto Encyclopedia of Genes and Genomes 
enrichment analysis. E Volcanic maps exhibited Gene-Set Enrichment Analysis results for upregulated and downregulated pathways. The X axis 
represented the relative enrichment score corresponding to the pathway after the Gene Set Enrichment Analysis, and the Y axis represented the 
names of the most significant pathways obtained by enrichment analysis. F Patients in the high-IRF group showed correlations with the terms as 
ribosome and cardiac muscle contraction pathways, whereas the terms hematopoietic cell lineage, intestinal immune network for IgA production, 
while chemokine signaling pathway (among other pathways) were significantly underrepresented for patients in the high-IRF group
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Fig. 4  (See legend on previous page.)
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dendritic cells in patients with colon cancer; its expres-
sion in patients with rectal cancer was negatively cor-
related with the infiltration level of CD8+ T cells, and 
positively correlated with the infiltration of CD4+ T 
cells and dendritic cells (Fig.  5A, B; Additional file  2: 
Figure S2). We also observed positive correlations 
between IRF3 and IRF7 protein expression levels and 
markers of tumor-infiltrating immune cell via IHC in 
102 cases of CRC. IRF3 expression was positively cor-
related with CD4 expression, suggesting a correlation 
with CD4+ T cell infiltrating, whereas IRF7 expression 
was positively correlated with CD4 and CD68 expres-
sion, suggesting correlations with CD4+ T cell and 
macrophages infiltrating (Fig. 5C, D).

Correlations between IRF gene expression levels 
and the biological characteristics of patients with CRC​
Analysis of datasets from TCGA and GEO showed that 
patients in the high-IRF risk group had lower immune 
and stromal related scores than those in the low-IRF 
risk group (Fig.  6A, B). Significant differences in IRF 
scores were found between patients that benefitted 
from immune therapy and those that did not (Fig. 6C), 
based on TIDE scores. We analyzed the effects of IRF 
gene expression levels on sensitivities to different 
chemotherapeutic drugs or small-molecule inhibitors. 
In Fig.  6D, red font indicates increased drug sensitiv-
ity with increased expression levels of IRF family, and 
green font indicates negative correlations between drug 
sensitivity and gene expression levels. Significant dif-
ferences in IRF scores were also found between patients 
with high and low TMBs (Fig.  6E). Analysis of TCGA 
data for mutations in IRF family in patients with CRC 
showed that the IRF2 exhibited the highest mutation 
rate (Fig. 6F).

The STRING database was used to construct a PPI 
network for the DEGs identified in this study (Fig. 6G), 
which was imported into the Cytoscape software 
(Fig.  6H). The top eight DEGs were selected from the 
PPI network as hub genes with CytoHubba plugins, 
using the MCC algorithm (Fig.  6I). A ceRNA network 

based on differentially expressed mRNAs, miRNAs, 
and lncRNAs was established in patients with CRC 
(Fig. 6J).

Discussion
Differential expression of IRF genes has been reported 
in many cancers [6], and IRFs play important roles in 
CRC tumorigenesis and prognosis. However, this study 
is the first to explore IRF expression levels at both the 
mRNA and protein levels, and to determine the prog-
nostic value, effects on immune cells, and potential 
molecular pathways of IRFs in CRC.

IRF3 and IRF7 are closely related, and unlike other 
IRFs, they are considered key for evading innate 
immune responses to virulence factors [22]; thus, 
they may play crucial roles in anticancer immunity. 
IRF3 plays important roles in DNA damage responses 
(DDRs) in cancer [23]. During chemotherapy with DDR 
agents and immunotherapy involving checkpoint block-
ade, IRF3 expression is upregulated via cGAS–STING 
pathway activation [24, 25]. IRF3 activation in response 
to DDR promotes its role in upregulating RAE1 [26], 
which is the tumor-cell ligand for NKG2D on NK 
cells. Together, RAE1 and NKG2D stimulate NK cell-
effector function. IRF3 overexpression inhibits tumor-
cell growth by increasing p53 activity in  vitro [27]. 
Additionally, IRF3 may be involved in STING activity 
[28]. Increased PD-L1 expression following treatment 
with DDR inhibitors is mainly IRF3-dependent [25], 
and tumor-growth inhibition and immune-checkpoint 
blockade with DDR inhibitors is completely dependent 
on the cGAS–STING–IRF3 axis. Our current findings 
further suggest an additional benefit of cGAS-STING-
IRF3 axis activation owing to increased expression of 
the CXCL10 and CCL5 chemokines, leading to T cell 
tumor infiltration. Previously, we found that IRF3 and 
IRF7 could mediate the acquisition of new anti-tumor 
effector functions in macrophages [29]. In the present 
study, we observed that high IRF3 and IRF7 expression 
was related to CD4+ T cell, CD8+ T cell, B-cell, and 

Fig. 5  Effects of differentially expressed IRFs on tumor immune infiltration. A, B Based on the database tumor immune estimation resource (TIMER), 
the expression level of IRF3 and IRF7 were associated with tumor immune infiltration in patients with CRC. C, D The expression level between 
IRF3- and IRF7-protein levels and tumor-infiltrating immune cell were evaluated in 102 CRC patients by IHC and the relationships were also 
investigated

(See figure on next page.)
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macrophage activation, indicating that IRF3 and IRF7 
could promote the anticancer effect of immune cells.

Interestingly, among all IRF factors, the mRNA and 
protein expression levels of IRF3 and IRF7 were signifi-
cantly upregulated in tumor tissues and associated with 
poor OS in CRC patients. As IRFs are transcription fac-
tors, they may also influence tumor cell development 
by regulating the transcription of other oncogenes, 
although the related mechanisms require further inves-
tigation. We further assessed the relationship between 
IRF risk scores and immune and stromal scores in can-
cer patients to examine why increased IRF3 and IRF7 
expression promotes immune cell recruitment without 
killing tumors. We found that high IRF family score was 
associated with high TIDE score and high TMB score. 
It was believed that dysfunction of T cells with high 
level of infiltration or distinct exclusion of T cells from 
infiltrating tumors as two primary mechanisms result-
ing in tumor immune evasion. TIDE is constructed 
to quantify this effect. Meanwhile, TMB reflects the 
amounts of mutant proteins brought from neoplasm 
as well as immunogenic neoantigen load in micro-
environment. Hereby, we speculated that IRF family 
might involve in an imbalance status or even a disor-
der of immune microenvironment in CRC, more than 
just attenuating level of tumor immune infiltrations. 
Since the immune score is calculated by integrating 
the expression of different immune genes, IRF family 
involve in the interferon response which represents one 
type of immune response. Further experimental work is 
needed to resolve these contradictory results.

Although, we have previously demonstrated that the 
translation of the IRF2 protein is repressed by micro-
RNA-18 binding to the 3 ′UTR region of the IRF2 
mRNA [30], in the present study, we found that the 
IRF family exhibits a high frequency of genetic varia-
tions in the COAD cohort. We therefore constructed 

a competing ceRNA network containing miRNAs, 
lncRNAs, and mRNAs expressed at different levels 
to uncover the underlying regulatory relationships 
among them. Noncoding RNAs are widely considered 
to function at every layer of genetic regulation, includ-
ing duplication, transcription, and translation, espe-
cially during cancer development [31]. Fan performed 
an integrated investigation, constructing a lncRNA-
miRNA-mRNA ceRNA network specific to CRC, and 
identified components related to the prognosis of CRC 
patients [32]. Qi summarized a comprehensive depic-
tion on the ceRNA crosstalk in CRC [33]. We have 
also tried to provide novel insights into the connection 
between coding and noncoding RNAs based on the 
IRF family, which indicate that HOXC8 and HOXC13, 
belonging to a highly conserved homeobox family, are 
regulated by some miRNAs and lncRNAs when medi-
ating the transcription of members of the IRF family. 
These bioinformatic results point to subsequent experi-
mental validating work.

There are still several limitations in our study. Clinical 
studies with large sample size are required to verify the 
predictive value of risk score established by IRF fam-
ily. The cellular functions and molecular mechanisms 
of IRF3 and IRF7 in CRC are warrant for conformation 
with in  vitro and in  vivo animal experiments. As the 
biomarker candidates, IRF family should be evaluated 
in the context of tumor immunotherapy.

Conclusions
Altogether, we investigated the IRF family in CRC and 
revealed that the expression of IRF3 and IRF7 were 
related to tumor immune infiltration as well as progno-
sis of patients with CRC. The bioinformatic survey pro-
vides a basis for future experimental work focusing on 
these members in CRC.

(See figure on next page.)
Fig. 6  Effects of IRF expression levels on different biological phenomena. A, B Based on TCGA and GEO databases, the immune and stromal scores 
of patients with CRC in the high-IRF group were significantly lower than those in the low-IRF group. C Significant differences in IRF risk scores 
were found between the immunotherapy-benefit and non-benefit groups. D The GDSC database was used to evaluate the correlations between 
IRF family expression levels and sensitivities to chemotherapeutic drugs. The green text indicated negative correlations between IRF expression 
and sensitivity, and the red text indicated positive correlations. E Significant differences in IRF scores between the immunotherapy-benefit and 
non-benefit groups. F Genetic mutation frequencies of IRF family were evaluated in patients from COAD/READ datasets. G The Search Tool for 
Retrieving Interacting Genes (STRING) database was used to analyze a protein–protein interaction (PPI) of DEGs. H The STRING results were 
imported into a Cytoscape software to further depict the contact among them. Red text represented upregulated genes and blue text represented 
downregulated genes, where the color intensity was positively correlated with fold change. I The maximum clique centrality algorithm was used to 
identify core genes in the PPI network, and the red and yellow nodes represented the top eight hub genes. J A ceRNA network was pictured based 
on differentially expressed mRNAs, miRNAs and lncRNAs, where yellow diamonds represented lncRNAs, green triangles represented miRNAs, and 
red ovals represented mRNAs. *p < 0.05; **p < 0.01; ***p < 0.001
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