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Abstract 

Background:  The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the 
imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in 
GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women 
and find the relationship between gut microbiota and GDM.

Methods:  Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were 
assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex 
ELISA.

Results:  Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between 
women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations 
with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), 
Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene func‑
tions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM.

Conclusion:  Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second 
trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, 
and treatment of GDM.
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Introduction
Pregnancy is characterized by increased insulin resist-
ance and immune tolerance of the fetus and placenta. 
These induce metabolic and immunological changes 
throughout the pregnancy [1–3]. These physiological 
alterations may result in the development of gestational 

diabetes mellitus (GDM) [3]. GDM is defined as any 
abnormal glucose regulation onset or first recognized 
during pregnancy [4]. GDM is one of the most common 
complications during pregnancy. The incidence rate is 
about 17.5% in China and shows a gradually increas-
ing trend [5]. GDM is becoming a significant threat to 
maternal and neonatal health, including cardiovascular 
disease, obesity, and pre-eclampsia in the mother [6], 
and fetal macrosomia, premature birth, shoulder dys-
tocia, congenital malformations, and other issues in the 
baby [7]. Even though the glucose regulation of GDM 
often normalizes shortly after delivery, the increased 
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risk of type 2 diabetes is 40% in the 10–15  years fol-
lowing pregnancy [8, 9]. The pathogenic factors are still 
not apparent. These may be caused by insulin resist-
ance and pancreatic B cell secretion defects resulting in 
genetic or environmental effects. Recently, more studies 
have found that both patients with type 2 diabetes and 
patients with GDM have an imbalance of gut microbi-
ota [10].

Microbes that reside in the human gut are recognized 
as one of the most important contributors to the host 
metabolism and immune system health [11]. Koren 
et  al. found that gut microbiota changes heavily from 
the first to the third trimester of pregnancy, causing an 
increase of genus diversity and a decrease of richness, 
with the increased abundance of Proteobacteria and 
Actinobacteria and a decreased quantity of Faecalibac-
terium in the third trimester [12]. These changes may 
lead to metabolic dysfunctions, for example, GDM dur-
ing pregnancy [13]. Other studies have found that in 
the third trimester, women with GDM showed a higher 
abundance of Actinobacteria, Collinsella, Rothia, and 
Desulfovibrio than the healthy group [3]. However, stud-
ies on the gut microbiota of GDM have shown oppos-
ing conclusions; either no differences among different 
groups or with an increased quantity of Firmicutes and 
reduced Bacteroidetes and Actinobacteria [14] or a 
decreased quantity of the Faecalibacteria compared 
with women who were normoglycemic [15]. Other arti-
cles showed the opposite results: a decline in the Fae-
calibacteria in GDM [3]. Some examinations indicated 
the relationship between the gut microbiome and the 
development of GDM [16, 17].

However, due to the limitation of the cross-sectional 
study design and the small sample size, the exact mech-
anisms leading to these significant changes in domi-
nant bacteria are still unclear. Many factors affect the 
composition of gut microbiota. Studies have shown 
that regional differences, dietary habits, and varying 
gestational weeks can affect the microbiome. To better 
acknowledge the composition of gut microbiota and the 
potential influence on the etiology of GDM in the Asian 
population, it is vital to know the composition of the gut 
microbiome when giving a GDM diagnosis to women. 
This study aims to find the different compositions of gut 
microbiota between patients with GDM and healthy 
individuals in China when giving a GDM diagnosis and 
indicate the relationship between biomarkers and bio-
informatics of pregnant women. The functions between 
the gut microbiome and molecular substance metabo-
lism were also inferred, which would be beneficial when 
conducting deeper research on the mechanisms of 
GDM.

Methods
Study population and sample collection
From September 2019 to June 2020, pregnant women with 
a 75 g oral glucose tolerance (OGTT) in their second tri-
mester (24–28 weeks) referred to Shanghai General Hos-
pital, Shanghai Jiao Tong University School of Medicine, 
were selected. The women collected their feces at home 
and brought it to the hospital on the morning of blood 
collection. If there were no feces on that day, the women 
were allowed to delay the collection for one day at most 
after blood collection. A total of 53 cases were divided 
into two cohorts: 21 individuals with GDM (according 
to the OGTT diagnosis standard: FPG ≥ 5.1  mmol/L, 
1hPG ≥ 10.0 mmol/L, or 2hPG ≥ 8.5 mmol/L) [18], and 32 
were allocated to the control group. Inclusion criteria: (1) 
patients were Shanghai residents and had a typical diet for 
the Songjiang District; (2) patients did not have diabetes 
or impaired glucose tolerance before pregnancy. Exclu-
sion criteria: (1) multiple births; (2) diabetes, hyperten-
sion, thyroid disease, gastrointestinal or cardiovascular 
disease before pregnancy; (3) use of assisted reproductive 
technology; (4) antibiotic use in the previous 2 months; (5) 
active smokers. All participants provided written informed 
consent before enrollment, and the Ethics Committee 
of the Shanghai General Hospital approved the research. 
The most common maternal characteristics were fasting 
plasma glucose (FPG) levels, one-hour plasma glucose 
(1hPG), two-hour plasma glucose (2hPG), fasting insulin 
levels (FINS), one-hour plasma insulin (1hPIN), two-hour 
plasma insulin (2hPIN), homeostatic model assessment 
for insulin resistance (HOMA-IR), triglyceride (TG), total 
cholesterol (TC), high-density lipoprotein (HDL), and 
low-density lipoprotein (LDL). These values were obtained 
from their medical records. On the day the blood was 
drawn, the serum aliquots were collected and stored at 
− 80 °C. Fresh feces were also collected and stored in the 
freezer at − 80 °C until DNA extraction.

DNA extraction
A frozen aliquot (200  mg) from each fecal sample was 
suspended in 250 µL of guanidinium thiocyanate, 0.1 M 
Tris (pH 7.5), and 40  µL of 10% N-lauroyl sarcosinate. 
Total bacterial genomic DNA samples were extracted 
from 53 specimens using Qiagen QIAamp DNA Stool 
Mini Kits (Qiagen, California, USA). NanoDrop 2000 
(Thermo Scientific, USA) was used to detect the concen-
tration of the extracted DNA. The samples that did not 
meet the detection standards were removed.

16S rRNA amplicon pyrosequencing
The v3–v4 variable regions of 16S rRNA were specifi-
cally amplified by a polymerase chain reaction (PCR) 
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with the forward primer 338F (5ʹ-ACT​CCT​ACG​GGA​
GGC​AGC​AG-3ʹ) and the reverse primer 806R (5ʹ-GGA​
CTA​CHVGGG​TWT​CTAAT-3ʹ), where the barcode is an 
eight-base sequence unique to each sample. PCR reac-
tions were performed in triplicate with a 20 μL mixture 
containing 4 μL of 5 * FastPfu Buffer, 2 μL of 2.5  mM 
dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu 
Polymerase, and 10 ng of template DNA. Reactions were 
conducted under the following conditions: initial dena-
turation (95 °C, 2 min), 25 cycles at 95 °C (30 s), anneal-
ing at 55  °C (30 s), extension at 72  °C (30 s), and a final 
extension at 72 °C (5 min), and 10 °C until halted by the 
user. PCR products were extracted from 2% agarose gels 
and purified using the AxyPrep DNA Gel Extraction Kit 
(Axygen Biosciences, Union City, CA, USA) according 
to the manufacturer’s instructions and quantified using 
QuantiFluor™-ST (Promega, USA). The PCR products 
were sequenced, and a database was established by an 
Illumina MiSeq instrument (Illumina, San Diego, Califor-
nia, USA) at SHBIO Corporation (Shanghai, China).

Sequence analysis
Raw FASTQ files were demultiplexed and quality filtered 
using QIIME (version 1.9.1) with the following criteria. 
Default parameters: operational taxonomic units (OTUs) 
were clustered with a 97% similarity cutoff using UPARSE 
(version 7.1 http://​drive5.​com/​uparse/), and chimeric 
sequences were identified and removed using UCHIME. 
The taxonomy of each 16S rRNA gene sequence was 
analyzed by RDP Classifier (http://​rdp.​cme.​msu.​edu/) 
against the SILVA (SSU123) 16S rRNA database using a 
confidence threshold of 70%.

Bioinformatics and statistical analysis
The QIIME (version 1.9.1) and R packages were mainly 
used for gut microbiota sequence analyses. Alpha diver-
sity indices, such as the Chao richness estimator, Shan-
non Diversity index, observed species, and coverages, 
were calculated using the OTUs table in QIIME to inves-
tigate gut microbiota community richness. Beta diver-
sity was measured by Bray–Curtis and unweighted and 
weighted UniFrac Distance [19]. Beta diversity analysis 
was applied to evaluate the structural variation of micro-
bial communities, including principal coordinates analy-
sis (PCoA) based on UniFrac Distance matrix analysis 
and visualized via non-metric multidimensional scaling. 
The total microbial composition difference of the two 
groups was indicated by PERMANOVA (permutated 
analysis of variance) [20]. The Tax4Fun [21], an available 
source R package obtained from the SILVA dataset (ver-
sion 132), was used for functional profiles. Pattern rec-
ognition analysis based on a forward feature selection 

combined with linear discriminant analysis (LDA) was 
performed using the R version 3.5.1 [21]. The unique and 
shared OTUs among samples were illustrated by Venn 
diagrams using the R package “Venn Diagram.” Taxa rela-
tive abundance at all levels was statistically compared 
between the two groups by Kruskal–Wallis tests from the 
R statistics package. The microbiota–microbiota corre-
lation network was constructed using the SparCC algo-
rithm [22] and visualized with Cytoscape version 3.4.0 
[23].

Normal distributed continuous variables were illus-
trated by mean ± standard deviation and analyzed by 
t-tests, while non-normal distributed continuous vari-
ables were reported as median with interquartile ranges 
(Q1–Q3) and analyzed using the Wilcoxon signed-rank 
test or the Mann–Whitney U test conducted with SPSS 
version 23.0 (SPSS Inc., Chicago, IL, USA). P < 0.05 was 
considered significant. The McNemar Chi-square test, 
Pearson’s Chi-square test, or Fisher’s exact test were 
applied for dichotomous variables. LEfSe (LDA effect 
size) [24] with a P-value cutoff of 0.05 and LDA score 
cutoff of 2 was utilized to obtain the differential taxa 
and functions between the two groups. The different 
taxa were analyzed using LEfse to identify discrimina-
tive microbial markers between the GDM and control 
groups. Then, lists of different taxa ranked by random 
forests in order of feature importance were determined 
over 100 iterations. The discriminative taxas were input 
for the random forest classifier to predict the discrimina-
tion between the GDM and control. The receiver oper-
ating characteristic (ROC) curve was obtained (SPSS 
v.19.0) to display the constructed models. The area under 
the ROC curve (AUC) was used to designate the ROC 
effect. Spearman’s rank correlation was used for correla-
tion analysis between different groups.

Results
Characteristics of pregnant women
The characteristics of the participants are presented in 
Table 1. The pre-pregnant body mass index (BMI) mark-
ers and gestational ages showed no difference between 
the two groups. While the pregnant women diagnosed 
with GDM were younger, the age and pre-BMI did not 
affect gut microbiota composition. Only the GDM dis-
ease status had a significant influence on microbiota by 
PERMANOVA analysis (Additional file 1: Table S1). The 
women diagnosed with GDM had higher FPG (P = 0), 
1hPG (P = 0), 2hPG (P = 0.024), FINS (P = 0.016), 2hPIN 
(P = 0.016), and HOMA-IR (P = 0.008) than women 
who were normoglycemic. The two groups had similar 
Hb1ACs, 2hPINs, TGs, TC, HDL, and LDL.

http://drive5.com/uparse/
http://rdp.cme.msu.edu/
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A survey of the average daily diet of the pregnant women
In Table  2, the average daily diet is classified according 
to cereals, meat and poultry, Seafood, Diaries intake and 
vegetable and fruit. We also studied the daily total energy 
intake of pregnant women. There was no statistical differ-
ence in diet between the two groups.

Altered gut microbiota in women with GDM
In the GDM group, the total number of OTUs was 
12,568, with 10,865 unique OTUs, while the control 
cohort had 5903 OTUs, with 1,703 OTUs shared between 
the two groups (Fig. 1A). The analysis of alpha diversity 
(Fig.  1B) indicated women with GDM presented with a 
higher richness (Chao index, P = 1.2e−13) and higher 
diversity (Shannon index, P = 0.014) than detected in the 
control group. The microbial community also differed 
significantly for weighted UniFrac Distance between the 
two groups (Fig. 1C).

The top ten phyla in the two groups were shown 
(Additional file  2: Figure S1A) and the predominant 
genera in both the GDM and the control cohorts were 
Firmicutes (GDM: 52%, Control: 59%). There was 
no difference in Firmicutes between the two groups. 
Bacteroidetes (GDM: 41%, Control: 22%, P = 0.001) 
increased in the GDM group, while the other four 
(Proteobacteria, GDM: 5%, Control: 11%, P = 0.013; 
Actinobacteria, GDM: 0.8%, Control: 4.5%, P = 0; Ver-
rucomicrobia, GDM: 0.2%, Control: 1.5%, P = 0.002; 
and Tenericutes, GDM: 0.1%, Control: 0.6%, P = 0.009) 
decreased and had significant differences compared 
with the control group. To further explore the altered 
gut microbiota in pregnant women with GDM, the six-
teen genera were also shown (Additional file  2: Figure 
S1B). The predominant genus found in both groups was 
Bacteroides (GDM: 36%, Control: 11%). This increased 
in the GDM group and was statistically significant 

Table 1  Maternal characteristics and biochemical data

Clinical characteristics, biochemical and hormonal variables of GDM and normoglycemic pregnant women at 24–28 weeks gestation are presented as mean ± SEM 
when normally distributed or median with 25–75th interquartile range when non-normal distributed. Statistically significant difference between the GDM and 
normoglycemic women group are highlighted (* P < 0.05, ** P < 0.01). HOMA-IR, HOMA-IR = FPG (mmol/L), FINS(μU/mL)/22.5

Maternal characteristics and biochemical 
variables

GDM (n = 21) Control (n = 32) P value

Age (years) 28.7 ± 3.42 31.5 ± 4.56 0.019*

Pre-BMI (kg/m2) 21.7 (19.96–23.47) 22.6 (18.95–25.25) 0.94

Gestational age (weeks) 25.3 (25–26) 25.6 (25–26) 0.32

Fasting glucose (mmol/L) 5.0 ± 0.43 4.7 ± 0.23 < 0.01**

1 h glucose (mmol/L) 9.15 (8.18–10.25) 7.35 (6.13–8.77) < 0.01**

2 h glucose (mmol/L) 7.27 (6.51–8.08) 6.33 (5.77–7.29) 0.024*

Hb1AC (%) 5.01 (4.85–5.1) 4.84 (4.5–5.1) 0.091*

Fasting insulin (μU/L) 58.07 (40.1–66.4) 46.94 (32.45–47.58) 0.016*

1 h insulin (μU/L) 573.3 (301.6–728.4) 359.27 (198.1–480.2) 0.016*

2 h insulin (μU/L) 383.31 (183.1–574.8) 301.55 (199.2–368.0) 0.363

HOMA-IR 1.88 (1.25–2.25) 1.41 (0.91–1.43) 0.008**

Triglyceride (mmol/L) 2.31 ± 0.68 2.62 ± 0.82 0.171

Total cholesterol (mmol/L) 6.02 ± 1.14 6.11 ± 0.82 0.741

HDL (mmol/L) 1.86 ± 0.38 2.0 ± 0.39 0.199

LDL (mmol/L) 2.99 ± 0.79 2.97 ± 0.73 0.926

Table 2  A survey of the average daily dietary intake of pregnant women

Data are expressed as mean(Q1–Q3) by the Mann–Whitney U Test. Dietary composition mainly includes five types: cereals, meat and poultry, Seafood, Dairies and 
vegetable and fruit

GDM (n = 21) Control (n = 32) P value

Total energy intake, kcal/day 2018 (1466–2260) 2037 (1646–2447) 0.482

Cereals intake, g/day 321 (350–500) 350 (350–500) 0.284

Meat and poultry intake, g/day 170 (25–238) 160 (125–125) 0.544

Seafood intake, g/day 108 (25–125) 103 (25–125) 0.614

Dairies intake, g/day 256 (125–350) 267 (125–350) 0.816

Vegetable and fruit intake, g/day 313 (125–500) 397 (350–500) 0.125
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(P = 0.001). At the genus level, GDM showed a signifi-
cantly higher abundance of Incertae sedis (P = 0.037), 
Citrobacter (P = 0.02), Parabacteroides (P = 0.006), 
and Fusicatenibacter (P = 0.022). The healthy controls 
had significantly high levels of Escherichia shigella 
(P = 0.019), Ruminococcaceae UCG014 (P = 0.003), 
Eubacterium coprostanoligenes group (P = 0.008), 
Christensenellaceae R7 group (P = 0.001), Subdoligran-
ulum (P = 0.006), Akkermansia (P = 0.001), Collinsella 
(P = 0.005), Lachnospiraceae UCG004 (P = 0.021), Rho-
dococcus (P = 0), and Desulfovibrio (P = 0.008). These 
findings revealed dysbiosis of the gut microbiota among 
women with GDM.

Eighty-seven differentially abundant taxa were found 
between the two groups using linear discriminant analy-
ses, all of which had a log10 LDA score > 2 (Fig. 2). At the 
phylum level, the relative abundance of Bacteroidetes was 
higher in the GDM group while the Proteobacteria, Act-
inobacteria, Verrucomicrobia, Tenericutes, and Cyano-
bacteria were higher in the control group. At the order 
level, the relative abundance of Corynebacteriales was 
higher in the control group. At the family level, Nocar-
diaceae and Desulfovibrionaceae were higher in the con-
trol group. At the genus level, the relative abundance of 
Bacteroides, Weissella, Fusicatenibacter, Parabacteroides, 
Roseburia, Flavonifractor, etc., were higher in the GDM 
group, while the relative abundance of Akkermansia, 
uncultured rumen bacterium, Ruminococcaceae UGG 
014, Collinsella, and Escherichia shigella was higher in 
the control group.

A tenfold cross-validation was performed with five 
repeats to evaluate the importance of taxa to reveal 
important bacterial classes as biomarker taxa to corre-
late with GDM (Fig.  3). The minimum cross-validation 
error of 0.25 was obtained when using five important 
taxa, including Corynebacteriales (order), Nocardiaceae 
(family), Desulfovibrionaceae (family), Rhodococcus 
(genus), and Bacteroides (genus). Random forest classifi-
ers achieved an AUC of 0.99 to detect patients with GDM 
(Fig. 4).

Association of microbial composition with glycemic traits
Spearman’s correlation was used to identify deeper 
level of taxa associated with glycemic traits in pregnant 
women, regardless of their diabetic status, and found 
that the phylum Bacteroidetes was positively associ-
ated with 1hPG (r = 0.366, P = 0.007), FINS (r = 0.309, 
P = 0.024), 1hPIN (r = 0.351, P = 0.01), and HOMA-IR 
(r = 0.306, P = 0.026). Proteobacteria, Verrucomicrobia, 
and Actinobacteria were all negatively associated with 
1hPG (r =  − 0.274, P = 0.047; r =  − 0.291, P = 0.034; 
r =  − 0.288, P = 0.036, respectively). Actinobacteria 
was also negative with FPG (r =  − 0.422, P = 0.002) and 
2hPG (r =  − 0.348, P = 0.011). Verrucomicrobia was 
positive with HDL (r =  − 0.314, P = 0.024). Genus level 
revealed a negative association between Ruminococ-
caceae UCG014 and 1hPG (r =  − 0.375, P = 0.006), FINS 
(r =  − 0.301, P = 0.028), 1hPIN (r =  − 0.363, P = 0.007), 
2hPIN (r =  − 0.356, P = 0.007), and HOMA-IR (r = 0.305, 
P = 0.027), whereas it was positive with HDL (r =  − 0.296, 

Fig. 1  The richness and diversity of the gut microbiota in gestational diabetes mellitus and healthy control groups. A Venn diagram of gestational 
diabetes mellitus and control groups. The gestational diabetes mellitus group had more operational taxonomic units than the healthy control 
group. Alpha diversity B was calculated with QIIME2 v. 2018.2 based on the sequence similarity at the 100% level, including Chao estimator 
observed species coverage and Shannon index. The gestational diabetes mellitus group showed higher alpha diversity than the control. Principal 
coordinates analysis based on the weighted UniFrac matric C showed that the overall fecal microbiota composition differed between gestational 
diabetes mellitus and the control group. Each point represents one sample of gestational diabetes mellitus (red, n = 21), control (blue, n = 32) 
pregnant women. The distance among different samples reflects the comparability of the two cohorts
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Fig. 2  87 Differentially abundant taxa between the two groups. These different genera from phylum to genus were identified by linear discriminant 
analysis (LDA) using LEfSe. Linear discriminant analysis bar D: blue: gestational diabetes mellitus; red: healthy control
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P = 0.033). The increased relative abundance of Incer-
tae Sedis genus was positively associated with higher 
FPG (r = 0.436, P = 0.001), 1hPG (r = 0.311, P = 0.023), 
and 1hPIN (r = 0.293, P = 0.033), while Christensenel-
laceae R7 group was only positive with HDL (r = 0.324, 
P = 0.019). The genus of Akkermansia was negative with 
1hPG (r =  − 0.29, P = 0.035) and positive with HDL 
(r = 0.318, P = 0.022). HOMA-IR increased with the 
higher abundance genus of Parabacteroides (r =  − 0.314, 
P = 0.022) and decreased with higher Rhodococcus 
(r =  − 0.347, P = 0.011) (Fig.  5). Rhodococcus shows a 
strong negative correlation with 1hFG (R =  − 0.407).

Inferred functional characters of the gut microbiota 
in GDM
Six differential pathways were identified between 
the GDM and control groups by Tax4Fun and LEfSe 
(Fig. 6A). The predicted metagenomes for GDM depicted 
an enrichment of chromosomes, amino sugar and nucle-
otide sugar metabolism, pyrimidine metabolism, and 
a reduction of the two-component system, ABC trans-
porters, and transporters. In the process of plotting 

correlations between differential genera and inferred 
metabolism pathways (Fig.  6B), significant positive con-
nections were discovered between GDM-enriched Bac-
teroides genus and amino sugar and nucleotide sugar 
metabolism, as well as a negative association with the 
two-component system, ABC transporters, and trans-
porter pathways. The other genus enriched in the control 
group (Escherichia shigella, Eubacterium coprostanoli-
genes group, Christensenellaceae R7 group, Subdoligranu-
lum) were positively associated with the two-component 
system, ABC transporters, and transporter pathways. 
The genera of Ruminococcaceae UCG014, Eubacte-
rium coprostanoligenes group, Akkermansia, and Chris-
tensenellaceae R7 group were all negatively associated 
with amino sugar and nucleotide sugar metabolism.

Discussion
This study investigated the composition of the gut micro-
biome between women with GDM and women who were 
normoglycemic, comparing the different compositions 
of the two groups to find the connection between the 
microbiome and glucose metabolism during the second 

Fig. 3  10-fold cross-validation with five repeats to evaluate the importance of taxa. Hollow points represent different genera. This figure revealed 
important bacterial classes as biomarker taxa to correlate with gestational diabetes mellitus
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trimester of pregnancy. This study will provide a better 
understanding of the association between gut microbiota 
inferred functions and the metabolism of GDM. Ulti-
mately, it will help in formulating scientific intervention 
measures from a comprehensive perspective.

The 16S rRNA gene was sequenced for the total bac-
terial DNA of stool samples from 21 women with GDM 
and 32 women who were healthy as the control group. 
These women, who were in the middle of their preg-
nancy (24–28 weeks), were randomly selected. Based on 
bioinformatic analyses of the GDM group, these women 
showed an increased richness and individual diversity 
(alpha diversity). Specifically, the phylum Bacteroidetes 
increased in GDM and increased Bacteroides, Incertae 

Sedis, Citrobacter, Parabacteroides, and Fusicatenibac-
ter genus. These discoveries were similar to previous 
studies where Parabacteroides were significantly more 
enriched in women with GDM than in the healthy con-
trol group [18]. A few of the genus belonging to the Bac-
teroidetes phylum have been reported with dysbiosis 
among patients with GDM [18]. Patients who adhered 
to the dietary recommendations showed a better meta-
bolic and inflammatory pattern and a significant decline 
in Bacteroides [16]. They also found that LPS inferred 
KEGG genes correlated with Bacteroides. LPS is reported 
to play an important pathogenic role in patients with dia-
betes. LPS originates from a species belonging to Bacte-
roides [25]. Additionally, Bacteroides is often associated 

Fig. 4  Random forest classifiers achieved an area under the curve analysis for a biomarker of gestational diabetes mellitus. Black line: 
Corynebacteriales, red line: Nocardiaceae, green line: Rhodococcus, orange line: Desulfovibrionaceae, purple line: Bacteroides, Blue line: the total five 
genera
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with a high-fat, animal-based diet [26]. Our study found 
that the GDM group had more genus Bacteroides, which 
is negatively associated with HOMA-IR. Bacteroides and 
Prevotella have been recognized as contributors to insu-
lin resistance and glucose intolerance [27].

The phylum Proteobacteria, Actinobacteria, and Ver-
rucomicrobia were reduced in the GDM group, with 
Escherichia shigella, Akkermansia, Ruminococcaceae 
UCG014, Christensenellaceae R7 group, etc., decreasing. 
It has been reported that during normal pregnancies, gut 
microbiota maintained relative stability [15] or changed 
dramatically, such as the increased abundance of Proteo-
bacteria and Actinobacteria, a decrease of butyrate-pro-
ducing bacteria, a decline in bacterial richness, and with 
subject diversity (alpha diversity) [12].

When the relationships of metabolic traits and micro-
bial taxa were investigated, it was found that Akker-
mansia is inversely correlated to 1 h plasma glucose and 
positively correlated with HDL, similar to a previous 

study. Akkermansia has previously been reported to be 
associated with improved metabolic health. It is also 
reported to be negatively associated with fasting plasma 
glucose and positively with insulin sensitivity. In a rodent 
study, adding Akkermansia probiotics improved glu-
cose tolerance and insulin sensitivity [28–30]. However, 
Akkermansia has been connected to lower estimates 
of whole-body insulin sensitivity [3]. The genus Chris-
tensenella was recognized to be highly heritable and 
associated with low BMI [31]. An insufficient quantity 
of Christensenella has been linked to pre-diabetic health 
and is associated with increased acetate levels [32]. In 
a rodent model, germ-free transplantation of Chris-
tensenella showed a protective factor against weight 
gain [31]. In this study, though a significantly associated 
relationship with BMI was not found, the Christensenel-
laceae R7 group was positively associated with HDL.

Corynebacterials possess an atypical didermic cell 
envelope which belongs to Actinobacteria. In the study of 

Fig. 5  Gut microbiota abundance (phylum & genus) and their correlation with clinical characteristics and biochemical variables in gestational 
diabetes mellitus and the control. Heatmap of Spearman’s rank correlations between differential genera (LEfSe: P < 0.05 and linear discriminant 
analysis threshold value > 2) and clinical, biochemical variables. Bars that tend toward red and tend toward blue represent positive and negative 
correlations, respectively
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gene expression of the bacteria found that more than half 
of the genes involved in the complex of Mycoloyl-arabi-
nogalactan-peptidoglycan [33]. A study analyzed the gut 
microbime of 144 prediabetic subjects [34] and found 
that the relative abundance of Nocardiaceae and Rhodoc-
occus was significantly increased. Studies have found that 
polycystic ovary syndrome (PCOS) is closely related to 
metabolic syndrome, especially insulin resistance [35]. In 
addition, Shermel B. Sherman et  al. [36] found that the 
relative abundance of Corynebacteriales, Nocardiaceae 
and Rhodococcus in the intestine of PCOS pregnant sows 
increased significantly. Desulfovibrionaceae belongs to 
Gram-negative bacteria [37], which can induce low-grade 
persistent inflammation through lipopolysaccharide, 
leading to obesity and insulin resistance. Studies have 
found that mice with impaired glucose tolerance (IGT) 
increased body fat as well as the abundance of Desulfo-
vibrioceae. In addition, Desulfovibrioceae is the key pro-
ducer of bacterial endotoxins in obese animal models 
[38], or sulfate-reducing bacteria, by reducing sulfate to 
H2S, thereby destroying the intestinal barrier, leading to 
metabolic endotoxemia [39].

Microbial gene functions related to amino sugar 
and nucleotide sugar metabolism were higher in 
patients with GDM, especially the Bacteroides genus, 
which was positively associated with 1  h plasma 
glucose and HOMA-IR. Patients with GDM were 
characterized by enriched Bacteroides depleted Rumi-
nococcaceae UCG014, Akkermansia, Rhodococcus, and 

Lachnospiraceae UCG004. Bacteroides have been stud-
ied would enhance host energy storage in di-associated 
mice [40]. Bacteroides secrete proteases on the brush 
surface of the absorbing cells. These proteases are simi-
lar to elastases and, when secreted in large quantities, 
degrade maltase and sucrase on the brush border with-
out affecting alkaline phosphatase activity. They also 
concluded that brush border damage might occur from 
proteases secreted by Bacteroides in bacterial over-
growth syndromes [41]. Compared with non-GDM at 
their second and third trimester, there was a reduction 
in the relative abundance of SCFA-producing genus 
Faecalibacterium, Ruminococcus, Roseburia, Coprococ-
cus, Akkermansia, Phascolarctobacterium, and Eubac-
terium in GDM women [42]. The SCFAs can combine 
with G protein-coupled receptors (GPCR) 41 and 
GPCR 43 to promote the secretion of peptide tyrosine 
tyrosine (PYY) and glucagon-like peptide (GLP)-1 from 
enteroendocrine cells [43]. This helps regulate insulin 
release and promote glucose metabolism. SCFAs also 
play a vital role in strengthening the intestinal barrier 
and decreasing inflammation and oxidative stress by 
activating the peroxisome proliferator-activated recep-
tor (PPAR) pathway [44]. This study suggests that the 
disturbance of the intestinal microbiota may participate 
in the pathogenesis of GDM by regulating the host’s 
amino acid and carbohydrate metabolism, providing a 
new way to understand the basis of GDM.

Fig. 6  Functional analysis of the gut microbiota in healthy control and gestational diabetes mellitus groups. A Boxplot of differential functions 
between the control and gestational diabetes mellitus groups. The differential pathways were identified using Tax4Fun and LEfSe, *: P < 0.05, 
**: P < 0.01. LEfSe: linear discriminant analysis. B Heatmap of Spearman’s rank correlations between differential genera (LEfSe: P < 0.05 and linear 
discriminant analysis threshold value > 2) and differential pathways. Bars that tend toward red and tend toward blue represent positive and negative 
correlations, respectively



Page 11 of 13Su et al. J Transl Med          (2021) 19:366 	

In the αdiversity analysis of pregnant women’s gut 
microbiome, pregnant women with GDM show higher 
Chao index, Observed-species, Shannon index and lower 
Coverage index, which is really different from previous 
studies. The reasons are as follows:

First, the gestation time of the study was different. We 
looked at the first to second trimester before OGTT 
testing.

Second, there are regional differences in the study pop-
ulation: the pregnant women included in our study were 
from China—Shanghai—Songjiang region, and the liv-
ing environment and dietary habits of pregnant women 
in different regions may differ in the composition of 
microflora.

Third: the sample size of the study is different, and the 
detection results of different sample sizes will be differ-
ent. Although we have tested more than 50 samples to 
reach the conclusion of this paper, we will expand the 
sample size and continue to study the bacterial composi-
tion of pregnant women and conduct dietary fiber inter-
vention to study the changes of the bacterial community 
during the whole pregnancy.

A study by the Xiangya School of Public Health at Cen-
tral South University in China found a similar finding: In 
early pregnancy (10 to 15 weeks of pregnancy), the intes-
tinal microflora of pregnant women with GDM is mainly 
composed of Bacteroidetes, Firmicutes and Proteobac-
teria, Bacteroidetes is the dominant microflora of preg-
nant women with GDM and normal healthy pregnant 
women, and the abundance of Bacteroidetes is increased 
in pregnant women with GDM [45]. In addition, studies 
have also found that under the Western diet, Bacteroi-
detes are still the main dominant bacteria in GDM preg-
nant women and normal healthy pregnant women in the 
third trimester, and the abundance and alpha diversity of 
OTUs are also increased compared with postpartum [3].

Though this study found that these two patient groups 
had a similar dietary habit, many studies have shown that 
diet is one of the most important factors affecting gut 
microbiome composition. Recent studies have identified 
individual gut types that respond differently to particular 
diets [46]. According to the dominant bacteria, the popu-
lation can be divided into three microbial enterotypes: 
Bacteroides (type B), Prevotella (type P), and Rumino-
coccus (type R) [47]. Most people belong to the first two 
intestinal types. These clusters seem to be independent 
of nationality, gender, age, and BMI but are determined 
by dietary habits [48]. The previous studies showed that 
high saturated fatty acid intake in the early postpartum 
stage decreased the abundance of Proteobacteria and 
Firmicutes. Dietary monounsaturated fatty acids helped 
increase the amounts of Firmicutes, Proteobacteria, 

and Bacteroidetes. The intake of vitamin A and vitamin 
D decreased the alpha diversity of the microbiome and 
increased the abundance of Proteobacteria [49]. It is nec-
essary, given the strong association between gut micro-
biota and host location [50] as well as ethnicity [45], to 
carry out further verification on other pregnant women 
to evaluate whether the gut microbiota could be a predic-
tor of GDM and guide pregnant women to accept reason-
able and scientific intervention measures.

This prospective study is based on scientific principle, 
comparing the gut microbiome of pregnant women with 
GDM and healthy pregnant women during their OGTT 
period. It is pivotal to formulating the next intervention 
for women with hyperglycemia. However, several limita-
tions of this study need to be addressed. First, the sam-
ple size was small, so it is not a good representation of 
pregnant women. Second, all the participants were from 
the same hospital. Different places need to be consid-
ered. Third, fecal samples were collected in the second 
trimester of pregnancy only. Thus, they would not con-
vey all changes. In order to address these limitations and 
confirm the findings of this study, a multi-center, multi-
point, vertical cohort research with gut microbiome anal-
ysis will be required.

Conclusion
In conclusion, aberrant gut microbiome compositions in 
the second trimester of pregnant women, the markers of 
GDM, and the connection between the gut microbiome 
and plasma glucose were found. If confirmed by further 
large-sampled and well-designed research, these results 
of the gut microbiome dysbiosis might be involved in the 
pathogenesis of GDM. Additionally, these biomarkers 
might be potential predictors for GDM and would sup-
port individual prevention and intervention strategies for 
women with GDM. The inferred functions between the 
gut microbiome and molecular substances metabolism 
were useful in conducting more thorough research on the 
mechanisms of GDM.
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