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Inhibition of microsomal prostaglandin E 
synthase‑1 ameliorates acute lung injury in mice
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Abstract 

Background:  To examine the effects of BI 1029539 (GS-248), a novel selective human microsomal prostaglandin E 
synthase-1 (mPGES-1) inhibitor, in experimental models of acute lung injury (ALI) and sepsis in transgenic mice consti-
tutively expressing the mPGES1 (Ptges) humanized allele.

Methods:  Series 1: Lipopolysaccharide (LPS)-induced ALI. Mice were randomized to receive vehicle, BI 1029539, 
or celecoxib. Series 2: Cecal ligation and puncture-induced sepsis. Mice were randomized to receive vehicle or BI 
1029539.

Results:  Series 1: BI 1029539 or celecoxib reduced LPS-induced lung injury, with reduction in neutrophil influx, 
protein content, TNF-ɑ, IL-1β and PGE2 levels in bronchoalveolar lavage (BAL), myeloperoxidase activity, expression of 
mPGES-1, cyclooxygenase (COX)-2 and intracellular adhesion molecule in lung tissue compared with vehicle-treated 
mice. Notably, prostacyclin (PGI2) BAL concentration was only lowered in celecoxib-treated mice. Series 2: BI 1029539 
significantly reduced sepsis-induced BAL inflammatory cell recruitment, lung injury score and lung expression of 
mPGES-1 and inducible nitric oxide synthase. Treatment with BI 1029539 also significantly prolonged survival of mice 
with severe sepsis. Anti-inflammatory and anti-migratory effect of BI 1029539 was confirmed in peripheral blood 
leukocytes from healthy volunteers.

Conclusions:  BI 1029539 ameliorates leukocyte infiltration and lung injury resulting from both endotoxin-induced 
and sepsis-induced lung injury.
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Introduction
Acute lung injury (ALI), a common complication of 
sepsis, involves excessive inflammation and disruption 
of the alveolar-capillary barrier resulting in lung edema 
and impaired gas exchange [1–3]. ALI remains a signifi-
cant source of morbidity and mortality in critically ill 

patients,  underscoring the need for novel therapeutic 
interventions [4].

Prostaglandin E2 (PGE2) is involved in various bio-
logical processes, including pain, fever, inflamma-
tion, angiogenesis, and tumorigenesis, often exerting 
opposing effects due to its affinity to four PGE2 recep-
tor subtypes, PGE2 receptors 1–4 [5–8]. PGE2 is pro-
duced from arachidonic acid via the cyclooxygenase 
(COX) pathway, with the terminal  step catalyzed  by 
PGE synthases (PGES). There are three major PGES 
isoforms: cytosolic PGES (cPGES), microsomal PGES 
1 (mPGES)-1, and mPGES-2 [9]. mPGES-1 is weakly 
expressed under normal physiological conditions, but 
strongly up-regulated by proinflammatory stimuli [4, 
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5] such as interleukin-1β (IL-1β), lipopolysaccharide 
(LPS) and tissue injury [9–12]. cPGES and mPGES-2 
are constitutively expressed [9]. Studies in mPGES-1 
knockout mice identified mPGES-1 as being responsi-
ble for the excessive PGE2 production and thus a key 
amplifier of acute inflammatory processes [13]. Con-
sequently, mPGES-1 derived PGE2 plays an important 
role in various inflammatory responses commonly dis-
played in sepsis including swelling, fever, inflammatory 
pain, and apnea [9–12, 14–17].

Nonsteroidal anti-inflammatory drugs (NSAIDs) alle-
viate pain and inflammation by inhibition of COX-2. 
However, NSAIDs exhibit cardiovascular risks due to the 
inhibition of prostanoids critical for normal physiologic 
functions, such as COX-2-derived prostacyclin (PGI2) 
[18, 19]. In contrast, mPGES-1 inhibition selectively pre-
vents the mPGES-1-derived synthesis of PGE2 only [19, 
20] making mPGES-1 a potential novel therapeutic target 
with reduced cardiovascular risk.

One challenge in inhibitor design and selectivity is that 
amino acid sequence disparities between human, mouse 
and rat mPGES-1, and it may have impaired research 
[21]. BI 1029539 (alternative name: OX-MPI, or GS-248 
being used in clinical trials) is a potent and selective, 
small molecular, non-peptide and orally active inhibi-
tor of human mPGES-1 [22–24]. This compound has 
no affinity for mice or rat mPGES-1. Using knock-in 
mice that express human mPGES-1, this study examined 
the effect of BI 1029539 on endotoxin-induced direct 
lung injury and sepsis-induced indirect lung injury. The 
anti-inflammatory responses underlying the protection 
afforded by mPGES-1 inhibition were also examined in 
human whole blood and primary cells.

Materials and methods
Animals
Animal studies were approved by the Institutional Ani-
mal Care and Use Committee at Chonbuk National 
University and complied with the Korean Animal Wel-
fare Act. Knock-in mice expressing the mPGES1 (Ptges) 
humanized allele were generated by Boehringer Ingel-
heim using a similar strategy as previously reported 
[22, 25] and outlined in Additional file  1. Although 
the hmPGES-1 protein was weakly expressed in the 
hmPGES-1 knock-in mice at baseline, it can be strong 
increased upon exposure to LPS and glutamate, or in 
diseases condition [22, 25]. In total, 150 homozygous 
humanized mPGES-1 C57Bl/6 mice (8–12 weeks of age) 
were used. Age-matched mice were equally distributed 
among all study groups. Mice were group-housed under 
controlled conditions (21 ± 1  °C, 12-h light/dark cycle) 
with free access to water and chow.

Animal models
Study design for endotoxin-induced lung injury and cecal 
ligation and puncture (CLP)-induced polymicrobial sep-
sis models are shown in Fig.  1. Dosing, schedules and 
output measures are described separately below.

Endotoxin‑induced acute lung injury
Mice were anesthetized with ketamine (80 mg/kg, intra-
muscular [i.m.]) and xylazine (10  mg/kg, i.m). ALI was 
induced by intratracheal injection of 4  mg/kg LPS in 
100  µl of phosphate-buffered saline (PBS). Mice were 
randomly assigned to receive intraperitoneal (i.p.) treat-
ment of vehicle (0.3% dimethyl sulfoxide [DMSO]), BI 
1029539 (30  mg/kg), or the COX-2 selective NSAID 
celecoxib (30 mg/kg) 1 h post LPS administration. Mice 
were anesthetized 6 h post LPS administration and bron-
choalveolar lavage (BAL) fluid and lung tissues were col-
lected (as described below).

Three sets of mice were used to obtain the following 
output measures:

SET 1: Collection of BAL fluid to measure airway 
inflammatory cell influx, and tumor necrosis factor 
(TNF)-α, IL-1β, PGE2, and PGI2 BAL concentrations, 
and protein content. Lung tissues were harvested to 
determine the edema index (wet/dry ratio).
SET 2: Lung tissues were harvested for histopatho-
logical and immunofluorescence examination and 
myeloperoxidase (MPO) activity.
SET 3: Evaluation of lung vascular permeability by 
Evans blue dye method.
	 Each set consisted of 32 mice randomly assigned 
to one of four study groups. Group 1: Sham control; 
Group 2: LPS + vehicle (negative control group); 
Group 3: LPS + BI 1029539 (test group); and Group 
4: LPS + celecoxib (positive control group).

Cecal ligation and puncture‑induced polymicrobial sepsis
Sepsis was induced in anesthetized mice by CLP as previ-
ously described [26]. Briefly, the cecum was ligated and 
punctured twice with an 18-gauge needle and returned 
to the abdominal cavity. Sham control animals under-
went the same procedure of CLP with the exception that 
the cecum was neither ligated nor punctured. Mice were 
resuscitated (5 mL × 100 g−1 body weight normal saline 
subcutaneously) immediately after surgery and returned 
to their cages. Mice were assigned to one of the following 
experimental groups:

CLP sepsis SET 1: Following CLP, mice were ran-
domly assigned to orally receive vehicle (0.5% Natro-
sol + 0.01% TWEEN 80, n = 8) or BI 1029539 (30 mg/
kg, n = 8) at 2, 8, and 22 h after CLP. Sham control 



Page 3 of 11Gurusamy et al. J Transl Med          (2021) 19:340 	

received vehicle (0.5% Natrosol + 0.01% TWEEN 80) 
as well. At 24 h post CLP the mice were re-anesthe-
tized, and BAL fluid and lung tissue samples were 
collected.
CLP sepsis SET 2: Survival study, Following CLP, 
mice orally received twice daily treatments of vehicle 
(n = 8) or BI 1029539 (30 mg/kg, n = 7). Survival rate 
was determined through 7 days.

Bronchioalveolar lavage collection
BAL was collected from anesthetized mice through a 
20-gauge angiocath as previously described [27]. Briefly, 
0.5  ml of sterile PBS was instilled into the mouse lung 
and lavaged three times. BAL cell counts were deter-
mined using a standard hemocytometer. Differential cell 
counts were subsequently performed on Giemsa-wright 
stained (Microscopy Hemacolor-Merck; Germany) 

cytospin preparations. Cell numbers were standardized/
ml of BAL collected and results expressed as number/ml 
× total volume.

Histological examination
Formalin-fixed paraffin-embedded tissue was sectioned 
(5  μm thick), hematoxylin- and eosin-stained, and ana-
lyzed by light microscopy. Two sections from one lung 
were assessed for each mouse, with 10 areas per sec-
tion analyzed. The degree of lung injury was scored by 
a trained pathologist, blinded to experimental groups/
treatments, using a 5-point scoring system measuring 
(a) neutrophil infiltration, (b) edema, (c) disorganization 
of lung parenchyma and (d) hemorrhage, respectively 
[27]. Higher scores indicate more severe lung abnormali-
ties: 0 = normal, 1 = light, 2 = moderate, 3 = severe, and 
4 = very severe [27]. Scores for each of the four categories 
were combined to provide a total lung injury score (max 
score 16).
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Fig. 1  Study schema for A LPS-induced acute lung injury and B CLP-induced sepsis. ALI, acute lung injury; BAL, bronchoalveolar lavage; DMSO, 
dimethyl sulfoxide; IL-1β, interleukin 1β; i.p., intraperitoneal; LPS, lipopolysaccharide; MPO, myeloperoxidase; PBS, phosphate buffered saline; PGE2, 
Prostaglandin E2; PGI2, prostacyclin; p.o., by mouth; QD, once daily; TNF-α, tumor necrosis factor α
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Immunofluorescence
Details of the primary and secondary antibodies used 
are provided in Additional file  1: Table  S1. Briefly, 
lung Sections  (5 μm) underwent optimal heat-induced 
epitope retrieval (incubation in 10 mM sodium citrate 
buffer at 99  °C for 20  min) and were incubated with 
primary antibody overnight. Primary antibodies were 
detected following a 1-h incubation in either a FITC or 
Alexa fluor 594 conjugated secondary antibody. Nuclei 
were counterstained with 4′,6-diamidino-2-phenylin-
dole contained within the aqueous Ultra Cruz Mount-
ing Medium (sc-24941, Santa Cruz Biotechnology). 
Omission of primary or secondary antibodies from 
staining protocol were used as negative controls (data 
not shown).

Fluorescent microscopy
Digital micrographs were obtained using a Nikon Eclipse 
TE2000-U fluorescence microscope (Nikon Corp., Tokyo, 
Japan) equipped with a Nikon LWD 0.52 digital camera. 
Fluorescent intensity was quantified using Image Pro 
Premier 9.1 software, camera settings were maintained 
for capturing all images. Ten fields of view per sample 
were quantified. The mean fluorescence measured with 
in counted number of positive cells/field.

Biochemical measurements
Total BAL fluid protein concentration was determined 
using a Smart BCA Assay Kit (Intron Biotechnology 
Inc. South Korea). Enzyme immunoassay kits for mouse 
IL-1β (BioLegend, San Diego, CA), TNF-α (R & D Sys-
tems, Minneapolis, MN), PGE2 and metabolite of PGI2, 
6-keto prostaglandin F1α (both Cayman Chemical, MI) 
were used to determine BAL fluid concentrations of 
these meditators. Neutrophil accumulation in the lung 
was determined by MPO activity as previously described 
[28, 29]. MPO activity in each sample was determined 
by measuring the change in absorbance at 460 nm. Each 
sample was tested in triplicate. One unit of MPO activity 
is the amount of enzyme that will reduce 1 µM peroxide 
per min.

Lung permeability
Vascular permeability was assessed using Evans blue dye 
[27]. Briefly, Evans blue dye (20 mg/kg) was administered 
into the tail vein 30  min before termination. Mice were 
anesthetized, and the lungs perfused free of blood with 
PBS containing 5 mM EDTA via thoracotomy with car-
diac reperfusion. One part of the lung tissue was dried, 
and this was standardized across animals. Evans blue was 
extracted from en bloc lung harvests with formamide [27] 

and the optical density at 620 nm determined. Evans blue 
dye concentration was calculated from a standard curve.

Human peripheral blood
Cell migration assay
Neutrophils and monocytes were isolated from 10 
healthy donor peripheral blood samples by ficoll den-
sity gradient centrifugation [30] and stimulated with 
TNFα (5 ng/ml) in the presence or absence of BI 1029539 
(0.01, 0.1, 1, 10 µM) for 24 h. Treated cells (1 × 106 cells 
in 0.5 ml serum free-RPMI medium) were added to the 
upper chamber of the transmigration plate (3  μm pore 
size for neutrophils, 8  μm pore size for monocytes; 
Thermo Scientific, Waltham, MA) and 1.5  ml of serum 
free-RMPI media containing the same concentrations 
of TNFα and the BI 1029539 as in the upper chambers 
were added to the lower chambers. Cells were incubated 
at 37 °C and 5% CO2 for 24 h. Transmigrated cells were 
collected from the lower chamber and quantified by 
hemocytometer. Four replicates per test condition were 
performed and replicate averages presented.

Ex vivo whole blood assay for cytokines
Whole blood from 10 healthy donors was diluted 1:1 
with serum free RPMI 1640 medium and treated with 
LPS (0.1 ng/ml) in the presence or absence of BI 1029539 
(0.001, 0.01, 0.1, 1 µM) and incubated for 24 h at 37  °C 
and 5% CO2. After 24  h, samples were centrifuged for 
10 min at 12,000 g and 4 °C. Cell-free supernatants were 
collected and stored at −  80  °C. Enzyme immunoassay 
kits were used to determine the supernatant concen-
trations of TNF-α (detection range 15.6–1,000  pg/ml, 
PeproTech, Rocky Hill, NJ) and IL-1β (detection range 
3.90–250  pg/ml, R & D Systems, Minneapolis, MN). 
Three replicates per test condition were performed and 
replicate averages presented.

Statistical analysis
All data are reported as mean ± SEM. Between-group 
differences were determined by analysis of variance for 
repeated measures followed by Bonferroni’s post hoc test 
using GraphPad Prism 5. P values < 0.05 were consid-
ered significant. Survival estimates were determined by 
Kaplan–Meier analysis.

Results
BI 1029539 preserves lung architecture and reduces 
immune cell influx into the lungs of LPS‑challenged mice
Intratracheal LPS injection resulted in a marked 
increase in lung permeability as evidenced by a signifi-
cant increase in BAL fluid protein content as well as by 
vascular Evans blue leakage into the lungs (Fig.  2A, C). 
BAL fluid protein content and vascular leakage induced 
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by LPS were significantly attenuated after treatment 
with BI1029539 and celecoxib, respectively (Fig.  2A, 
3C). There was a decrease in myeloperoxidase (MPO) 
activity and edema index (wet/dry ratio) in lung tis-
sues of BI1029539-treated as well as celecoxib-treated 
mice (Fig.  2B, D). Intratracheal LPS injection-induced 
ALI characterized by destruction of lung architecture, 
a marked increase in lung permeability, and excessive 
inflammatory cell infiltration, compared with the sham 
control group (Fig. 2E). Destruction of lung architecture 
was characterized by interstitial edema and neutrophil 
accumulation and resulted in significantly increased lung 
histology scores (Fig.  2E). All LPS-induced pathological 
changes were attenuated in mice treated with BI 1029539 
and celecoxib. Additionally, immunofluorescence dem-
onstrated increased mPGES-1, COX-2 and intracellular 
adhesion molecule-1 (ICAM-1) expression within the 
lung parenchyma following intratracheal LPS injection in 
lungs of vehicle-treated mice (Fig. 2E). These increases in 
mPGES-1, COX-2 and ICAM-1 were attenuated by both 
BI 1029539 and celecoxib (Fig. 2E).

Inflammatory cell influx into the airways as demon-
strated by increased cell numbers in BAL fluid post LPS 
injection was accompanied by elevated levels of TNF-α, 
IL-1β and PGE2 (Fig.  3). Cell numbers were standard-
ized/ml BAL recovered. BAL recovery volume range was 
1.4–1.5 ml. The number of total cellular infiltrates, neu-
trophils and macrophages in the BAL fluid was reduced 
by 80.7%, 93.6% and 67% respectively, in mice treated 
with BI 1029539, compared with 78.6%, 93.5% and 74% 
reduction in mice treated with celecoxib (Fig. 3A, B). Fur-
thermore, BAL TNF-α, IL-1β and PGE2 concentrations 
were significantly lower in mice treated with BI 1029539 
and celecoxib, compared with vehicle controls (Fig. 3C–
E). PGI2 concentration, as determined by 6-keto prosta-
glandin F1α, was significantly reduced by celecoxib only 
(Fig. 3F).

BI 1029539 attenuates CLP‑induced lung injury 
and prolongs survival
CLP-induced marked lung damage and a signifi-
cant increase in total BAL cell numbers (Fig.  4A) pre-
dominantly driven by an influx of macrophages and 
lymphocytes (Fig.  4A). Treatment with BI 1029539 sig-
nificantly reduced sepsis-induced lung macrophage 

recruitment (Fig. 4A). Importantly, BI 1029539 improved 
CLP-induced mortality, prolonging mice survival vs vehi-
cle treatment (Fig. 4B).

Histological evaluation revealed a marked reduction 
of CLP-induced tissue alteration following BI 1029539 
treatment (Fig.  4C) translating into lower lung injury 
scores vs vehicle treatment (Fig.  4C). Expression of 
inflammatory tissue markers, mPGES-1 and inducible 
nitric oxide synthase (iNOS), were increased by CLP and 
their expression attenuated by BI 1029539 (Fig. 4C).

BI 1029539 reduces human peripheral blood monocyte 
and neutrophil migration and inhibits LPS‑induced 
cytokine production
To assess whether mPGES-1 inhibition directly affects 
immune cell migration, the impact of BI 1029539 on 
human blood monocytes and neutrophils transmigra-
tion in  vitro was assessed. BI 1029539 attenuated TNF-
α-induced monocyte and neutrophil migration in a dose 
dependent fashion (Fig. 5A, B). Consistent with the idea 
of a direct effect on immune cells, BI 1029539 reduced 
LPS-induced TNFα and IL-1β production in human 
peripheral blood (Fig. 5C, D).

Discussion
Acute inflammation and disruption of vascular integrity 
are key features of ALI, contributing to the high morbid-
ity and mortality associated with this condition. Using 
two in vivo models we show that BI 1029539 significantly 
attenuates pulmonary inflammation, alveolar-capillary 
leakage, edema formation, and lung injury resulting 
directly from endotoxin-induced ALI and indirectly via 
CLP-induced sepsis. BI 1029539 significantly reduced 
lung neutrophil infiltration, BAL levels of TNF-α and 
IL-1β, and BAL protein concentration after intratracheal 
injection of LPS. Moreover, BI 1029539 also prolonged 
mice survival following CLP-induced severe polymicro-
bial sepsis.

Uncontrolled recruitment of neutrophils into the lung 
interstitium and alveolar space is a pathologic hallmark 
of ALI [1, 2, 27] and correlates with disease severity and 
poor outcome. Reduced epithelial cell barrier function 
facilitates neutrophil migration and the influx of macro-
molecules and protein-rich fluid into the alveoli causing 
impaired cell fluid transport, edema formation, and lung 

(See figure on next page.)
Fig. 2  BI 1029539 reduces LPS-induced lung inflammation and tissue damage. A–D Treatment with BI 1029539 reduced BAL protein content, 
Lung MPO activity, vascular leakage and water content, compared to vehicle controls at 6 h after LPS administration in mPGES-1 knock-in mice. E 
BI 1029539 treatment reduced LPS-induced histological lung damage (H&E) and lung expression of mPGES-1 (red color), COX-2 (green color) and 
ICAM-1 (red color) compared with vehicle controls at 6 h after administration of LPS in mice. Blue color: DAPI staining of cell nuclei in tissue. All 
values are mean ± SEM, n = 6–8. #p < 0.05 vs sham, * < 0.05 vs vehicle-treated LPS group. COX-2, cyclooxygenase-2; H&E, hematoxylin and eosin; 
ICAM, intracellular adhesion molecule; LPS, lipopolysaccharide; mPGES-1, microsomal prostaglandin-E synthase; MPO, myeloperoxidase
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Fig. 2  (See legend on previous page.)
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injury [31–33]. Inhibition of mPGES-1 has been shown 
to attenuates efficient resolution of acute inflammation 
by enhancing CX3CL1 expression in mice [34], and sup-
pressed the synthesis of PGE2, but not other prostaglan-
dins inhibitable by nonsteroidal anti-inflammatory drugs 
(NSAIDs), yet retained NSAID-like efficacy at inhibiting 
lipopolysaccharide-induced pyresis, hyperalgesia, and 
iodoacetate-induced.

Osteoarthritic pain in mice [25]. Here, BI 1029539 
reduced neutrophil accumulation within the lungs 
of LPS-challenged mice, consistent with data from 
mPGES-1 knockout models demonstrating a key role 
for mPGES-1 in mediating neutrophil recruitment to 
sites of inflammation [35–38]. Furthermore, we con-
firmed that indirect inflammatory lung injury induced 
by polymicrobial sepsis was associated with excessive 
lung macrophage recruitment [27], as well as a marked 
up-regulation of tissue mPGES-1. BI 1029539 markedly 
reduced sepsis-induced lung macrophage recruitment 
and lung injury, and prolonged survival of mice following 
severe sepsis. Collectively the data suggests BI 1029539 
inhibition of mPGES-1 represents a potential therapeutic 
target for neutrophilic and mPGES-1-driven inflamma-
tory conditions, like ALI and sepsis that warrants further 
investigation.

In patients with ALI, the extent of BAL neutrophil 
accumulation correlates with disease severity and poor 
outcome. Conversely, neutrophil depletion reduces 

lung injury [39]. Deletion of mPGES-1 in experiment 
models has demonstrated an important role in poly-
morphonuclear neutrophil (PMN) recruitment to sites 
of inflammation [35–38]. Across animal models of dif-
fering inflammatory conditions, deletion of mPGES-1 
reduced neutrophil infiltration, attenuated cytokine 
production and tissue destruction, and decreased pain 
sensitivity [36–38, 40]. In the present study, intratra-
cheal administration of LPS elicited lung injury that 
was associated with neutrophil infiltration and a 
marked up-regulation of mPGES-1. BI 1029539 sig-
nificantly reduced LPS-induced neutrophil influx, lung 
edema and vascular leakage, and protected alveolar-
capillary barrier integrity.

Consistent with our previous report, we found that 
indirect lung inflammatory injury induced by pol-
ymicrobial sepsis was associated with excessive lung 
macrophage recruitment [27], as well as a marked up-
regulation of tissue mPGES-1. mPGES-1 inhibition with 
BI 1029539 significantly reduced polymicrobial sepsis-
induced lung macrophage recruitment and lung injury. 
Importantly, treatment with BI 1029539 significantly 
prolonged survival of mice following severe sepsis. It is 
noteworthy to mention that BI1029539 and Celecoxib 
treatment did not completed block the cell recruitment 
and TNF-α release, or lung injury. This finding may sug-
gest the severity of this disease and the involvement of 
various components in disease process. Factors other 

A B C

D E F

Fig. 3  BI 1029539 reduces LPS-induced airway inflammation. Treatment with BI 1029539 reduced LPS-induced lung inflammatory cell 
accumulation and PGE2 production in bronchoalveolar lavage (BAL) fluid at 6 h after LPS administration in mPGES-1 knock-in mice. A Neutrophils, B 
Macrophages, C TNF-α, D IL-1β, E PGE2, and F PGI2. The metabolite of PGI2, 6-keto prostaglandin F1α, was used as a surrogate for PGI2 concentration. 
All values are mean ± SEM, n = 6–8. #p < 0.05 vs sham, *p < 0.05 vs vehicle-treated LPS group. BAL, bronchoalveolar lavage; IL-1β, interleukin 1β; 
PGE2, Prostaglandin E2; PGI2, prostacyclin; LPS, lipopolysaccharide; TNFα, tumor necrosis factor α
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than mPGES-1 and iNOS may be involved in this multi-
factorial disease process of lung injury.

The protective effect afforded by BI 1029539 in 
reducing lung injury was accompanied by reduced 
expression of the inducible proinflammatory enzymes 
COX-2, mPGES-1 and iNOS, as well as the generation 
of proinflammatory cytokines and ICAM expression. 

Inflammatory stimuli induce PGE2 production through 
inducible COX-2 and mPGES-1 [18]. Selective COX-2 
inhibitors are associated with an increased cardiovas-
cular risk, which is largely attributed to suppression of 
the cardioprotective properties of COX-2-derived PGI2 
and PGD2 biosynthesis [35, 41]. Inhibition of mPGES‐1 
reduced noradrenaline‐induced vasoconstriction in 

A B

C

Fig. 4  BI 1029539 reduces sepsis-induced lung inflammation and tissue damage. Treatment with BI 1029539 reduced A inflammatory cell count at 
24 h after CLP, and B prolonged survival following CLP in mPGES-1 knock-in mice. Treatment with BI 1029539 reduced CLP-induced C histological 
lung damage, and the lung expression of mPGES-1 (green color) and iNOS (green color). Blue color: DAPI staining of cell nuclei in tissue. All values 
are the mean ± SEM. N = 6–8. #p < 0.05 vs the sham control group, *p < 0.05 vs the vehicle treated-CLP group. BAL, bronchoalveolar lavage; CLP, 
cecal ligation and puncture; H&E, hematoxylin and eosin; iNOS, inducible nitric oxide synthase; mPGES-1, microsomal prostaglandin-E synthase
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human blood vessels by increasing PGI2 synthesis [42, 
43]. In a preclinical study, GS-248 completely inhibited 
LPS induced PGE2 formation in whole blood [23]. In 
urine, GS-248 reduced PGE2 and increased PGI2, while 
celecoxib reduced both PGE2 and PGI2 metabolites 
[23]. These findings suggest that selective inhibition of 
mPGES-1 results in systemic shunting of PGH2 to PGI2 
formation, leading to anti-inflammatory and vasodilatory 
effects, while preventing platelet activation [23]. In the 
present study, PGE2 production was equally suppressed 
by COX-2 as well as mPGES-1 inhibition with celecoxib 
and BI 1029539, respectively, providing similar anti-
inflammatory efficacy profiles. Importantly, PGI2 pro-
duction was only reduced in mice treated with celecoxib. 
Findings from the present study further support the 
concept that selective mPGES-1 inhibitors may have the 
potential to become a distinct class of novel anti-inflam-
matory agents that act by selectively suppressing inflam-
matory PGE2 formation, but not other prostaglandins 
suppressed by COX-2 inhibitors linked to increased car-
diovascular risk.

Pro-inflammatory cytokines such as TNFα and IL-1β, 
are involved in the early phases of ALI, elevated both 
systemically (plasma) and locally (BAL), and are pre-
dictive of clinical outcome [44]. It is postulated that 
endotoxin simulation of resident alveolar macrophages 
generates much of the IL-1β and TNF-α initiating an 
inflammatory cascade whereby neighboring cells pro-
duce a battery of chemokines and ICAMs that mediate 
the alveolar recruitment of neutrophils, monocytes and 
lymphocytes [1, 2, 44]. In the present study, BI 1029539 
reduction of LPS-induced neutrophil influx and lung 
injury was accompanied by the local reduction of 
TNF-α and IL-1β, and ICAM-1 expression. Further-
more, BI 1029539 reduced LPS-stimulated cytokine 
production in human blood and inhibited human neu-
trophils and monocytes migration in vitro. These find-
ings demonstrate that mPGES-1 inhibition with BI 
1029539 can protect from LPS- or CLP-induced lung 
injury by inhibition of leukocytes recruitment and 
down-regulation of inflammatory mediators.

A B

DC

Fig. 5  BI 1029539 reduces human peripheral blood inflammatory cell migration and inflammatory mediator release. A, B mPGES-1 inhibition with 
BI 1029539 reduced TNFα-induced human monocyte and neutrophil migration. Data are mean ± SEM, n = 4, #p < 0.05 vs the control, *p < 0.05 vs 
the vehicle group. (C-D) mPGES-1 inhibition with BI 1029539 reduced LPS-induced TNF-α and IL-1β production in human peripheral blood. Data 
are mean ± SEM, n = 5–6, #p < 0.05 vs Control, *p < 0.05 vs the vehicle group. IL-1β, interleukin 1β; LPS, lipopolysaccharide; mPGES-1, microsomal 
prostaglandin-E synthase; TNFα, tumor necrosis factor
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Conclusion
mPGES-1 is the critical enzyme downstream of COX-2 
through which PGE2 is formed while it is not involved 
in the generation of PGI2 [19, 32]. We demonstrate that 
mPGES-1 inhibition with BI 1029539 ameliorates endo-
toxin and sepsis-induced lung injury, and importantly, 
improves survival following severe polymicrobial sep-
sis. This protective effect was observed without affect-
ing PGI2 levels. As such, mPGES-1 inhibitors exhibit a 
COX-2 inhibitor-like efficacy profile but may be devoid 
of COX-2 inhibitor-associated negative cardiovascu-
lar outcomes. Our data suggests mPGES-1 represents 
a valuable therapeutic target for ALI and sepsis-related 
lung injury with potential therapeutic advantage over 
selective COX-2 inhibitors which warrants further 
investigation.
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