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Abstract 

Background:  General role of cancer-associated fibroblast (CAF) and its infiltration characteristics in gastric cancer 
remains to be unknown.

Methods:  We estimate CAF infiltration in bulk tumor tissue with RNA-seq data and analyzed its relationship with 
gastric cancer subtype, survival and immune microenvironment.

Results:  We revealed CAF intend to have higher infiltration in diffuse, genomically stable, and advanced gastric 
cancer. CAF is associated with immunosuppressive microenvironment. Wide transcriptomics alterations occur in high 
CAF infiltrated gastric cancer, PI3K/AKT, TGFB and Hedgehog pathway are remarkable in this procedure. We utilized 
receptor tyrosine kinases and TGFB pathway ligands to construct risk score system that can predict survival.

Conclusion:  Thus, CAF is associated with aggressive phenotype of gastric cancer and risk score based on RTK and 
TGFB pathway ligands expression is a promising tool for assessment of gastric cancer survival.
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Introduction
Gastric cancer (GC) is the fifth most common cancer 
globally. In 2018, gastric cancer-caused death ranks the 
third among all kinds of cancer [1]. Although thera-
peutics including surgical technology, radiotherapy, 
neoadjuvant chemotherapy has undergone significant 
development, the 5-year survival is continuously unsat-
isfying [2]. Multiple interactions of genetic, environmen-
tal and host factors brings tremendous complexity and 
heterogeneity to gastric cancer [3]. Several classifica-
tion systems were developed, such as Lauren classifica-
tion, WHO classification and The Cancer Genome Atlas 
(TCGA) subtype, striving to managing this heterogenous 
cancer as fine as possible [3].

The tumor microenvironment(TME) is defined as the 
complicated eco-system within bulk tumor tissue com-
prising of multicellular and stroma component includ-
ing immune cells such as T and B lymphocytes, dendritic 
cells (DC), natural killer (NK) cells, tumor-associated 
macrophages (TAM), neutrophils, and myeloid-derived 
suppressor cells (MDSC) cancer-associated fibroblasts 
(CAF) [4]. Under the circumstances of immune-therapy 
entering into clinical application widely, vast majority 
of studies focusing on understanding the role of TME 
component have emerged to assist improving immune-
therapy efficiency. CAF a major part of stroma cell that 
produces extracellular matrix (ECM) not only promotes 
tumor growth and invasion through secreting all varie-
ties of cytokines, exosomes, and growth factors, but also 
creates immunosuppressive TME in several types of can-
cer [4, 5]. Controversially, some studies demonstrated 
depletion of CAF activation signaling is in favor of tumor 
progression and certain CAF subpopulation could also 
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inhibit tumor growth and metastasis implying CAF’s 
tumor-restrictive role [6].

In gastric cancer, studying on the role of CAF remains 
to be largely marginal. Here, we estimated CAF infiltra-
tion in several large-sample gastric cancer cohorts by 
utilizing three published bioinformatic algorithms, MCP-
COUNTER [7], XCELL [8], EPIC [9] and analyzed the 
correlation of CAF infiltration in bulk tumor tissue to 
clinical, transcriptomics, proteomic and immune micro-
environment characteristics. Benchmark analysis dem-
onstrate CAF score estimated by all these three method 
exhibited collinearity with CAF proportion (r > 0.72) in 
simulated bulk sample from single cell RNA-seq data 
[10]. We found that CAF is highly infiltrated in dif-
fuse (DGC) and genomically stable (GS) gastric cancer. 
Higher CAF infiltration is also related to III/IV stage dis-
ease condition. To our knowledge, this is the first study 
issuing CAF is differentially infiltrated between different 
Lauren and TCGA subtype. Previous sporadic study in 
which CAF were counted by IHC staining of CAF mark-
ers like α-SMA or FAP demonstrated high CAF infiltra-
tion in gastric cancer indicates poor survival [11–13]. 
We validated this conclusion in multiple datasets. We 
revealed wide pathway and transcriptional programing 
alteration in high CAF infiltration micro-environment. 
We also first uncovered CAF might be associated with 
immunosuppressive micro-environment in gastric can-
cer tissue. Finally, we established risk model based on key 
pathways ligands TGFB2, VEGFB, COL10A1, AREG and 
EFNA5 to predict gastric cancer survival. Comprehen-
sively, this study gave a multi perspective functional land-
scape of CAF and shed light on its role in gastric cancer.

Materials and methods
Data acquisition
Regarding to TCGA STAD dataset, RNA-seq, miRNA 
expression and clinical data was acquired from UCSC 
Xena portal (https://​xenab​rowser.​net/​datap​ages/). 
Homologous recombination deficiency (HRD) score 
deposited in Pan-Cancer Atlas Hub was also extracted 
from UCSC Xena. TCGA DNA Damage Repair Analy-
sis Working Group (DDR-AWG) calculated this score by 
using somatic copy number alteration (SCNA) calls gen-
erated from ABSOLUTE [14]. Briefly the degree of three 
different forms of genomic scars: LST (large-scale state 
transitions) [15], the loss of heterozygosity (LOH) [16] 
score and NtAI (number of telomeric allelic imbalances) 
[17] scores were estimated by SCNA data via the pub-
lished algorithms, the HRD score is defined as the sum 
of these three score to reflect genomic instability caused 
by homologous recombination deficiency. The Reverse 
Phase Protein Array (RPPA) data was from cBioPortal 
(http://​www.​cbiop​ortal.​org/). MSI score and aneuploidy 

score for each sample has already precalculated by cBio-
Portal referring Niu [18, 19] and Talor’s [20] PanCancer 
study, respectively. GSE15459 (192 cases), GSE84437 
(434 cases), GSE62254 (300 cases), GSE26901 (110 cases), 
GSE26253 (433 cases) gene expressional array data with 
clinical information was downloaded from Gene Expres-
sion Omnibus database of NCBI (https://​www.​ncbi.​nlm.​
nih.​gov/​gds/).

Assessment of CAF and immune cells infiltration
Quantification of cell component inside tumor tissue 
was evaluated with TIMER2.0 online-tool (http://​timer.​
cistr​ome.​org/) that integrates six algorithms, includ-
ing TIMER, xCell, MCP-counter, CIBERSORT, EPIC 
and quanTIseq Gene [21]. CAF level was estimated by 
three algorithms: MCPCOUNTER [7], XCELL [8], EPIC 
[9]. The whole estimation result matrix can be received 
directly after expression matrix annotated with gene 
symbol being uploaded onto the TIMER2.0 server.

Differentially expressed gene (DEGs) analysis
Samples were categorized into three groups according 
to CAF infiltration level estimated by the three meth-
ods mentioned above. First of all, we ranked these three 
CAF scores, trisected all the samples in each cohort and 
labeled with “high”, “medium”, “low”. To mitigate categori-
cal error that each estimation method might bring, we 
define samples that were classified into high group by 
at least two method as consensually high group. Simi-
larly, samples fall into low group assessed by at least two 
method were assigned into consensually low CAF group. 
Otherwise, the left samples were regarded as medium/
unsure CAF group. Then, DEGs between high and low 
CAF group were analyzed by "limma" package (Ver. 
3.46.0) in software with normalized gene or miRNA 
expression data.

Gene set enrichment analysis (GSEA)
C2 curated gene sets which collects canonical pathways 
was download from MSigDB for GSEA analysis. Among 
all the DEG, genes with adjust P value < 0.05 were taken 
into GSEA analysis by GSEA function of “clusterPro-
filer” package (Ver. 3.18.0) of R [22]. Gene sets of which P 
value < 0.01 and FDR q value < 0.05 were regarded as sig-
nificantly enriched term.

Statistical analysis
All the graphic and statistical work was accomplished by 
ORIGIN software or R program (Ver. 4.0.3). Two-group 
comparisons were conducted by Mann–Whitney test, 
multigroup analysis were performed by using ANOVA. 
R package “survival” (Ver. 3.2-7)”, survminer” (Ver. 0.4.9) 
[23, 24] were utilized to perform survival analysis. To 
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establish prognostic risk score model, we screened can-
didate genes by two steps: we first performed univariate 
cox analysis. Then, genes that were statistically associated 
with overall or disease-free survival were included for 
lasso cox regression run by “glmnet” package (Ver. 4.1-
1) to generate candidate list. After all, genes which were 
present in lasso model at minimum lambda value were 
used to develop risk score system by multivariate COX 
regression. Once the COX model together with coeffi-
cient for each gene were obtained, risk score can be cal-
culated by following formula:

Results
CAF intends to be higher infiltrated in diffused, 
genomically stable and late stage gastric cancer
Among the versatile classification systems, Lauren clas-
sification which divides gastric cancer into intestinal sub-
type (IGC)and diffuse type (DGC) is commonly used as 
it can better clusters gastric cancer with similar tumor 
biological characteristics together [25, 26]. To explore 
whether different type of gastric cancer possesses distinct 
CAF infiltration, we extracted diffuse, signet ring and 
intestinal stomach adenocarcinoma samples in TCGA 
cohort and compared their CAF score assessed by three 
algorisms. We attribute signet ring carcinoma into diffuse 
type for its poorly cohesive and submucosally invasive 
properties [27]. Attractively, general CAF quantification 
in DGC group is more abundant than IGC with a statis-
tically significant level (Fig.  1A–C), even though there 
exists overlapped CAF level between the groups. We 
validated this in another cohorts GSE15459, GSE26901, 
GSE26253, GSE62254. As described in method section, 
three-algorithm based CAF consensus grouping were 
performed. A larger percentage of samples with high and 
medium fibroblasts content were observed to be distrib-
uted in DGC in GSE15459, GSE26253 and GSE62254 
datasets (Additional file 5: Fig. S1A). Thus, intra-tumoral 
fibroblast is differentially infiltrated between two Lauren 
subtypes.

We further checked CAF in different TCGA subtypes 
including Genomically stable (GS), Chromosomal insta-
bility (CIN), Microsatellite Instable (MSI) and EBV(+) 
[28]. Amazingly, GS subtype exhibits significantly higher 
abundance of fibroblasts than CIN, MSI and EBV (+) 
gastric cancer. Meanwhile, fibroblasts quantification in 
CIN subtype accountable for more than half stomach 
adenocarcinoma in TCGA cohort varies vastly and some 
CIN patients can have extremely high CAF infiltration as 
well (Fig. 1D–F).

Risk Score =
∑

coefficient
(

genei
)

∗ expression value(genei).

Next, we analyzed the variation in CAF level with 
cancer stage. Unfortunately, we failed to detect remark-
able difference for fibroblasts counts in different AJCC 
stages. However, the percentages of patients with high 
and medium CAF infiltration in stage III and IV (Fig. 1G) 
increases dramatically suggesting fibroblast infiltration 
might be involved in gastric cancer progression. Consid-
ering unbalanced CAF enrichment in GS tumor, we spe-
cially investigated CAF infiltration discrepancy in stage 
III and IV tumors to disentangle the impact of molecu-
lar subtype and disease staging. Fibroblast in GS tumor 
remains to be the highest across four molecular subtypes 
even when only taking stage III/IV samples into consid-
eration (Additional file  5: Fig.  S1B). Concurrently, GS 
tumors distributing in 20 of 165 stage I/II samples and 
28 of 201 stage III/IV samples proposes GS tumor is not 
associated with disease stage and the biased infiltration 
of CAF in GS tumor is independent on the later one.

CAF infiltration is related to deteriorated survival 
for gastric cancer
In spite of numerous studies indicating CAFs’ tumor-
fostering effects, some also asserted certain CAFs sub-
population inhibit tumor progression [6]. Thus, we 
retrospectively inspected comprehensive function of CAF 
estimated by MCPCOUNTER, XCELL and EPIC in gas-
tric cancer prognosis. All of the three methods compute 
immune and stroma cell abundance relying on transcrip-
tomics signature. They use three very distinct algorithms: 
Geometric mean of expression of marker genes, single-
sample GSEA (ssGSEA) and constrained least square 
regression to estimate cell population, respectively [29]. 
Among them, only the cell abundance score by EPIC can 
be interpreted as cell fraction. Nevertheless, the scores 
calculated by each of them are comparable among sam-
ples. We performed survival analysis to explore prognos-
tic indication by single CAF estimation method. Only 
MCPCOUNTER can discriminate the overall survival of 
high CAF patients with low CAF in five cohorts whereas, 
stratification by the other two do not always work well in 
five cohorts we collected (Additional file 1).

We then used combined CAF stratification by all 
these three methods to scrutinize the performance 
of CAF in gastric cancer survival. We included 239 
TCGA samples provided both overall (OS) and disease-
free survival (DFS) information for survival analysis 
(Table1). Univariate cox analysis showed Hazard ration 
(HR) of high CAF group for OS is 2.27 (CI = 1.09–4.73, 
P = 0.0285), and HR for DFS is 2.26(CI = 1.04–4.91, 
P = 0.0398). HR for OS in multivariate COX analysis is 
2.12(CI = 1.04–4.71, P = 0.0391). We used GSE15459, 
GSE84437, GSE26901, GSE26253 and GSE62254 
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datasets to further validate this impact. As expected, 
the overall survival of high CAF group can be discerned 
well from CAF low group, (Fig. 2A, C; Additional file 6: 
Fig.  S2A–C). In GSE62254, GSE26901, GSE26253, 
three cohorts with DFS data, high CAF group exhib-
its shorter disease-free survival time (Additional file 6: 
Fig. S2D–F). To rule out the confounding effect caused 
by Lauren classification and tumor stage, multivariate 
COX analysis was performed and the results revealed 
CAF infiltration is an independent factor for gastric 
cancer survival (Fig.  2B, D). Take all these data into 
consideration, we suggest MCPCOUNTER, XCELL, 

EPIC based CAF estimation could be a promising strat-
egy for prognostic assessment in gastric cancer.

Wide transcriptomic and pathway alteration in CAF 
excessively infiltrated micro‑environment
To systematically explore how gene expression profile in 
gastric cancer tissue is shaped by CAF infiltration, we 
performed differential gene-expression analysis in TCGA 
cohort comparing mRNA expression of 138 cases of high 
CAF samples and 131 low CAF samples (Fig. 3A). Under 
the criteria of |logFC|≥ 1 and adj.P value < 0.05, 2343 
genes were upregulated while only 232 were downregu-
lated (Fig. 3B) suggesting gene expression is more likely 

Fig. 1  CAF infiltration across Lauren subtypes, TCGA molecular subtypes and pathological stages. Differential infiltration of CAF in intestinal and 
diffuse type of gastric cancer in TCGA cohort, CAF was estimated by MCP-COUNTER (A), XCELL (B) and EPIC (C). D–F Differential infiltration of CAF in 
EBV(+), MSI, CIN and GS tumor in TCGA cohort, CAF was estimated by MCP-COUNTER (D), XCELL (E) and EPIC (F). G Percentage of high (H), medium 
(M), and low (L) CAF infiltration in different pathological stages. *P < 0.05, **P < 0.001, ***P < 0.0001
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to be transcriptionally activated than being repressed 
in CAF excessively infiltrated tumor tissue. Furtherly, 
we performed Gene Set Enrichment Analysis(GSEA) 
to search what biological pathway or functional genes 
are dysregulated under CAF highly infiltrated condi-
tion. The result manifested broad gene sets expressional 
differences between high and low CAF group. Matri-
some composed of core ECM protein, ECM-associated 
proteins, ECM-affiliated proteins and secreted factors 
[30] are enriched in CAF highly infiltrated group. Stem 
cell and epithelial-to-mesenchymal transition (EMT) 
gene sets are also enriched in high CAF group (Fig. 3C). 
Regarding to pathway alterations, we observed an enrich-
ment of PI3K-AKT and HEDGEHOG pathway gene in 
CAF higher group (Fig. 3D). In line with enrichment of 
EMT associated gene sets, TGFB pathway genes are sig-
nificantly upregulated in samples with more fibroblast. 
Interestingly, we found that DNA damage response and 
repair gene sets including base excision repair, mismatch 
repair, trans-lesion DNA synthesis and homologous 
recombination, the several common used DNA repair 
mechanisms are enriched in CAF low group (Fig.  3E, 
Additional file  1). Moreover, enrichment of gene sets 
related to cell cycle, DNA replication, and sister chromo-
somal separation during mitosis are observed in lower 
CAF group. In addition, several metabolic related gene 
sets including cholesterol synthesis and nitrogen metabo-
lism are enriched in barren CAF group (Fig. 3F).

Even though the enrichment of DNA damage and 
repair gene in low CAF group, there is a possibility that 
these genes might be upregulated responsively when 
DNA damage occurred because of either exogenous 
or endogenous reasons. Endogenous reason includes 

deficiency in repair mechanism such as mismatch repair 
which causes MSI characterized as abnormal insertions 
or deletions of microsatellite sequences [31] and homolo-
gous recombination deficiency(HRD) which might result 
in chromosomal instability [32]. As CIN and MSI tumor 
have relatively lower fibroblast score in our prior results 
(Fig. 1D–F), to ruled out the GSEA results confounding 
by TCGA subtype, we reperformed our DEG and GSEA 
analysis in these three subtype: GS, CIN and MSI respec-
tively (Fig.  3A) and obtained consistent results (Addi-
tional file  2). Similar result was yielded when extending 
our analysis to GSE62254 datasets (Additional file  3). 
These results revealed multiple tumor biological pro-
cesses and pathways are involved in CAF infiltrated 
microenvironment.

CAF accumulation in gastric cancer tissue is inversely 
associated with severity of genomic alteration
In our GSEA analysis, we reported DNA repair genes are 
enriched in gastric cancer with less CAF resident with-
out affecting by TCGA subtype. Even in GS tumor, there 
exists expressional difference of DNA damage repair 
genes when compared low CAF samples with the high. 
For the reason of tumor heterogeneity, we propose that 
in GS subtype, there exists certain degree of DNA dam-
age or genomic instability. Similarly, the severity of DNA 
damage or genomic alteration in CIN and MSI tumor 
could vary although the samples were categorized to the 
same subtype. Meanwhile, the relatively mild fibroblasts 
accumulation in MSI and a part of CIN subtype tumor 
forced us to considering whether CAF and DNA dam-
age/genomic alteration in tumor are exclusive to each 
other in rather heterogenous tumor tissue. Alternatively 

Table1  Clinical characteristics CAF and gastric cancer survival in TCGA cohort

OS overall survival, DFS disease-free survival, 95%CI: 95% confidence interval

Variates Cases Univariate HR 95% CI (P Value) Multivariate HR 95%CI (P value)

OS DFS OS DFS

Age < 50(ref ) 20

50 219 0.5409–4.15 (0.437) 0.35–2.25 (0.798) 0.55–4.39 (0.4116) 0.35–2.33 (0.8790)

sex Female(ref ) 94

male 145 0.68–2.03 (0.562) 0.98–3.87 (0.0557) 0.67–2.03 (0.5917) 1.02–4.05 (0.0440)

Lauren clas-
sification

Intestinal(ref ) 99

Diffuse 44 0.61–2.57 (0.538) 0.80–4.18 (0.1686) 0.52–2.35 (0.7959) 0.65–3.76 (0.3134)

NOS 95 0.93–3.03 (0.088) 1.17–4.86 (0.0163) 0.81–2.80 (0.1966) 1.07–4.73 (0.0329)

Stage I/II(ref ) 138

III 101 0.95–2.71 (0.0783) 0.58–1.91 (0.866) 1.02–3.00 (0.0420) 0.62–2.06 (0.7085)

CAF Low(ref ) 73

Medium 81 1.04–4.66 (0.0389) 0.67–3.66 (0.3037) 0.97–4.57 (0.0591) 0.54–3.10 (0.5632)

High 85 1.09–4.73 (0.0285) 1.04–4.91 (0.0398) 1.04–4.71 (0.0391) 0.87–4.24 (0.1081)
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speaking, the presence of one between these two could 
hinder the other one accumulating in tumor tissue dur-
ing tumor evolution. To validate our concern, we com-
pared the difference of MSI, HRD and aneuploidy score, 
three well-established parameters to reflect extent of 
MSI, HRD and change of karyotype in bulk tumor tis-
sue by other researchers [14, 18–20] at different fibro-
blast level in GS, CIN and MSI tumor, respectively. What 
need to be mentioned is HRD is not the sole mechanism 
for CIN. Aneuploidy, another form of CIN caused by 

inappropriate chromosomal segregation and manifest-
ing as aberrated chromosomal number is another domi-
nant [33]. As expected, in MSI cancer, the average level 
of MSI and aneuploidy score for low CAF group are sta-
tistically higher than that in high CAF group (Fig. 4A, B). 
In GS tumor, the aneuploidy and HRD score of low CAF 
group have an advantage over high CAF group (Fig. 4H, 
I). Although the discriminability of MSI and HRD score 
between high and low CAF group in CIN tumor is not 
very good, we still observed statistically significant 

Fig. 2  CAF infiltration and Overall survival in GSE15459 and GSE84437 cohorts. A Kaplan–Meier plot of CAF high, medium and low group in 
GSE15459 cohort. B multivariate COX regression analysis of overall survival in GSE15459 cohort. C Kaplan–Meier plot of CAF high, medium and low 
group in GSE84437 cohort; D multivariate COX regression analysis of overall survival in GSE84437 cohort
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Fig. 3  DEG analysis between CAF high and low group and GSEA reults in TCGA cohort. A Case number that were categorized into CAF high (H), 
medium (M/unsure), and low (L) group. B Volcano plot that displays the DEGs comparing CAF high with low group. C–F GSEA analysis showed key 
biological processes, and pathways involved in DEGs
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differences (Fig. 4D, F). Taking all these results into con-
sideration, we conclude that fibroblasts and genomic 
alteration in gastric cancer might accumulate towards an 
opposite direction.

Differential proteomic and mi‑RNA expression in varied 
CAF context
We then did the same comparison as RNA-seq sec-
tion using TCGA RPRA data to search the proteomic 
variation of gastric cancer among samples with differ-
ent fibroblast in entire TCGA cohort, GS, CIN and MSI 
subtype tumor, respectively. Since there are limited pep-
tides presented in RPRA data and most targets of which 
the expressional change are statistically significant var-
ied in relatively subtle scale (|logFC|< 1) compared with 
RNA-seq data, we regarded these targets as differentially 
expressed proteins as long as their P value are < 0.05. 38 
hits visualized in Fig. 5A are targets that are differentially 
expressed in at least three independent analysis (Fig. 5A). 

Among these targets, MYH11, FN1, COL6A1 markers of 
CAF subpopulation determined by single-cell sequencing 
[34] are upregulated in high CAF group. Consistent with 
DEG in RNA-seq data, EMT marker CDH1 (E-cadherin) 
is downregulated, and TGF-beta/BMP pathway protein 
ACVRL1 [35] is increased. Proteins involved in DNA 
damage response and repair including MSH2, MSH6, 
two mismatch repair proteins and CHEK2, XRCC5 [14] 
also witness slight decreasing. Here, we also observed 
stronger expression of several apoptosis-associated pro-
teins: BIRC2(cIAP1), CASP7(Casepase7) BCL2L11 and 
DIABLO in low CAF group. As a fatty acid synthesis 
enzyme, ACACA is more abundant in low CAF samples. 
What motivated us to reemphasize the importance of 
P13K/AKT pathway is Rictor, the core protein of mTOR2 
complex who is responsible for AKT phosphorylated 
activation at serine 473 (Ser473) has remarkably higher 
expression level in high CAF samples [36]. However, 
mRNA expression is roughly the same implying high 

Fig. 4  Comparing of MSI, aneuploidy, and HRD score in CAF high (H), medium (M/unsure), and low (L) group. A–C MSI, aneuploidy, and HRD score 
in MSI tumor. D–F MSI, aneuploidy, and HRD score in CIN tumor. G–I MSI, aneuploidy, and HRD score in GS tumor
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CAF fibroblast microenvironment rises Rictor expression 
by translational or post-translational regulation.

We examined the prognostic performance of these pro-
tein targets by survival analysis. Several upregulated pro-
teins such as MYH11, RICTOR and ACVRL1 are bound 
to aggregated overall survival (Fig. 5B). RICTOR, CAV1 
expression also indicates disease progression (Fig.  5C). 
Several proteins expressed stronger in low CAF samples 
are associated with better survival, especially CLDN7.

Similarly, we checked the shift of miRNA expressional 
profile in TCGA data. More than 100 mature miRNA 
strand varied with fibroblast (Additional file 7: Fig. S3A). 
Among these miRNAs, the expression of miR-8/ 

miR-200 family [37] microRNAs including mir-200, miR-
141,miR-429 (Additional file  7: Fig.  S3B), which exert 
tumor suppressive function are mitigated suggesting 
samples with higher CAF gathering may acquire a more 
aggressive phenotype.

CAF infiltration and immune compromised 
microenvironment
To browse the immune-environment transformation 
brought by CAF infiltration in gastric cancer, we investi-
gated connection between CAF and immune cell infiltra-
tion. Immune cells in TCGA were estimated by multiple 
approaching via TIMER2.0 online tool as described in 

Fig. 5  Proteomics data of different CAF infiltration. A Differential protein targets when comparing CAF high with low group in entire TCGA cohorts, 
GS, CIN and MSI tumor. B Differential protein targets that are associated with overall survival; C Differential protein targets that are associated with 
progression-free survival
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method. Th1 and Th2, two CD4(+) T cell lineages medi-
ated antitumor immune [38, 39] display higher estimated 
score in low CAF group than high CAF samples, while 
M2 macrophage, monocytes and dendritic cell are ele-
vated in high CAF group(Fig. 6A). We re-validate this in 
GSE15459 cohorts by correlation analysis. As expected, 
CAF exhibits negative correlation with Th1 and Th2 cell. 
In contrast, positive correlation with M2 macrophage, 
monocyte and dendritic are detected (Additional file  8: 
Fig.  S4). It’s widely accepted that M2 macrophages in 
cancer can be differentiated from monocytic myeloid-
derived suppressor cells (m-MDSC), and another for-
tune of m-MDSC is inf-DC, a dendritic population [40]. 
Thus, to further validate CAF’s relationship to M2 mac-
rophage and figure out whether MDSCs increases with 
fibroblasts, we analyzed the correlation between CAF 
and several well-defined markers for M2 macrophage 
and MDSC. Fortunately, CD163 and CD206, canonical 
marker for M2 macrophages [41] co-vary with fibroblasts 
quantified by three methods. CD11b, CD14, CD33, sur-
face markers for MDSCs [42] are positively associated 
with CAFs. These results suggest CAF flooded gastric 
cancer microenvironment is accompanied with M2 mac-
rophages and MDSCs expansion.

Finally, we reviewed the expression of suppressive 
immune checkpoints in gastric cancer. In general, ten 
checkpoints B7H3, CD200, CD96, IGSF11, LAG3, PD-1, 
PD-L2, TIGIT, TIM3, and VISTA increase with fibroblast 
as expression of all these ten checkpoints is higher in high 
CAF group (Fig.  6C). We also compared the immuno- 
suppressive modulators [43] and earned the same trend 
(Additional file  9: Fig.  S5). These results promoted us 
concluding that CAF infiltration in gastric cancer is link 
to an immuno-suppressive tumor microenvironment.

Prognostic risk model based on TGF‑beta, RTKs 
and Hedgehog ligands
In our transcriptomics result, we mentioned PI3K/AKT, 
TGF-beta and Hedgehog Pathways are involved in CAF 
deeply infiltrated gastric cancer. All these three pathways 
mediate signaling transduction from extracellular secre-
tory ligands to intra-cellular biological activity regulation. 
Amid highly complicated and frequent cell communica-
tion between tumor cells and stroma cells such as fibro-
blast and as well as immune cells, extracellular ligands 
are critical for the phenotypical plasticity of each type of 

cell. PI3K-AKT activation is coupled to receptor tyros-
ine kinases (RTKs) which hold dozens of ligands such as 
VEGF, PDGFs and FGFs [44, 45]. Thus, we seek to con-
struct prognostic model with ligands for RTKs, TGF-beta 
and Hedgehog pathways (Additional file 4).

We tested the prognostic role of ligands that exhibit 
differentially expression at mRNA level in TCGA 
cohorts. Among the 69 differentially expressed ligands, 
36 ligands are associated with overall survival by univari-
ate COX model. We then utilized lasso cox for further 
screening and four ligands VEGFB, TGFB2, FGF14 and 
ANGPTL1 were in the lasso model (Fig.  7A, B). There-
fore, we include these four ligands in our stepwise multi-
variate COX analysis. Finally, a risk model consisted of 
TGFB2 and VEGFB were built with C-index to be 0.69 
(Fig.  7C). Risk score at 0.02 were chosen as the cutoff 
value to define high and low risk group (Fig.  7D). The 
dead events are majorly distributed in high risk group 
with higher expressed TGFB2 and VEGFB. The AUC of 
the model for 1 years, 2 years and 5 years predicted sur-
vival are 073, 0.71, 0.62, respectively (Fig. 7E). The over-
all survival of high risk group is significantly shorter than 
low risk group (Fig. 7F).

By the same workflow, we received a four gene risk 
score model to predict disease-free survival (Fig. 8A) in 
which TGFB2, a TGFB receptor ligand, and COL10A1, 
EFNA5 AREG, three RTK ligands were included. C-index 
of the model can be as high as 0.73. AUC for 1  years, 
2 years and 5 years disease-free survival are 0.73, 0.77 and 
0.77 (Fig. 8C). The risk score can recognize the patients 
with poorer disease-free survival explicitly (Fig. 8B, D).

We validated the two models in GSE62254 cohorts. 
Despite the AUC of ROC are not satisfying (Additional 
file 10: Fig. S6A, C), the Kaplan–Meier plots demonstrate 
that higher risk score can separate the patients with 
poorer survival well (Additional file 10: Fig. S6B, D). We 
also confirmed the performance of the score system in 
GSE15459 and GSE84437 (Additional file 10: Fig. S6E, F). 
In summary, ligands of TGFB receptor and RTKs based 
risk score system can efficiently predict the survival of 
gastric cancer patients.

Discussion
Recent decade, surging studies announce CAF’s tumor 
booster role via affecting stromal–epithelial interactions, 
immunity, angiogenesis and ECM re-modeling in solid 

(See figure on next page.)
Fig. 6  CAF infiltration and immune-suppressive micro-environment. A Relationship between CAF and Th1, Th2 CD4 cell, dendritic, monocyte and 
M2 macrophage; B CAF infiltration (in the top row, CAF was estimated by MCP-COUNTER; medium row, CAF was estimated by XCELL; bottom row, 
CAF was estimated by EPIC) and expression of M2 markers (CD163, CD206) and MDSC markers (CD11b, CD14, CD33). C Differential expression of 
immune checkpoint
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Fig. 6  (See legend on previous page.)
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tumors such as pancreatic and colorectal cancer [46]. 
As a type cancer frequently associated with abundant 
fibrosis [47], CAF in gastric cancer should be given more 
concern. However, the current research is very limited 
regarding global function of CAF in gastric cancer.

In this study, we inspected the link of CAF infiltration 
to subtypes and disease stages. To our knowledge, we are 
the first to point out CAF infiltration is higher in DGC 
and GS tumor that both are poorer survival subtypes in 
their corresponding classification system [25, 28]. This 
difference might be explained by the overlapping of DGC 
and GS with scirrhous gastric cancer characterized as 
rapid expansion and invasion of poorly differentiated 
or signet‐ring cancer cells with extremely surround-
ing fibrosis [48]. Our result also reveals CAF infiltration 
is generally higher in stage III and IV patients implying 
the involvement of CAF in disease progression. Although 
increasing studies revealed the role of CAF in cancer by 
experimental study, CAF’s prognostic indicative role in 
gastric cancer is seldom conducted. In presented study, 
we estimated the outcome of gastric cancer brought by 
high CAF infiltration. The result suggests CAF is a inde-
pendent prognostic factor.

We uncovered wide transcriptomics and pathways 
alteration in CAF high infiltrated tumor by DEG and 
GSEA. Among these, PI3K/AKT, TGFB and Hedgehog 
pathway are potential key pathways. We used ligands 
for TGFB, Hedgehog pathways and RTKs, upstream of 
PI3K/AKT [49] to construct survival risk model. TGFB2 
and VEGFB were selected as risk predictors for both 
overall and disease-free survival highlighting the role of 
TGFB and PI3K/AKT pathway in gastric cancer. Mean-
while, it’s worth studying that whether patients with high 
CAF infiltration in tumor tissue could benefit more from 
PI3K-AKT and TGF-beta pathway inhibitive treatment in 
the future.

Interestingly, gene sets involved in DNA damage 
response and repair are enriched in tumors with fewer 
CAF infiltration. Comparison of MSI, aneuploidy and 
HRD score in high, medium and low CAF group pro-
posed us to consider tumors lacking CAF infiltration 
might undergo more sever DNA damage and genomic 
alteration. Another evidence for this is the increased 
infiltration of CAF in genomically stabe gastric cancer 
compared with instable tumor (MSI and CIN). Actually, 

it was reported that CAF promotes esophageal squamous 
cell carcinoma DNA repair via upregulating a lncRNA 
named DNM3OS [50]. In our study, even though the 
phenomenon steadily occurs in different subgroups, 
it’s difficult to conclude who is the cause and who is the 
consequence in this inverse relationship. To be concrete, 
CAF in microenvironment might help tumor getting rid 
of harmful DNA damage and on the contrary, the exist-
ence of DNA damage might prevent CAF recruitment or 
activation. As a pure observational study, we are not able 
to guarantee which situation it represents.

With the prosperity of immune therapy, some research-
ers try to decipher the sophisticated interaction of CAF 
with immune cell. CAF function in the recruitment 
activation of tumor promotive immune cell like MDSC 
and TAM have been discovered in other types of tumor 
[46]. Here, we validated the positive correlation of CAF 
to MDSC markers and M2 macrophages. We found ten 
immune checkpoints have higher expression in gas-
tric cancer with higher CAF infiltration as well, indi-
rectly supporting the notion that CAF is associated with 
immune-suppressive micro-environment.

However, we have our limitations in this study. First 
of all, we employed pure bioinformatic method to esti-
mate CAF as well as immune cells. How far it’s from real-
world should be carefully treated. To avoid the bias CAF 
estimation method might bring, we transformed CAF 
score into ordinal categorical variable and got a consen-
sus high or low CAF group to perform our later analy-
sis. The computational algorithms involved in this study 
including, MCPCOUNTER, XCELL and EPIC quantify 
cell types abundance by either cell signature based GSEA 
or deconvolution of cell mixtures from gene expression 
matrix [21], and all the methods allow comparisons of 
the same cell type between samples. In addition, multiple 
datasets were used in this study to ensure the robustness 
of our results which still can provide referential value for 
understanding clinical and tumor biological significance 
of CAF.

Secondly, it’s difficult to dissect expression profiles of 
tumor cell itself, stroma cell component and immune cell 
from bulk tumor tissue. In this case, the cellular locali-
zation of transcriptomic and pathway alteration needs to 
be elucidated by more experimental study. What need to 
be noticed is CD11b, CD14 and CD33 are not definitely 

Fig. 7  Construction of overall survival risk model based on 36 ligands for TGF-beta, Hedgehog pathways and RTKs. A, B Screening of candidate 
ligands for risk model from 36 ligands that are differentially expressed and associated with overall survival. A Shows cross-validation of the lasso 
COX model to get the optimal lambda value (minimum). B Shows the lasso COX regression coefficients of 36 ligands at different lambda values. C 
The coefficient of the risk sore model by multivariate COX regression. D Risk score and expression of TGFB2 and VEGFB for each individual in TCGA 
cohort. E ROC curves of predicted survival at 1 year, 2 year and 5 year time point. F Kaplan–Meier plot of low and high risk group

(See figure on next page.)
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Fig. 7  (See legend on previous page.)



Page 14 of 16Liu et al. J Transl Med          (2021) 19:325 

specific markers for MDSC, the connection between 
CAF and MDSC should be carefully interpreted, and 
more work defining MDSC with gold standard such as 
flowcytometry have to be done in the future. Lastly, we 

roughly reviewed the connection of CAF to clinical char-
acteristics, prognosis and immune micro-environment 
without considering CAF subtype and time-spatial heter-
ogeneity. For the reason of CAF molecular and functional 

Fig. 8  Risk model for disease-free survival. A Coefficients of the risk sore model by multivariate COX regression and the ligands in the model. B Risk 
score and expression of AREG, EFNA5, COL1OA1, TGFB2 and VEGFB for each individual in TCGA cohort. C ROC curve of predicted survival at 1 year, 
2 year and 5 year time point. D Kaplan–Meier plot of low and high risk group
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heterogeneity, none of currently used markers are exclu-
sively expressed by all CAF populations [51, 52], posing 
a challenge for us to understand CAF panorama. Hope-
fully, single cell sequencing (scRNA-seq) technology may 
be an excellent strategy to make a breakthrough [52]. 
CAF subtypes in breast and pancreatic cancer identified 
by scRNA-seq have been reported [53, 54].We look for-
ward to the gap in gastric cancer filed to be filled soon.

Conclusion
CAF infiltration is more sever in DGC, GS tumor and 
stage III/IV. CAF infiltration is associated with immune-
suppressive microenvironment and worse survival for 
gastric cancer. In summary, CAF infiltration engages in 
the acquirement of aggressive cancer phenotype. Simul-
taneously, TGFB2, VEGFB, COL10A1, ERG1 and EFNA5 
composed risk model is a promising tool for assessment 
of gastric cancer survival.
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