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Abstract 

Background:  This study aimed to establish and validate an easy-to-operate novel scoring system based on simple 
and readily available clinical indices for predicting the progression of chronic kidney disease (CKD).

Methods:  We retrospectively evaluated 1045 eligible CKD patients from a publicly available database. Factors 
included in the model were determined by univariate and multiple Cox proportional hazard analyses based on the 
training set.

Results:  Independent prognostic factors including etiology, hemoglobin level, creatinine level, proteinuria, and uri-
nary protein/creatinine ratio were determined and contained in the model. The model showed good calibration and 
discrimination. The area under the curve (AUC) values generated to predict 1-, 2-, and 3-year progression-free survival 
in the training set were 0.947, 0.931, and 0.939, respectively. In the validation set, the model still revealed excellent 
calibration and discrimination, and the AUC values generated to predict 1-, 2-, and 3-year progression-free survival 
were 0.948, 0.933, and 0.915, respectively. In addition, decision curve analysis demonstrated that the model was clini-
cally beneficial. Moreover, to visualize the prediction results, we established a web-based calculator (https://​ncuto​ol.​
shiny​apps.​io/​CKDpr​ogres​sion/).

Conclusion:  An easy-to-operate model based on five relevant factors was developed and validated as a conven-
tional tool to assist doctors with clinical decision-making and personalized treatment.

Keywords:  Chronic kidney disease, End-stage renal disease, Area under the curve, Prognostic factor, Progression-free 
survival
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Introduction
Chronic kidney disease (CKD), a common kidney disease 
with a progressive decline in renal function, is increas-
ingly recognized as a global public health problem [1]. It 
causes more than half a million patients to develop end-
stage renal disease (ESRD) every year, and over 700,000 

deaths [2]. CKD is multifactorial and is defined as glo-
merular filtration rate (GFR) < 60  mL/min per 1.73  m2 
or abnormalities in kidney structure or function present 
for more than 3  months [3, 4]. Diabetic nephropathy is 
the leading cause of CKD, accounting for approximately 
40% of patients with non-dialysis-dependent CKD and 
ESRD [5]. Other pathological processes for CKD include 
chronic glomerulonephritis, ureteral obstruction, and 
renal fibrosis [6–8]. As effective therapeutic strategies 
for ESRD are currently limited, it is important to iden-
tify treatments to delay the progression of CKD to ESRD. 
Rapid CKD progression leads to irreversible patho-
logical changes and may be associated with unfavorable 
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outcomes. Once a patient has developed ESRD, renal 
replacement therapy is needed to maintain their daily 
activities. Therefore, there is an urgent need for reliable 
and accurate progression prediction models for CKD.

Many definitions of CKD progression have been used 
over the years, such as doubling of serum creatinine 
level, decrease in estimated GFR (eGFR) to < 15  mL/
min per 1.73 m2, and development of ESRD [9, 10]. Cur-
rently, there are no clinically robust biomarkers to pre-
dict progressive CKD. Rather, clinicians rely on multiple 
longitudinal kidney measurements, such as the eGFR, 
proteinuria, and urinary protein/creatinine ratio (UPCR) 
to identify progression [11]. The shortcomings of these 
traditional biomarkers are well recognized, and a single 
index has limited predictive capacity for progressive CKD 
[12]. However, the use of complex and potentially expen-
sive detection strategies may prevent at risk patients from 
benefiting from preventative interventions, especially in 
settings where renal replacement therapy is not readily 
available. The use of risk models is an attractive and likely 
cost-effective method for large-scale CKD risk stratifica-
tion and would allow the identification of populations 
that would benefit the most from CKD detection. There 
have been several attempts to create a risk model for pre-
dicting the progression of CKD. However, the prediction 
accuracy of these models has not been tested through 
widespread application in clinical practice [13–16].

In the present study, we aimed to establish a model 
using Cox regression analysis based on commonly used 
and readily available clinical characteristics to predict 
disease progression in CKD patients. We performed uni-
variate and multivariate analyses to screen for independ-
ent risk factors. The visualization model was constructed 
by nomogram and web-based calculator, and prediction 
performance was measured by discrimination, calibra-
tion, and clinical utility. This novel simple-to-use model 
might predict the prognosis of patients with CKD with 
high accuracy.

Methods
Ethics statement
The study was conducted in accordance with the ethical 
standards and the Declaration of Helsinki and according 
to national and international guidelines. It was approved 
by the authors’ institutional review board (No. 883).

Patients
This study used data from 1138 patients with CKD 
obtained via the Dryad Digital Repository (http://​www.​
datad​ryad.​org/), shared by Limori et  al. [17]. According 
to Dryad’s terms of service, researchers can use these data 
for secondary analysis without infringing on the author’s 
rights. All eligible individuals who were not undergoing 

dialysis were diagnosed with stage G2–G5 CKD based on 
the Kidney Disease Improving Global Outcomes classifi-
cation [18]. All participants were at least 20 years of age 
and visited nephrology centers for the first time between 
October 2010 and December 2011. Patients with malig-
nancy that was diagnosed or treated within the previous 
2 years, transplant recipients, and those with active gas-
trointestinal bleeding at enrollment were excluded. All 
eligible patients were randomly stratified into two groups 
in a 2:1 ratio (training set and validation set, respectively).

Data collection
We performed a secondary analysis based on data from 
the above database. Fifteen probable prediction variables 
were selected, including gender, age, etiology (diabetes, 
nephrosclerosis, glomerulonephritis, and others), hemo-
globin level, serum albumin level, creatinine level, eGFR, 
proteinuria, urinary occult blood, UPCR, hypertension, 
history of cardiovascular disease, diabetes, use of RAAS 
inhibitor, use of calcium channel blocker, and use of diu-
retics. Moreover, the vital status and follow-up time of 
each CKD case were extracted.

Predictor selection and development of the prediction 
model
Depending on the training set, Cox proportion hazard 
regression models were used to screen potential prog-
nostic factors and estimate their weights [19, 20]. Univar-
iable Cox regression analysis was performed to explore 
the potential predictors [21]. The selected prognostic 
factors (p value below 0.05 in univariate analysis) were 
then included in a multivariate Cox regression analysis 
to obtain an integrated nomogram by a stepwise feature 
selection algorithm based on the AIC [22]. Moreover, to 
facilitate clinical application, we established a visualiza-
tion tool by a web-based calculator.

Validation of the prediction model
The performance of our model to predict survival was 
quantified using AUC values from the ROC analysis 
and the C-index. The performance of the novel model 
was also evaluated by examining calibration in training 
and validation sets. In addition, DCA was carried out to 
assess the clinical utility of the model. These tests were all 
performed in both the training and validation sets.

Statistical analysis
Continuous variables following a normal distribution are 
presented as mean ± standard deviation and categori-
cal variables are presented as percentages. Differences 
between the training and validation sets were analyzed 
using chi-square tests for the categorical variables and 
t-tests for the continuous variables. A p value < 0.05 was 
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used as a cutoff for statistical significance. Statistical 
analysis was performed using SPSS software (version 
24.0) and R software (version 3.6.2).

Results
Baseline characteristics
Figure  1 shows a flow diagram of the selection process. 
After excluding 93 patients with missing data, a total of 
1,045 patients was included in the analysis. Patients were 
randomly divided at a ratio of 6:3 into training (N = 696) 
and validation sets (N = 349). The demographics and 
clinical characteristics of the whole, training, and valida-
tion sets are presented in Table  1. In the whole cohort, 
69.9% of the participants were male, and the mean age 
was 67.31 ± 13.6  years. Most patients had positive pro-
teinuria and history of hypertension. Across the entire 

study population, 260 patients had disease progression 
(CKD progression defined as > 50% eGFR loss or initia-
tion of dialysis).

Prognostic factors of CKD
Univariate Cox regression analysis showed that age, eti-
ology, hemoglobin level, serum albumin level, creatinine 
level, eGFR, proteinuria, urinary occult blood, UPCR, 
hypertension, diabetes, use of renin–angiotensin–aldos-
terone-system (RAAS) inhibitor, use of calcium channel 
blocker, and use of diuretics were correlated with CKD 
progression. Multivariate Cox regression analysis identi-
fied etiology, hemoglobin level, creatinine level, proteinu-
ria, and UPCR as independent prognostic factors of CKD 
patients (Table 2).

Fig. 1  Flow diagram that shows the development and validation of the prediction model



Page 4 of 12Xu et al. J Transl Med          (2021) 19:288 

Development of an individualized prediction model
Based on Akaike information criterion (AIC) results, five 
factors (etiology, hemoglobin, creatinine, proteinuria, 

and UPCR) were selected to establish the predictive 
nomogram, which is an intuitive visualization of the 
model (Fig.  2A). According to the constructed model, 

Table 1  Baseline demographics and clinical characteristics of patients in training cohort and validation cohort

Variables All patients
(N = 1045)

Training set
(N = 696)

Validation set
(N = 349)

P-value

Gender, n (%) 0.966

 Male 730 (69.9%) 487 (70.0%) 243 (69.6%)

 Female 315 (30.1%) 209 (30.0%) 106 (30.4%)

Age, years 67.31 ± 13.60 66.70 ± 13.90 68.54 ± 12.90 0.039

Etiology, n (%) 0.759

 Diabetic 271 (25.9%) 177 (25.4%) 94 (26.9%)

 Nephrosclerosis 411 (39.3%) 270 (38.8%) 141 (40.4%)

 Glomerulonephritis 197 (18.9%) 137 (19.7%) 60 (17.2%)

 Others 166 (15.9%) 112 (16.1%) 54 (15.5%)

Hemoglobin, g/dL 11.97 ± 2.28 12.02 ± 2.29 11.87 ± 2.26 0.304

Serum albumin, g/dL 3.85 ± 0.63 3.87 ± 0.63 3.82 ± 0.64 0.211

Creatinine, g/dL 2.26 ± 1.72 2.25 ± 1.72 2.28 ± 1.71 0.825

eGFR, mL/min/1.73 m2 32.95 ± 18.82 33.15 ± 18.78 32.56 ± 18.90 0.632

Proteinuria, n (%) 0.919

 Negative 381 (36.5%) 255 (36.6%) 126 (36.1%)

 Positive 664 (63.5%) 441 (63.4%) 223 (63.9%)

Urinary occult blood, n (%) 0.361

 Negative 689 (65.9%) 466 (67.0%) 223 (63.9%)

 Positive 356 (34.1%) 230 (33.0%) 126 (36.1%)

UPCR, g/gCr 2.17 ± 3.24 2.04 ± 2.98 2.42 ± 3.69 0.073

Hypertension, n (%) 0.864

 No 101 (9.7%) 66 (9.5%) 35 (10.0%)

 Yes 944 (90.3%) 630 (90.5%) 314 (90.0%)

History of CVD, n (%) 0.183

 No 765 (73.2%) 519 (74.6%) 246 (70.5%)

 Yes 280 (26.8%) 177 (25.4%) 103 (29.5%)

Diabetes, n (%) 0.693

 No 651 (62.3%) 437 (62.8%) 214 (61.3%)

 Yes 394 (37.7%) 259 (37.2%) 135 (38.7%)

Use of RAAS inhibitor, n (%) 0.047

 No 380 (36.4%) 238 (34.2%) 142 (40.7%)

 Yes 665 (63.6%) 458 (65.8%) 207 (59.3%)

Use of calcium channel blocker, n (%) 0.616

 No 547 (52.3%) 360 (51.7%) 187 (53.6%)

 Yes 498 (47.7%) 336 (48.3%) 162 (46.4%)

Use of diuretics, n (%) 0.154

 No 694 (66.4%) 473 (68.0%) 221 (63.3%)

 Yes 351 (33.6%) 223 (32.0%) 128 (36.7%)

Vital status, n (%) 0.773

 Alive 972 (93.0%) 649 (93.2%) 323 (92.6%)

 Deceased 73(7.0%) 47(6.8%) 26 (7.4%)

CKD progression, n (%) 0.479

 No 785 (75.1%) 528 (75.9%) 257 (73.6%)

 Yes 260 (24.9%) 168 (24.1%) 92 (26.4%)
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the risk score of each sample was calculated accord-
ing to the model coefficients combined with the corre-
sponding value of the five chosen factors. CKD patients 
were divided into high- (N = 348) and low-risk (N = 348) 
groups based on their median risk score. Risk score dis-
tribution is shown in Fig. 2B. The Kaplan–Meier survival 
curve of low- and high-risk groups in the training set is 

shown in Fig. 2C (p < 0.001). The CKD progression status 
and follow-up time of each individual is shown in Fig. 2D.

Establishment of a web‑based calculator
For convenient clinical use and visualization of the prog-
nostic model, we developed an easy-to-operate web-
based model (https://​ncuto​ol.​shiny​apps.​io/​CKDpr​ogres​
sion/) to predict the progression of CKD based on the 

Table 2  Univariate and multivariable Cox hazards analysis of the training cohort

P < 0.05 is shown in bold

Variables Univariate P-value Multivariate P-value
HR (95% CI) HR (95% CI)

Gender

 Male Ref. – Ref. –

 Female 1.018 (0.734–1.412) 0.914 –

Age 0.989 (0.979–0.999) 0.028 0.998 (0.985–1.011) 0.720

Etiology

Diabetic Ref. Ref. –

Nephrosclerosis 0.147 (0.098–0.220) 0.000 0.540 (0.297–0.979) 0.042
Glomerulonephritis 0.230 (0.148–0.359) 0.000 0.437 (0.228–0.836) 0.012
Others 0.170 (0.097–0.299) 0.000 0.269 (0.118–0.618) 0.002
Hemoglobin 0.701 (0.655–0.751) 0.000 0.821 (0.749–0.900) 0.000
Serum albumin 0.267 (0.216–0.330) 0.000 0.869 (0.624–1.212) 0.409

Creatinine 1.429 (1.370–1.490) 0.000 1.314 (1.221–1.413) 0.000
Proteinuria

 Negative Ref. Ref.

 Positive 28.395 (10.53–76.571) 0.000 7.214 (2.547–20.436) 0.000
Urinary occult blood

 Negative Ref. Ref.

 Positive 2.156 (1.592–2.919) 0.000 1.096 (0.779–1.543) 0.597

UPCR 1.305 (1.264–1.348) 0.000 1.192 (1.126–1.261) 0.000
Hypertension

 No Ref. Ref.

 Yes 5.976 (1.908–18.719) 0.002 0.930 (0.271–3.197) 0.909

History of CVD

 No Ref. – Ref. –

 Yes 1.366 (0.977–1.910) 0.068 –

Diabetes

 No Ref. – Ref. –

 Yes 3.005 (2.205–4.096) 0.000 0.898 (0.527–1.528) 0.690

Use of RAAS inhibitor

 No Ref. – Ref. –

 Yes 1.808 (1.259–2.595) 0.001 0.928 (0.627–1.374) 0.710

Use of calcium channel blocker

 No Ref. − Ref. –

 Yes 2.024 (1.474–2.778) 0.000 1.298 (0.925–1.821) 0.132

Use of diuretics

 No Ref. – Ref. –

 Yes 2.833 (2.092–3.836) 0.000 1.04 (0.741–1.461) 0.819
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established nomogram (Fig.  3). Estimated disease pro-
gression probabilities can be obtained by drawing a per-
pendicular line from the total point axis to the outcome 
axis.

Model performance in the training set
In the training set, the model was evaluated using time-
dependent receiver operating characteristic (ROC) 
curve analysis over 1-, 2-, and 3-years, along with the 
concordance index (C-index). The area under the ROC 
curve (AUC) values for the 1-, 2-, and 3-year survival 
probabilities were 0.947, 0.931, and 0.939, respectively 
(Fig.  4A). The C-index for the prediction of progres-
sion-free survival was 0.912. The calibration curves 
of the model showed good probability consistencies 
between the predicted and observed values (Fig.  4B). 
These results might confirm that our model was reli-
able in predicting the prognosis of CKD. Further-
more, a decision curve analysis (DCA) confirmed our 

expectations, as the analysis revealed that the net ben-
efit in 1-, 2- and 3-year predictions was the highest in 
the combined nomogram model compared to the sin-
gle variable (Fig.  4C). Hence, we chose the combined 
model for clinical use.

Model performance in the validation set
In the validation set, CKD patients were divided into 
high- (N = 174) and low-risk (N = 175) cohorts based 
on their median risk score. The risk score distribution 
is shown in Fig.  5A. The CKD progression status and 
follow-up time of all individuals are shown in Fig.  5B. 
The Kaplan–Meier survival curve of the low- and high-
risk groups is shown in Fig.  5C (p < 0.001). The time-
dependent ROC curve analysis validated prediction 
accuracy of this model over other features (Fig. 5C).

In addition, we performed calibration plot analysis in 
the validation set. The calibration curves of the model 
showed good probability consistencies between the 

Fig. 2  The model to predict the probability of progression in chronic kidney disease (CKD) patients from the training cohort. A The nomogram 
based on the five variables identified by the Cox hazards analysis. B Distribution of the risk scores calculated by the nomogram scoring system. C 
Progression-free survival curves stratified by the low- and high-score groups. D Patient distribution in the low- and high-score groups based on 
progression status
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predicted and observed values (Fig.  6A). DCA analy-
sis revealed that the net benefit in the 1-, 2- and 3-year 
predictions was the highest in the combined nomogram 
model compared to the single variable (Fig. 6B).

Discussion
Predicting the CKD outcome in individual patients is 
beneficial for identifying those who need an aggres-
sive therapeutic regimen. This study showed that etiol-
ogy, together with proteinuria, serum creatinine, and 
UPCR, was a better predictor of the risk of progression 
in patients with CKD when compared to a single indica-
tor. Furthermore, a novel nomogram and corresponding 
web-based calculator were built as a reference for clini-
cians to help with clinical decision-making. The risk 
score identified the highest risk patients accurately, and 
therefore can identify patients who may benefit most 
from management by nephrologists without referring the 
entire population with CKD to them.

The etiology of CKD is multifactorial and diverse. The 
main causes included diabetes, nephrosclerosis, and 
glomerulonephritis. In the present study, we found that 
the highest risk of progression is diabetic kidney disease 
(DKD). Type 2 diabetes is the most common cause of 
severe kidney disease worldwide, and DKD is associated 

with premature death [23]. Although, the fundamental 
mechanism responsible for the development of DKD to 
ESRD is poorly understood [24], it is now believed that 
vessel disease and inflammation are the main patho-
logical mechanisms of CKD [25]. Approximately 40% of 
diabetic patients develop DKD, and the resultant kidney 
damage often leads to kidney failure, ultimately requir-
ing dialysis or kidney transplant [26]. Our results suggest 
that measures should be taken to delay the progression of 
CKD, especially in cases of DKD.

Proteinuria generally precedes the loss of renal func-
tion in kidney disease [27]. For instance, a popula-
tion-based cohort study in China found that elevated 
albuminuria was a key predictor of progression to CKD 
or ESRD and indicated a higher risk of cardiovascular 
disease and mortality [28]. However, an increasing num-
ber of studies have cast doubt on this classic paradigm. In 
several recent studies, eGFR reduced to 20–39% resulted 
in normal albuminuria levels [29–31]. In some clinical 
trials, improvement in proteinuria did not translate to an 
increased GFR or a reduction in end points such as the 
need for dialysis or death [32, 33]. The critical role of pro-
teinuria as a single predictor of CKD prognosis requires 
further study. In the current study, incorporation of 

Fig. 3  Establishing an easy-to-operate web-based calculator for predicting the progression of chronic kidney disease (https://​ncuto​ol.​shiny​apps.​io/​
CKDpr​ogres​sion/). A Web progression-free survival rate calculator. B 95% confidence interval of the web progression-free survival rate

https://ncutool.shinyapps.io/CKDprogression/
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several factors including proteinuria might increase 
model accuracy.

Anemia is a common feature at any stage of CKD, 
especially in patients with advanced stages of CKD. 
Anemia in CKD is mainly attributable to the relative 
decrease in erythropoietin production by the kidneys, 
absolute or functional iron deficiency, and shortened 
red blood cell survival. The severity of anemia increases 
with CKD progression and affects nearly all patients 
with ESRD [34, 35]. The development of erythropoi-
etic stimulatory agents, such as recombinant human 
erythropoietin and darbepoetin alpha, has resulted in 

substantial health benefits for patients with end-stage 
renal failure, including improved quality of life, reduced 
blood transfusion requirements, decreased left ventric-
ular mass, diminished sleep disturbance, and enhanced 
exercise capacity [36, 37]. It is generally believed that 
low levels of hemoglobin are associated with worse out-
comes in patients with CKD [38]. These results are in 
agreement with the findings of our model.

Previous studies have tried to establish models for 
progression of CKD to kidney failure [13, 14, 39, 40]. 
Although the estimations produced by previous models 
were moderately accurate, the results were somewhat 

Fig. 4  Model discrimination and performance in the training set. A Receiver operating characteristic curves for model-based progression-free 
survival prediction. B Calibration plot examining estimation accuracy. C Decision curve analysis assessing clinical utility
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complex because many predictors were involved, each 
with precise classification levels. We identified five eas-
ily accessible and simple demographic and clinical 
characteristics to include in our novel model, which dem-
onstrated that these traditional factors are important in 
patients with CKD. Our model showed good calibration 
and discrimination, and the AUC values generated to 
predict 1-, 2-, and 3-year progression-free survival in the 
training set were 0.947, 0.931, and 0.939, respectively. In 
the validation set, the model revealed excellent calibra-
tion and discrimination, and the AUC values generated 
to predict 1-, 2-, and 3-year progression-free survival 
were 0.948, 0.933, and 0.915, respectively. These results 
showed that our model can perfectly predict patient 

survival in CKD. Moreover, we developed an easy-to-
operate calculator that allows the public to freely predict 
local cases and diagnose the adaptability of the model.

Admittedly, there are some shortcomings in our 
research. First, the model was developed based on 
the five variables. However, these factors were unsta-
ble throughout the follow-up period, which might have 
partly influenced the precision of the model. Second, 
although the performance of the model was good in 
both the training and validation sets, multicenter clini-
cal application is needed to evaluate the external utility 
of this model. Third, as the main outcome measure was 
the progression status of CKD, other outcomes such as 
survival time should be evaluated in future studies.

Fig. 5  Validation of the nomogram in the validation set. A Distribution of the risk scores calculated by the nomogram scoring system. B Patient 
distribution in the low- and high-score groups based on progression status. C Progression-free survival curves stratified by the low- and high-score 
groups. D Time-dependent ROC curves for nomogram vs. other single parameters included in the model
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In conclusion, we constructed and validated a model 
incorporating five clinical characteristics (etiology, pro-
teinuria, hemoglobin, creatinine, and UPCR) to predict 
disease progression in CKD patients. This model could 
serve as a reliable tool for determining CKD treatment 
strategies and potential outcomes.
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