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Abstract 

Background:  Currently, no molecular classification is established for bladder cancer based on metabolic character-
istics. Therefore, we conducted a comprehensive analysis of bladder cancer metabolism-related genes using multiple 
publicly available datasets and aimed to identify subtypes according to distinctive metabolic characteristics.

Methods:  RNA-sequencing data of The Cancer Genome Atlas were subjected to non-negative matrix fractionation 
to classify bladder cancer according to metabolism-related gene expression; Gene Expression Omnibus and ArrayEx-
press datasets were used as validation cohorts. The sensitivity of metabolic types to predicted immunotherapy and 
chemotherapy was assessed. Kaplan–Meier curves were plotted to assess patient survival. Differentially expressed 
genes between subtypes were identified using edgeR. The differences among identified subtypes were compared 
using the Kruskal–Wallis non-parametric test. To better clarify the subtypes of bladder cancer, their relationship with 
clinical characteristics was examined using the Fisher’s test. We also constructed a risk prediction model using the 
random survival forest method to analyze right-censored survival data based on key metabolic genes. To identify 
genes of prognostic significance, univariate Cox regression, lasso analysis, and multivariate regression were performed 
sequentially.

Results:  Three bladder cancer subtypes were identified according to the expression of metabolism-related genes. 
The M1 subtype was characterized by high metabolic activity, low immunogenicity, and better prognosis. M2 
exhibited moderate metabolic activity, high immunogenicity, and the worst prognosis. M3 was associated with low 
metabolic activity, low immunogenicity, and poor prognosis. M1 showed the best predicted response to immuno-
therapy, whereas patients with M1 were predicted to be the least sensitive to cisplatin. By contrast, M2 showed the 
worst predicted response to immunotherapy but was predicted to be more sensitive to cisplatin, doxorubicin, and 
other first-line anticancer drugs. M3 was the most sensitive to gemcitabine. The risk model based on metabolic genes 
effectively predicted the prognosis of bladder cancer patients.
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Background
Bladder cancer generally develops in the epithelial cells 
of the bladder and is the fifth most common type of can-
cer occurring worldwide, with 430 000 new cases and 
more than 165 000 deaths reported each year [1–3]. 
Particularly, muscle-invasive bladder cancer (MIBC) is 
associated with high morbidity and mortality owing to 
its heterogeneity and invasiveness, and represents the 
ultimate challenge in the diagnosis, treatment, and care 
of bladder cancer [4]. Robertson et  al. [5] conducted a 
comprehensive genomic analysis of MIBC samples and 
mapped the molecular typing atlas of MIBC. Based on 
RNA-sequencing (RNA-seq) data, the following five 
molecular subtypes were identified: luminal-papillary, 
luminal-infiltrated, luminal, basal-squamous, and neu-
ronal. The luminal-papillary subtype (35%) is charac-
terized by the existence of FGFR3 mutations and a low 
carcinoma in  situ score; thus, the risk of progression is 
low, but the probability of response to cisplatin-based 
neoadjuvant chemotherapy is also low. The frequency of 
FGFR3 mutation changes observed in luminal papillary 
tumors suggests that FGFR3 tyrosine kinase inhibitors 
may be an effective treatment. The intraluminal-infil-
trated subtype showed a response to immune checkpoint 
therapy with atezolizumab in patients with metastatic 
or unresectable bladder cancer [6]. The basal-squamous 
subtype is characterized by a high expression of CD274 
(PD-L1) and CTLA4 immune markers, and other signs 
of immune infiltration; thus, cisplatin-based neoadju-
vant chemotherapy and immune checkpoint therapy are 
suitable treatment options for this subtype [7]. However, 
there is currently no clear targeted therapy available for 
the luminal subtype. The neuronal subtype is associ-
ated with the worst prognosis for patients with MIBC, 
which is characterized by the expression of neuroendo-
crine and neural markers; etoposide-cisplatin therapy is 
recommended as neoadjuvant and metastatic treatment. 
Establishment of this molecular classification combined 
with pathological morphology and molecular character-
istics has provided further understanding of the patho-
genesis and heterogeneity of bladder cancer, along with 
new insights and opportunities for prognostic applica-
tion evaluation, disease monitoring, and personalized 
treatment.

In addition to the immune and molecular characteris-
tics outlined above, the development and progression of 

cancer are characterized by a unique reprogramming of 
energy metabolism, which is necessary for the mainte-
nance of highly proliferating cancer cells [8]. Recent stud-
ies have reported that bladder cancer cases can present 
a variety of characteristic metabolic changes, including 
increased aerobic glycolysis, increased de novo fat syn-
thesis, glutamine consumption, and oxidative metabo-
lism imbalance, which collectively contribute to the 
rapid growth and proliferation of tumor cells by provid-
ing energy and raw materials for biomacromolecule syn-
thesis [9]. Therefore, an in-depth study of the metabolic 
characteristics and regulatory mechanisms of bladder 
cancer is essential for the development of agents that can 
target tumor metabolism. Although recent advances in 
high-throughput genomic bioinformatics analysis have 
provided the platforms and opportunities for the dis-
covery of new bladder cancer biomarkers and metabolic 
targets, there is currently a lack of molecular typing stud-
ies focusing on the metabolic characteristics of bladder 
cancer.

Therefore, in this study, we performed a comprehen-
sive analysis of bladder cancer metabolism-related genes 
using multiple publicly available datasets, with the goal of 
identifying subtypes according to distinctive metabolic 
characteristics. We further compared the prognostic 
characteristics, clinical characteristics, immune infil-
tration, genetic variation, chemotherapy and immuno-
therapy response, and other aspects to comprehensively 
elucidate the characterization of the proposed metabolic 
subtypes of bladder cancer. These results can provide 
new knowledge and act as a supplement for the molecu-
lar subtyping of bladder cancer from the perspective of 
metabolic regulation.

Methods
Data processing
The datasets used to identify the metabolic subtypes of 
bladder cancer were obtained from The Cancer Genome 
Atlas (TCGA), Gene Expression Omnibus (GEO), and 
ArrayExpress databases. RNA-seq data (FPKM) of 19 
normal samples and 414 cancer samples were down-
loaded from TCGA Knowledge Base (https://​portal.​
gdc.​cancer.​gov/​repos​itory), and gene annotation was 
performed using the Ensemble database. The ArrayEx-
press database contains FPKM RNA-seq and clinical 
data (N = 476) of 476 cases of early urothelial carcinoma 

Conclusions:  Metabolic classification of bladder cancer has potential clinical value and therapeutic feasibility by 
inhibiting the associated pathways. This classification can provide valuable insights for developing precise bladder 
cancer treatment.
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(E-MTAB-4321) from the European Genome-Phenome 
Archive. The expression matrices of the four GEO 
datasets GSE13507 (N = 165), GSE32548 (N = 131), 
GSE31684 (N = 93), and GSE32894 (N = 308) were 
quantile-normalized, and the genes were annotated in 
their respective platform files: Illumina human-6 v2·0 
expression BeadChip, Illumina HumanHT-12 v3·0 
expression BeadChip, [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2·0 Array, and Illumina 
HumanHT-12 v3·0 expression BeadChip, respectively. 
Information regarding the molecular classification of 
bladder cancer from TCGA and LUND University can be 
found in the supplementary documents of Robertson [5] 
and Sjodahl [10].

Identification of new bladder cancer subtypes based 
on metabolic genes
According to the previously published 2752 metabolism-
related genes encoding all known human metabolic and 
transport enzymes [11], genes with a median expres-
sion level below 0.5 in all bladder cancer samples were 
excluded, resulting in a matrix of 1734 metabolism-
related genes for analysis. For TCGA discovery cohort, 
non-negative matrix factorization (NMF) was used for 
unsupervised decomposition and clustering. NMF clus-
tering was further performed with the E-MTAB-4321 
and GSE32984 datasets as validation cohorts using 
the same genes. Gene functional enrichment analysis 
was performed using Gene Ontology (GO) [12], Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [13], and 
Metascape [14].

Estimation of immune infiltration and matrix composition
CIBERSORT is a deconvolution method based on gene 
expression profile data to estimate the absolute abun-
dance of 22 human immune cell populations [15]. We 
also collected the gene set of human matrix components 
through the relevant literature and used single-sample 
gene set enrichment analysis (ssGSEA) as an additional 
method to calculate an enrichment score, which repre-
sents the absolute degree of enrichment of the gene set in 
each sample of the given datasets. In addition, the ESTI-
MATE algorithm [16] was used to calculate the immune 
and stromal scores in each sample, as well as tumor 
purity. The gene sets used to assess hypoxia status were 
based on previous studies [17–21].

Gene set variation analysis (GSVA)
GSVA is an expression matrix that takes a single gene as 
a feature and converts it into an expression matrix that 
uses a specific gene set as a feature. This unsupervised 
algorithm was then used to calculate the non-parametric 
enrichment score of a specific gene set in each sample. 

The gene sets related to sugar metabolism, lipid metabo-
lism, and amino acid metabolism were obtained from 
GSEA c2.cp.kegg.v7.0.symbols.gmt, which was used to 
compare the differences in metabolism between subtypes 
that were statistically evaluated using the Kruskal–Wallis 
test.

Immunotherapy response prediction
Tumor Immune Dysfunction and Rejection (TIDE) [22] 
is a new computing architecture that integrates data on 
two tumor immune escape mechanisms. The result is 
considered to be a substitute for a single biomarker to 
effectively predict the effect of immune checkpoint sup-
pression therapy. We used TCGA expression data to pre-
dict the differences in the response to immunotherapy for 
each bladder cancer subtype and the cell types that affect 
T cell infiltration in tumors, including cancer-associated 
fibroblasts, myeloid-derived suppressor cells, and tumor-
associated M2 macrophages.

Chemotherapy response prediction
Based on the largest available public pharmacogenomics 
database [Genomics of Cancer Drug Sensitivity (GDSC), 
https://​www.​cance​rrxge​ne.​org/], we used TCGA FPKM 
RNA-seq expression profile to predict the chemical reac-
tion of each sample. The prediction process was carried 
out using the R package ‘pRRophetic’, in which the half-
maximal inhibitory concentration (IC50) was estimated 
using ridge regression for the sample, and the accuracy 
of the prediction was evaluated 10 times and cross-vali-
dated according to the GDSC training set. All parameters 
were set to default values.

Statistical analysis
Survival of patients with different metabolic subtypes of 
bladder cancer was compared by plotting Kaplan–Meier 
curves and was analyzed using the log-rank test. Differ-
entially expressed genes between subtypes were identi-
fied using edgeR according to a |log2 fold change|> 1 
and P < 0·05 as the screening threshold parameters. The 
Kruskal–Wallis non-parametric test was used to com-
pare differences among identified subtypes. To better 
clarify the subtypes of bladder cancer, their relationship 
with clinical characteristics was evaluated by perform-
ing the Fisher’s test. To exclude false positives, associa-
tions were strictly screened according to a false discovery 
rate < 0.05 and verified by multiple datasets. To construct 
a risk prediction model, we used the random survival 
forest method to analyze right-censored survival data 
based on key metabolic genes. Random survival forest is 
based on the retention principle of survival forests, which 
defines overall mortality as a simple and interpretable 
mortality measure that can be used as a predictive result. 

https://www.cancerrxgene.org/
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Moreover, construction of an integrated model based on 
the decision tree can considerably improve the prediction 
performance. We used the randomForestSRC R package 
for this purpose. Univariate Cox regression, lasso analy-
sis, and multivariate regression were then used sequen-
tially to identify genes of prognostic significance. All 
calculations and statistical analyses were conducted using 
R (version 3.5.3), and all tests were two-sided; P < 0.05 
was considered statistically significant.

Results
Identification of metabolic subtypes of bladder cancer 
based on NMF
For conducting NMF analysis, 2752 human metabolism-
related genes were selected based on previous reports 
[11]. After removing the data on metabolism-related 
genes with low expression abundance in TCGA cohort, 

data on a total of 1734 metabolism-related genes were 
obtained for the cluster analysis. The same 1734 metab-
olism-related genes were considered in NMF-based clus-
ter analysis of the two validation cohorts GSE32984 and 
E-MTAB-4321 (Fig.  1a). The comprehensive clustering 
results of the three cohorts were considered, and K = 3 
was determined to be the best clustering number (Fig. 1b 
and Additional file 1: Figure S1). Based on the expression 
levels of metabolism-related genes, samples were sequen-
tially classified into the M1, M2, and M3 subcatego-
ries of bladder cancer. A prognostic difference based on 
overall survival (OS) or progression-free survival (PFS) 
was observed according to this subtype classification 
in all three datasets (TCGA-OS, P = 0.009; GSE32894-
OS, P < 0.001; E-MTAB-4321-PFS, P < 0·001). In TCGA 
cohort, patients with the M1 subtype (median sur-
vival = 536 days) had a better prognosis than those with 

Fig. 1  NMF consensus clustering performed to identify bladder cancer (BLCA) subclasses. a Workflow schematic. b NMF clustering performed 
using 1734 metabolism-related genes in TCGA cohort, along with the co-location correlation coefficient, bias, and best fit for k = 2–6. c Overall 
survival (OS) of TCGA cohort. d OS of the GSE32894 cohort. e Progression-free survival (PFS) of the E-MTAB-4321 cohort
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the M2 (median survival = 423  days) and M3 (median 
survival = 483 days) subtypes. Similar results were found 
for the GSE32894 and E-MTAB-4321 validation cohorts 
(Fig. 1c).

Characteristic genes and potential regulatory pathways 
of metabolic subtypes of bladder cancer
To better characterize the classification of the meta-
bolic subtypes of bladder cancer, we used paired differ-
ential expression levels to construct a heat map of 289 
subtype-specific upregulated genes (P < 0.05 and |log2 
fold change|> 1), including 77, 257, and 48 characteris-
tic genes of the M1, M2, and M3 subtypes, respectively. 
Functional enrichment analysis with GO and KEGG 
showed significant differences in the top-ranked path-
ways among the subtypes. The M1 subtype was related 
to processes such as drug metabolism-cytochrome 
P450, chemical carcinogenesis, glutathione metabolism, 
platinum drug resistance, and hormone metabolism; 
the M2 subtype was associated with drug metabolism-
cytochrome P450, chemical carcinogenesis, arachidonic 
acid metabolism, alpha-linoleic acid metabolism, linoleic 
acid metabolism, ferroptosis, and butanoate metabo-
lism; and the M3 subtype-associated genes were mainly 
involved in metabolism-cytochrome P450, chemical car-
cinogenesis, tyrosine metabolism, and hormone regula-
tion (Additional file 2: Figure S2).

Verification of metabolism‑related signatures of bladder 
cancer subtypes
The ssGSEA algorithm was used to quantify a total of 115 
metabolic processes, focusing on the different character-
istics of the three major types of metabolism (sugar, lipid, 
and amino acid metabolism) in the subtypes. Among 
the specific pathways involved in glucose metabolism, 
M1 and M3 were significantly associated with activated 
butanoate metabolism, pentose and glucuronate inter-
conversions, and ascorbate and aldarate metabolism. M2 
was associated with activated amino sugar and nucleo-
tide sugar metabolism, galactose metabolism, and starch 
metabolism. Similarly, M1 and M3 appear to be related 
to the synthesis and metabolism of fatty acids and ketone 
hormones, whereas M2 showed upregulation in fatty 
acid modification and other pathways. In the regula-
tory pathways involving amino acid metabolism, M2 was 
associated with enhanced activation of the synthesis and 
metabolism of polyamine biosynthesis, seleno metabo-
lism, and tryptophan (Fig. 2).

Correlation between metabolic subtypes of bladder cancer 
and immune infiltration
The ESTIMATE algorithm [16] was used to calculate 
the stromal and immune scores between each subtype, 

as well as tumor purity to characterize the regulatory 
relationship between the metabolic subtypes of blad-
der cancer and the tumor microenvironment. As shown 
in Fig. 3, the stromal and immune scores of the bladder 
cancer subtypes were ranked from low to high according 
to M1 < M3 < M2, which is consistent with their hypoxia 
status (Fig.  4), and the tumor purity showed the oppo-
site trend. This result matched the trend related to dif-
ferences in prognosis among subtypes. The CIBERSORT 
algorithm [15] results showed that among the 11 immune 
cell subpopulations with significant differences among 
subtypes, the M1 subtype was associated with activated 
dendritic cells, plasma cells, CD8 T cells, and regula-
tory T cells, representing a significant increase of these 
cell populations compared with the other subtypes. The 
M2 subtype showed a significant increase in naive B cells 
and resting mast cells compared to the other subtypes, 
whereas the populations of resting natural killer cells, 
activated CD4 memory T cells, and CD8 T cells had the 
lowest abundance in M2. The M3 subtype had the high-
est abundance of M0, M1, and M2 macrophages.

Correlation between metabolic subclasses and clinical 
features of bladder cancer patients
The proportions of samples in the T stage in the TNM 
system differed significantly among the three subtypes. 
In TCGA cohort, there were differences among subtypes 
according to tumor grading, disease stage, M stage, and 
molecular subtypes. The validation sets GSE32894 and 
E-MTAB-4321 also showed significant differences in sex, 
tumor grade, molecular subtype, tumor grading, tumor 
size, histology, and cancer in  situ in the disease course 
among metabolic subtypes of bladder cancer (Additional 
file 6: Table S1, Table S2 and Table S3).

Sensitivity of immunotherapy and chemotherapy 
among metabolic subclasses of bladder cancer
Based on the TIDE algorithm, M1 was predicted to be 
much more responsive to immunotherapy than M2 and 
M3, and M2 had a higher TIDE score than the other sub-
types. Among the cell types that limited the infiltration 
of T cells in tumors, the M2 subtype included cancer-
associated fibroblasts, myeloid-derived suppressor cells, 
and tumor-associated macrophages, indicating greater 
ability of cytotoxic T cells to kill cancer cells to a certain 
extent in this subtype. However, the M2 subtype also 
showed a high degree of T cell dysfunction based on the 
dysfunction score (Fig. 5). These results reflect the strong 
immune escape characteristics of the M2 subtype of 
bladder cancer compared with the other subtypes.

Using the GDSC database, among all first-line, sec-
ond-line, or other reported drugs for bladder cancer, M1 
was predicted to be the most sensitive to gefitinib and 
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Fig. 2  Characteristic metabolic pathways observed among bladder cancer subtypes. a glucose metabolism, b lipid metabolism, and c amino acid 
metabolism
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Fig. 3  Immune infiltration among bladder cancer subtypes. a Immune cell components that differ between subtypes in TCGA cohort. b–d 
Immune, stromal score, and tumor purity between subtypes in TCGA cohort. e Immune cell components that differ between subtypes in the 
GSE32894 cohort. f–h Immune, stromal score, and tumor purity between subtypes in the GSE32894 cohort. i Immune cell components with 
differences between subtypes in the E-MTAB-4321 cohort. k–l Immune, stromal score, and tumor purity between subtypes in the E-MTAB-4321 
cohort. *P < 0.05, **P < 0.01, ***P < 0.001; ns not significant
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methotrexate; M3 was predicted to be the most sensitive 
to bleomycin, gemcitabine, mitomycin C, sunitinib, and 
vinblastine; and M2 was predicted to be the most sensi-
tive to cisplatin. Similar sensitivity of the three subtypes 
was found for the other 15 drugs (Fig. 6 and Additional 
file 6: Table S4).

Landscape of somatic mutation and copy number variation 
of metabolic subtypes of bladder cancer
To further reveal the genomic differences among meta-
bolic subtypes of bladder cancer and identify meaning-
ful somatic mutations, we analyzed the top 20 genes with 
mutation frequencies exceeding 10% in samples of each 
subtype, which are displayed as a waterfall plot in Fig. 7. 
SYNE1, KMT2D, PIK3CA, TP53, MUC16, ARID1A, 
KDM6A, and TTN were in the top 20 genes of all three 
subtypes. Among them, TP53 contributed to 40%, 60%, 
and 44% of the total mutation frequency in M1, M2, and 
M3, respectively. The mutation frequencies of ARID1A 
and TTN were increased in M2 (24% and 40%) and M3 
(28% and 44%) compared with those of M1 (17% and 
29%), and the mutation frequency of MUC16 was higher 
in M1 (30%) than in M2 (23%) and M3 (22%). The muta-
tion frequencies of SYNE1 and PIK3CA were not sig-
nificantly different among M1 (19% and 21%), M2 (19% 
and 20%), and M3 (16% and 20%). There was a trend of 
an increase in the mutation frequencies of KDM6A and 
KMT6A in M1 (30% and 27%), M2 (19% and 30%), and 
M3 (29% and 22%) (Fig. 6a–c).

Metascape biological function enrichment analysis 
showed that the top 20 mutant genes of the M1, M2, 
and M3 subtypes were involved in the development pro-
cess, metabolism, and immune process (Additional file 3: 
Figure S3a–c), with differences in the central regulating 

genes among subtypes (Additional file  3: Figure S3g–i). 
The mutant genes of M1 and M3 were more associated 
with bladder cancer in  situ and partially invasive blad-
der cancer, whereas the mutant genes of M2 were more 
strongly related to transitional cell carcinoma; this dif-
ference also largely corresponds to the differences in 
the prognosis of each subtype (Additional file  3: Figure 
S3j–l). Compared with the M1 subtype, the M2 and M3 
subtypes showed higher similarity in chromosomal aber-
rations (Fig.  6d and Additional file  4: Figure S4). Spe-
cifically, the somatic chromosomes of the tumors in the 
M2 and M3 subtypes had several and similar aberrated 
(amplified or missing) sites. By contrast, there were few 
somatic chromosomal aberration sites of tumors in M1 
samples, which were largely concentrated at certain 
regions and of low frequency. Among them, the rates of 
censored oncogenes in the M1, M2, and M3 subtypes 
were 28.57%, 30.91%, and 33.14% for CDKN2A (9p21.3); 
28.57%, 30.3%, and 31.97% for CKKN2B (9p21.3); 27.14%, 
24.24%, and 27.33% for MTAP (9p21.3); and 11.43%, 
8.48%, and 8.14% for RB1 (13q14.2), respectively. The 
amplification rates of oncogenes in the M1, M2, and 
M3 subtypes were 18.57%, 15.15%, and 13.95% for E2F3 
(6p22.3), and were 15.71%, 8.48%, and 16.86% for DDR2 
(1q23.3), respectively.

Prognostic risk model based on characteristic genes 
of metabolic subtypes of bladder cancer
Among the 289 characteristic genes of the metabolic 
subtypes, random survival forest identified 39 genes 
with relative importance  ≥ 0 as the final features, and 
univariate Cox analysis narrowed the list down fur-
ther to 21 genes with prognostic significance, which 
was confirmed in lasso regression analysis. Of these 

Fig. 4  Hypoxia status observed among bladder cancer subtypes. Profiles of hypoxia gene sets in a TCGA, b GSE32894, and c E-MTAB-4321 cohorts. 
****P < 0.0001; ns not significant
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21 genes, 13 remained significant in the multivariate 
regression model. Samples were divided into high-risk 
and low-risk groups according to the median expres-
sion level of the risk score, and Kaplan–Meier analysis 
showed significant differences in survival between the 

groups in TCGA and validation sets. The prognostic 
accuracy of our signature was further verified based on 
receiver operating characteristic curve analysis, with 
areas under the curve > 0.63 for 1-, 3-, and 5-year OS, 
PFS, or relapse-free survival of the metabolic-related 

Fig. 5  Immunotherapy prediction using the TIDE algorithm. a Differences in response to immunotherapy among subtypes; b TIDE score, c 
dysfunction score, d exclusion score, e myeloid-derived suppressor cell (MDSC), f cancer-associated fibroblast (CAF), and g M2 macrophages score 
in TCGA cohort. h Differences in response to immunotherapy among subtypes; i TIDE score, j dysfunction score, k exclusion score, l MDSC, m CAF, 
and n M2 macrophages score in the GSE32894 cohort
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characteristic risk scores of the three cohorts (Fig.  8 
and Additional file 5: Figure S5).

Discussion
Bladder cancer is one of the most commonly reported 
tumors, and a major contributor to morbidity and mor-
tality worldwide. Staging and grade largely determine 
the treatment of bladder cancer, and considerably affect 
the prognosis [23]. Non-MIBC is usually treated by tran-
surethral resection of the bladder tumor and via Bacil-
lus Calmette-Guerin immunotherapy. However, more 
aggressive treatment methods are necessary for MIBC, 
including radical cystectomy combined with chemo-
therapy [23]. Although the use of chemotherapy in neo-
adjuvant and assistive settings can improve outcomes, 
the adoption rate remains low [24]. This may result in 
part from the fact that 50% of all patients exhibit natu-
ral resistance to cisplatin-based chemotherapy, and a 
significant proportion of patients who meet the criteria 

for cisplatin treatment eventually develop chemoresist-
ance during treatment. Checkpoint inhibitors represent 
a recently approved second-line drug option with the 
potential to change the prospects of bladder cancer treat-
ment. Unfortunately, only 20%–30% of the patients show 
a clinical response to immunotherapy, and long-term 
data indicate that disease-specific survival rates have not 
improved [25]. Therefore, further investigation of the 
molecular characteristics of bladder cancer is essential 
for the development of tumor-specific targeted drugs.

Based on the analysis of metabolic expression pro-
files, we propose a new molecular classification method 
for bladder cancer. Metabolism is considered one of 
the key characteristics of cancer. Cancer cells tend 
to use glycolysis as an alternative to the aerobic cycle 
(oxidative phosphorylation) of normal cells, and there-
fore use the mitochondria differently, which is known 
as the Warburg effect [26]. Therefore, clarification 
of the mitochondrial processes and mechanisms for 

Fig. 6  Chemosensitivity prediction among subtypes of bladder cancer in TCGA cohort. Chemosensitivity prediction among subtypes of bladder 
cancer in TCGA cohort based on the chemical drug sensitivity of the GDSC database. IC50, half-maximal inhibitory concentration
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regulating the aerobic cycle and glycolysis have been an 
important focus in the research of bladder tumors. The 
three metabolic subtypes were found to be enriched in 
drug metabolism-cytochrome P450 and metabolism 
of xenobiotics by cytochrome P450. Cytochrome P450 
(P450) enzymes are important in the metabolism of 
drugs, steroids, fat-soluble vitamins, carcinogens, pes-
ticides, and many other types of chemicals. Their cat-
alytic activity is an important aspect in fields such as 
drug-drug interactions and endocrine function. In vitro 
assays can now be performed to determine which 
P450s (and other enzymes) participate in the clear-
ance of new drug candidates, thereby predicting drug 
clearance parameters, drug interactions, and changes 
in patient-related problems between individuals [27]. 
Knowledge of the structure of P450 is crucial not only 
for understanding and predicting drug metabolism but 
also for investigating its genetic variations, especially in 
P450 17A1 and 21A2. Revealing the molecular nature 

of these defects should help to better understand the 
loss of function and predict the effects of new muta-
tions [28].

Through this comprehensive characterization of the 
metabolic subtypes with a multi-omics approach, we 
found that compared with the M1 and M3 subtypes, the 
M2 subtype participates in the most distinct metabolic 
pathways, showing the strongest extent of immune infil-
tration and hypoxia, and the worst prognosis. The abnor-
mal metabolic characteristics of the M2 subtype are 
mainly manifested in that the end products of glycolysis 
in the corresponding patient subgroups are significantly 
upregulated, and their pyruvate metabolism and tricar-
boxylic acid cycle are significantly activated. In addition, 
compared with the other subtypes, the M2 subtype was 
more closely related to the activation of HIF-1A and the 
tumor hypoxic microenvironment. Several studies have 
shown that HIF-1A is stabilized in the hypoxic tumor 
environment owing to the lack of molecular oxygen, 

Fig. 7  Landscape of somatic mutation and copy number variation of bladder cancer subtypes. Waterfall plots of bladder cancer somatic mutations 
for the a M1, b M2, and c M3 subtypes. d Distribution map of copy number variations of the three subtypes in 22 human autosomes
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Fig. 8  Prognostic risk model based on characteristic genes of the metabolic subtypes. a Random survival forest analysis of characteristic metabolic 
genes between subtypes. b Lasso regression analysis of metabolic genes after random survival forest analysis. c Multivariate Cox analysis of 
metabolic genes. d Expression heat map between subtypes with the final screened target metabolic genes. e–h Prognostic model for overall 
survival, progression-free survival, and relapse-free survival in TCGA cohort, and for progression-free survival in the E-MTAB-4321 cohort. i–l Receiver 
operating characteristic curve corresponding to the overall survival, progression-free survival, and relapse-free survival in the prognostic model for 
TCGA cohort, and progression-free survival in the E-MTAB-4321 cohort
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which leads to the expression of HIF-1A target genes that 
in turn activate the expression of many genes involved 
in glucose metabolism. Abnormal activation of HIF-1A 
and related metabolic target genes in the M2 subtype not 
only indicates a response to hypoxia-induced therapy but 
could also be used as a prognostic biomarker for bladder 
cancer patients. Consistent with the above observations, 
our drug sensitivity analysis showed that patients with 
M2 bladder cancer were most sensitive to the first-line 
diabetes drug metformin. Patients with type II diabe-
tes have an increased risk of bladder cancer and a poor 
prognosis [29, 30]. In addition to lowering blood sugar, 
metformin has been reported to prolong patient life and 
improve prognosis in a variety of cancers. Experimental 
results on bladder cancer showed that metformin can 
exert anti-tumor effects by inhibiting cell proliferation 
and the stemness signal axis (such as Akt and ERK) [31]. 
Based on these previous findings, our results strongly 
suggest the potential clinical value of the M2 subtype 
and the potential therapeutic feasibility of inhibiting the 
accompanying pathways.

This study further provides new insight into the rela-
tionship between the metabolic classification of bladder 
cancer and treatment response. With respect to immu-
notherapy response prediction, although M2 showed 
the highest immune infiltration state, it had the worst 
response to treatment based on immune checkpoint 
inhibitors. High immune infiltration is typically associ-
ated with a good prognosis; however, the data for bladder 
cancer appears to conflict with this general relationship, 
with no clear explanation put forth to date. Answers to 
this mystery can be related to recent studies that have 
revealed two different tumor immune evasion mecha-
nisms. In some tumors, although the degree of cyto-
toxic T cell infiltration is high, these T cells are often in 
a state of dysfunction. However, in other tumors, immu-
nosuppressive factors can remove T cells infiltrating the 
tumor tissue. Jiang et  al. [22] designed a new comput-
ing architecture, the TIDE score, to integrate these two 
tumor immune escape mechanisms, which can serve as 
a substitute for a single marker to effectively predict the 
effect of immune checkpoint suppression therapy. Thus, 
although M2 showed the highest immune infiltration 
state, cytotoxic T cells infiltrating the tumor tissue may 
be in a dysfunctional state, and these ‘cell police’ would 
not be able to exert their function in controlling tumor 
growth. Indeed, the tumor immune dysfunction score of 
the M2 subtype was consistent with the characteristics of 
tumor immune escape. In addition, immunotherapy pre-
dictions showed the lowest response for the M2 subtype. 
Together, these findings can explain why the M2 subtype 
with high immune infiltration also showed the worst 
prognosis.

By contrast, the M1 subtype shows promise for treat-
ment with immune checkpoint inhibitors. In TCGA 
cohort, the predicted response rate of M1 to immu-
notherapy was 61·1%, which was much higher than 
the 32.9% for M2 and 33.3% for M3. It is expected that 
further identification of the differences in molecular 
signaling pathways for different metabolic subtypes 
may provide useful insights for revealing the relation-
ship between metabolic regulation and tumor immune 
escape. However, the M1 subtype was predicted to be 
the type that would most likely exhibit chemotherapy 
resistance, which remains the main challenge in the 
treatment of bladder cancer. Up to 50% of the patients 
do not respond to cisplatin-based chemotherapy, and 
many of these patients will develop chemoresistance 
under treatment. Changes in metabolism have proven 
to fundamentally change the efficacy of drugs. The 
mitochondria play a central role in drug-induced cell 
death in the important centers and organelles of tumor 
cells [32, 33]. Proteins present in the mitochondria, 
such as cytochrome c, are essential to activate caspase 
[34–36]. As mentioned previously, all three metabolic 
subtypes of bladder cancer were found to be enriched 
in drug metabolism-cytochrome P450 and metabolism 
of xenobiotics by cytochrome P450; however, compared 
to M2 and M3, M1 showed natural drug resistance to 
cisplatin (enriched in platinum drug resistance). Che-
mosensitivity prediction also verified this difference, as 
patients with the M1 subtype were the least sensitive 
to cisplatin. Among the top 20 genes of each subtype, 
TP53, PIK3CA, ERBB2, and ATM participate in plati-
num drug resistance. Among them, PIK3CA showed 
similar mutation frequencies in the three subtypes, 
whereas the frequency of TP53 mutation was much 
higher in the M2 subtype (60%) than that in M1 (40%) 
and M3 (38%). Mutations in ERBB2 (14%) and ATM 
(17%) were mainly distributed in the M2 and M3 sub-
types, respectively. These results indicate that there are 
important genes involved in M1 platinum drug resist-
ance, and further research is needed to clarify the 
mechanism.

Based on the potential clinical value and therapeutic 
feasibility of metabolic typing, we further developed 
a signature composed of 13 metabolic genes, which 
showed excellent performance in predicting the prog-
nosis of bladder cancer. The genes in this signature were 
not only differentially expressed between the metabolic 
subtypes of bladder cancer but were also significantly 
related to the patients’ prognosis in terms of OS, PFS, 
and relapse-free survival. High risk scores indicated a 
poor prognosis for bladder cancer patients, which is 
expected to be applied in actual clinical settings.
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Conclusions
Based on analyses of multiple datasets with multi-
omics data, we established a molecular classification of 
bladder cancer based on metabolism-related subtypes, 
and more comprehensively characterized the subtypes’ 
metabolic characteristics, prognostic characteristics, 
clinical characteristics, immune infiltration, genetic 
changes, and responses to chemotherapy and immu-
notherapy. Given that the samples available for bladder 
cancer classification based on metabolic profiles were 
limited, analysis with a larger sample size and further 
basic experiments are needed to support our pioneer-
ing classification. Nevertheless, the present in-depth 
analysis of metabolism can provide a valuable reference 
and insight to inform the development of new strate-
gies for the precise treatment of bladder cancer.
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