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REVIEW

Extracellular vesicle‑derived miRNA 
as a novel regulatory system for bi‑directional 
communication in gut‑brain‑microbiota axis
Liang Zhao1, Yingze Ye2, Lijuan Gu2, Zhihong Jian2, Creed M. Stary3* and Xiaoxing Xiong2* 

Abstract 

The gut-brain-microbiota axis (GBMAx) coordinates bidirectional communication between the gut and brain, and 
is increasingly recognized as playing a central role in physiology and disease. MicroRNAs are important intracellular 
components secreted by extracellular vesicles (EVs), which act as vital mediators of intercellular and interspecies com-
munication. This review will present current advances in EV-derived microRNAs and their potential functional link with 
GBMAx. We propose that EV-derived microRNAs comprise a novel regulatory system for GBMAx, and a potential novel 
therapeutic target for modifying GBMAx in clinical therapy.
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Background
The bidirectional communication and crosstalk between 
the gut and brain has been well recognized, termed the 
“gut-brain axis” [1–3]. Emerging evidence implicates gut 
microbiota in playing a pivotal role in the bidirectional 
communication that occurs in the gut-brain axis [4], 
leading to the more recent concept of the “gut-brain-
microbiota axis” (GBMAx). Notably, this tripartite axis 
is coordinated by classical neuro-immune-endocrine and 
metabolic pathways [4], however the molecular regula-
tion of GBMAx remains undetermined.

MicroRNAs (miRNAs) are small, non-coding RNA 
molecules capable of modulating gene expression at 
post-transcriptional level [5]. As an important intracel-
lular component of extracellular vesicles (EVs) miRNAs 
can be secreted by and transferred to varied target cells 
[6]. Acting as a vital mediator of intercellular commu-
nication, EV-derived miRNAs have been implicated in 

microbiome-host communication [7, 8]. This review will 
present the current advances on EV-derived miRNAs and 
their functional link with GBMAx bi-directional commu-
nication. We propose that EV-derived miRNAs represent 
a novel regulatory system for GBMAx and a potential 
therapeutic target to modulate GBMAx function.

The gut‑brain‑microbiota axis (GBMAx)
The gut-brain-microbiota axis is composed of the fol-
lowing essential components: (1) the neural network, 
including central nervous system (CNS) the autonomic 
nervous system (ANS) and enteric nervous system (ENS); 
(2) the hypothalamic–pituitary–adrenal axis (HPA); (3) 
neuroendocrine networks including neurotransmitters, 
hormone and neuropeptides; (4) gut microbiota and their 
metabolic products; (5) the gut immune system; and, (6) 
the intestinal barrier and blood–brain barriers [9–14]. 
Gut microbiota are considered to be a relatively inde-
pendent and varied mediator of GBMAx, which interact 
with other components via several neuroanatomic, neu-
roendocrine, enteroendocrine, neuroimmune and meta-
bolic pathways [15].
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Gut microbiota–miRNA interaction
miRNA‑biogenesis and function
A primary miRNA transcript (pre-miRNA) can be pro-
cessed by several biogenesis procedures to form the 
miRISC (miRNA-associated RNA-induced silenc-
ing complex) [16–19]. miRISC is then guided to target 
mRNA by complementary base pairing between the 
target sequence (TS) of the miRNA (nucleotides 2–8 
in the 5’- end of the miRNA) and its target site in the 
3’-untranslated region (UTR) of target mRNAs [20, 21]. 
Target gene expression can be down-regulated by either 
translational inhibition or mRNA degradation accord-
ing to the extent of base pairing and the surrounding 
sequences of the TS [22]. Alternatively, some studies also 
demonstrate that miRNAs can up-regulate transcrip-
tion of certain target mRNA [23–25]. Notably, a single 
miRNA can potentially target multiple mRNA, whereas 
one mRNA can be potentially targeted by multiple miR-
NAs, reflecting the complex regulatory function of miR-
NAs [16]. Recent methodological advances including 
miRNA profiling and loss-of-function studies enable 
high-fidelity analysis of bioinformation to better define 
the dynamic expression and functional link with various 
cellular process and biological pathways in diverse tissues 
and from diverse species [18, 26, 27]. MiRNAs have been 
identified as promising candidates for biomarkers and 
therapeutic targets in a variety of diseases [28].

Gut miRNA regulate gut microbiota
In 2016, Liu et  al. first profiled miRNA expression pat-
terns within feces and gut luminal contents from mice 
and humans [7]. Intestinal epithelial cells (IEC) and 
homeobox gene (Hopx)-positive cells were identified as 
the major cellular source of fecal miRNAs. In vitro stud-
ies with cultured Fusobacterium nucleatium and Escheri-
chia coli demonstrated that fecal miRNA could regulate 
bacterial gene transcripts and growth [7]. Targeted dele-
tion of the miRNA biogenesis enzyme Dicer in mice 
resulted in imbalanced gut microbiota and exacerbated 
dextran sulfate sodium- (DSS) induced colitis, which was 
reversed by fecal miRNA transplantation from wild-type 
littermates, strongly suggesting a critical role of fecal 
miRNA in shaping gut microbiota and maintaining intes-
tinal homeostasis [7].

More recent studies support an essential role of gut 
miRNA in inducing dysbiosis related to various disease 
states. In ovariectomized (OVX) mice, intestinal and 
fecal miR155/let-7 g expression were increased and asso-
ciated with altered gut microbiota and cardiovascular 
function [29]. In another mouse model of total abdomi-
nal irradiation (TAI), the expression level of miR-34a-5p 
was elevated in small intestine, which closely correlated 

with composition shifting of gut microbiota, possibly 
contributing to associated cognitive impairment [30]. 
Distinct fecal or intestinal miRNA expression profiles 
and their potential link with disease and the abundance 
of gut microbiota have been identified in inflammatory 
bowel disease and colorectal cancer, underlying their 
potential clinical relevance as biomarkers or therapeutic 
targets [31, 32].

Gut microbiota regulate gut miRNA expression
The evidence regarding the impact of gut microbiota 
on host miRNA expression is primarily derived from 
miRNA expression profile studies comparing traditional 
mice with germ-free (GF), or colonized mice. Significant 
differences in miRNA expression profiles in the colon 
and ileum was detected between GF mice colonized with 
gut microbiota from GF mice and specific-pathogen free 
(SPF) colonized littermates [33]. Fecal miRNA expres-
sion patterns also exhibited apparent differences between 
conventional mice and GF mice [34]. Additionally, fecal 
miRNA profiles can be deferentially and specially regu-
lated by various colitogenic and non-colitogenic micro-
biota [34]. The potential target mRNAs of those miRNAs 
may be involved in regulation of xenobiotic metabolism, 
intestinal barrier maintainance and regulation of immune 
system function [33, 34].

Other studies reveal that gut microbiota regulate intes-
tinal miRNA profiles in a highly cell type-specific manner 
[35]. The miRNA expression patterns of intestinal epi-
thelial stem cell (IESC) are most significantly altered in 
response to gut microbiota among all intestinal epithelial 
cell types, with miR-375-3p identified as selectively sensi-
tive to microbiota from IESC [35]. In addition to intesti-
nal miRNA, the expression of fecal miRNA can also be 
influenced by gut microbiota. Higher abundance of fecal 
miRNA profiles is detected in GF mice than SPF colo-
nized littermates, and alterations in fecal miRNA expres-
sion patterns can be induced by depleting gut microbiota 
with antibiotic in SPF mice [7, 36].

In vitro studies demonstrate that commensal bacteria 
induce certain miRNA expression patterns in intestinal 
epithelial cells or dendritic cells,targeting mRNAs that 
regulate the innate immune response and barrier func-
tion [37, 38]. Adherent-invasive E. coli (AIEC), a pathogen 
with high prevalence in Crohn’s disease, has been shown 
to up-regulate miRNAs targeting genes responsible for 
the autophagy response (ATG5 and ATG16L) in mouse 
enterocytes, which may facilitate AIEC replication and 
exacerbation of intestinal inflammation [39]. Probiotics 
including E. coli Nissle 1917, lactobacilli, Lactobacillus 
rhamnosus GG, Enterococcus faecium NCIMB 10,415, 
Enteropathogenic E. coli have also been shown to modu-
late miRNAs in intestinal epithelial cells or immune cells 
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thereby altering intestinal immune regulation and barrier 
function [40–43].

Gut microbiota regulates brain miRNA expression
A large number of abnormal brain miRNAs implicated in 
anxiety-like behaviors have been detected in the region 
of amygdala and prefrontal cortex of GF mice or mice 
with microbiota depletion by an antibiotic cocktail [44]. 
Some dysregulated brain miRNAs in GF mice have been 
shown to be normalized by microbial colonization [44]. 
Gut microbiota have also been demonstrated to modu-
late hippocampal miRNA expression associated via 
kynurenine pathway enzymes which regulate hippocam-
pal development and axon guidance pathway [45, 46]. A 
more recent report describes that a microbial product, 
Bacteroides fragilis lipopolysaccharide (BF-LPS) can 
act as a neurotoxin via induction of a series of miRNAs 
targeting genes that regulate synaptic architecture and 
deficits, amyloidogenesis, and cerebral inflammatory 
signaling [47]. Some other microbial metabolites includ-
ing tryptophan, butyrate, acetylcholine, norepinephrine, 
serotonin, dopamine may also influence miRNA biology 
indirectly via regulation of astrocyte function and blood–
brain-barrier integrity, or even by altering human behav-
ior via disruption of normal neurotransmitter levels [48]. 
The gut microbiota—host miRNA interaction is summa-
rized in Tables 1 and 2.

Extracellular vesicles (EVs)
EV biogenesis and function
EVs compromise a variety of endogenous membranous-
bound nanovesicles released from cells into the extracel-
lular space [49]. EVs can be detected abundantly in bodily 
fluid and peripheral blood and can be divided into three 
subtypes according to biogenesis, size, composition, 
and cargo: apoptotic bodies, micro-vesicles (MVs), and 
exosomes [49–51]. EVs play a critical role in cell-to-cell 
communication under both physiological and pathophys-
iological conditions via transfer of nucleic acids and pro-
tein to recipient cells. This delivery system enables intra 
and inter-species crosstalk including microbiota-host 
interactions under both physiological and pathophysio-
logical conditions, even without close cellular contact [6].

Exosomes are currently the most well-recognized and 
described subtype of EVs, characterized by having a 
diameter of 30–100  nm. They are initially derived from 
internalization of the cell membrane, which results in 
accumulation of intraluminal vesicles (ILVs) and forma-
tion of multi-vesicular bodies (MVBs) [52]. After fus-
ing with the plasma membrane, the content of MVBs 
are released into the extracellular space to form mature 
exosomes. Exosome can be taken up by recipient cells 
with horizontal transfer of their cargos including DNA, 
RNA (mRNA, miRNA, non-coding RNA) and pro-
teins [53–55]. Exosomes participate in multiple cellular 

Table 1  Gut/fecal miRNA capable of modulating gut microbiota and their function

Gut/fecal miRNA Function Disease /experimental model References

miR155/let-7 g Cardiovascular function Ovariectomized mice [29]

miR-34a-5p Cognitive impairment Total abdominal irradiation (mice) [30]

miR-182, miR-503, mir-17 ~ 92 cluster Glycan production in recruiting 
bacteria to tumor

Colorectal cancer (patients) [31]

miR-199a, miR-223-3p, miR-1226, miR-548ab, 
miR-515-5p

Disease activity and prognosis of 
inflammatory bowel disease

Inflammatory bowel disease (patients) [32]

Table 2  Gut or brain miRNA modulated by gut microbiota/microbial products and their function

miRNA Cell /tissue/organ Function References

miR10-a Dendritic Cell Innate immune responses [37]

miR-21-5p Intestinal epithelial cells Intestinal epithelial barrier [38]

miR-30c,miR-130A Enterocyte Autophagy response [39]

miR-203, miR-483-3, miR-595 Intestinal epithelial cells Intestinal epithelial barrier [40]

miR -423-5p Intestinal epithelial cells Immune responses [41]

miR-155, miR-223 Colon Intestinal epithelial barrier [42]

miR-146a Intestinal epithelial and monocytic 
Cells

Intestinal inflammation [43]

miR-294-5p Hippocampus Kynurenine metabolism [45]

miR-9, miR-34a, miR-125b, miR-146a, miR-
155

Neuronal-glial cells Inflammatory neurodegeneration [47]
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process related to gene transcription and translation, 
transcript and protein modifications, protein localiza-
tion, and key enzymatic reactions [56–59]. MiRNAs have 
been detected in exosomes derived from cancer cells, 
virus-infected cells, and mesenchymal stem cells, play-
ing a fundamental role in intercellular communication 
via transfer of translational control in various physiologi-
cal and pathophysiological processes [60–70]. There have 
been four proposed pathways for sorting miRNAs into 
exosomes: (1) a neural sphingomyelinase 2 (nSMase2)-
dependent pathway; (2) a sumoylated heterogeneous 
nuclear ribonucleoprotein (hnRNP)-dependent pathway; 
(3) guide dance by the 3’ end of the miRNA sequence; 
and, (4) mediation by the miRNA-induced silencing com-
plex (miRISC) [71–76]. However, controversy remains 
on the exact composition of EVs secondary and the pres-
ence and abundance of EV miRNA and miRNA carriers 
[77–81].

Influencing factor for EV biogenesis
The biogenesis of EV is regulated by a variety of intracel-
lular proteins, enzymes and signaling pathways includ-
ing: (1) RNA-binding proteins such as hnRNPA2B1 and 
Argonaute-2; (2) membranous proteins such as Caveo-
lin-1 and Neural Sphingomyelinases; (3) Rab GTPases, 
ARRDC1, and ESCRT complexes; (4) lipid rafts or 
membrane lipid microdomains; (5) cytosolic proteins 
(syntenin) and endosomal enzymes (Heparanase); and, 
6) Intracellular calcium-signaling pathways [82–89]. 
Biogenesic processes can also be modulated by differ-
ent extracellular stimuli including: (1) viral infection; (2) 
oncogenic transformation or stresses; (3) hypoxia; (4) 
alcohol exposure; (5) irradiation; (6) impaired autophagy; 
and, (7) circulating hormones, which all have impor-
tant implications in elucidating the pathophysiological 
mechanisms for development of novel therapeutic targets 
[90–95].

EV entrapment of fecal miRNA
In their study on fecal miRNA expression profiles, Liu 
et al. detected EVs in fecal samples and demonstrated that 
the most abundant fecal miRNAs were also contained 
within EVs, suggesting that EVs are the major extracellu-
lar source of fecal miRNAs [7]. EVs protect fecal miRNAs 
from degradation via a phospholipid bilayer comprising 
membrane proteins of EV which entrapping miRNA [96, 
97].

Brain‑derived EVs
Recent studies describe a wide distribution of EV in the 
CNS, detected in oligodendrocytes, neurons, astrocytes, 
microglia, choroid plexus, and brain epithelial cells the 
interface of blood–brain barrier (BBB) and cerebrospinal 

fluid (CSF) [98–100]. Brain-derived EVs play a key role 
in cell-to-cell communication involved in neurogenesis, 
neural development, neuro-inflammation, synaptic com-
munication and nerve regeneration [101–104]. Accumu-
lating evidence suggest that brain-derived EVs, especially 
exosomes, play an important role in the pathogenesis of 
neurodegenerative diseases, infectious CNS diseases, 
neuroinflammation, psychiatric disease and brain tumors 
[105–111].Their output and cargo can be cell-specific and 
disease -specific and varied with different events during 
disease progress, features that provide strong potential 
for use as a biomarker for CNS disease [108, 112, 113]. 
Furthermore, several other key features of EVs includ-
ing stability, low immunogenicity, facility of crossing the 
BBB, accurate cell targeting and specific delivery make 
them an attractive candidate for therapeutic delivery 
vehicles in treating CNS disease [114–116].

MiRNAs have been demonstrated to play an impor-
tant active biological role within brain-derived EVs from 
astrocytes, neurons, macrophage/microglial cells, pre-
frontal cortices cells, glioma cells, glioblastoma cells, and 
glioblastoma stem-like cells, playing a critical role in neu-
rogenesis, response to stress, virus induced neurotoxicity, 
schizophrenia and bipolar disorder, brain tumor pro-
gress, brain metastasis outgrowth [101, 117–120]. More 
recent research indicates that brain-derived EVs can be 
detectable in plasma, and astrocyte-derived exosomes are 
capable of transferring miRNA to metastatic tumor cells, 
suggesting that brain-derived EVs may transfer molecular 
information to tissues remote from the CNS [120–122]. 
Several recent studies have demonstrated that altered 
miRNA profiles in brain EVs from Alzheimer’s patients, 
however the mechanisms and clinical significance under-
scoring these observations remain a focus of investiga-
tion [123–125]. Critically, the biological relevance for EV 
transfer from brain to gut has not been fully elucidated.

Microbiota‑derived EV
Bacterial membrane vesicles, including outer-mem-
brane vesicles (OMVs) derived from Gram-negative 
bacterium and membrane vesicles (MVs) derived from 
Gram-positive bacteria, parasites, fungi, mycobacteria, 
refer to a collection of nano-sized membrane vesicles 
released from bacteria into the extracellular environ-
ment [126, 127]. Bacterial membrane vesicles are cur-
rently regarded as microbiota derived-EVs since they 
share characteristic similarities in size, structure and 
biological function with EVs derived from mammalian 
cells [128]. Microbiota-derived EVs can transfer a broad 
range of cargo including bioactive proteins, lipids, 
nucleic acids, and virulence factors to neighboring 
bacteria or host cells (epithelial cells, endothelial cells, 
immune cells). This bioinformatic transferring plays a 



Page 5 of 12Zhao et al. J Transl Med          (2021) 19:202 	

critical role in cellular processes for both intra-king-
dom (bacteria-bacteria) interactions and inter-kingdom 
(bacteria-host) communications [129, 130]. The effect 
of microbiota derived EVs can be effectively differen-
tiated from microbial metabolites or host by evaluat-
ing the effect of bacterial free microbiota-derived EVs 
isolated from bacterial cultures on fecal samples [131]. 
Recent advances in this field reveal that microbiota-
derived EVs exhibit multiple regulatory functions cen-
tral for bacterial survival and nutrient acquisition, 
bacterial virulence delivery, host colonization and 
invasion, microbial interactions, antimicrobial resist-
ance, stress and inflammatory response, endothelial cell 
adhesion, and systemic inflammatory and metabolic 
response, which all play key roles in the pathogen-
esis of diverse infectious and inflammatory diseases 
[132–139]. Several key features of OMV including size, 
antigen stability, high immunogenicity, accurate host 
cell targeting, specific cargo delivery and host immune 
response make them a promising novel candidate for a 
vaccine target against bacterial infections, and as tar-
geted drug delivery against cancer and other diseases 
[140–142]. Recent findings have focused on the modu-
latory effect of microbiota-derived EVs on intestinal 
barrier function and the immune response, two impor-
tant components of GBMAx [143–148]. Furthermore, 
relevant studies also reveal that microbiota-derived EVs 
can be released into the systemic circulation and cross 
the BBB [8, 149, 150]. Staphylococcus aureus and Heli-
cobacter pylori-derived EVs have been detected in the 
brain after oral administration or intramuscular injec-
tion via in  vivo imaging procedures [151, 152]. Addi-
tionally, LPS, a key virulence factor in porphyromonas 
gingivalis outer membrane vesicles has been found 
in glia and the major cerebral vessels of patients with 
Alzheimers disease (AD) by immunoblot [153]. It has 
been hypothesized that microbiota-derived EV may be 
absorbed into mesenteric veins, carried by the hepatic 
portal vein and liver, to finally enter the brain via the 
circulatory system [154]. These data strongly suggest 
that microbiota-derived EVs may exert a direct effect 
on the CNS and be an important central modulator for 
GBMAx.

Small RNA (SRNA) within microbiota derived EV can 
be internalized by host cells and play an important role 
in host–pathogen interaction. miRNA-sized sRNA and 
methionine transfer RNA (tRNA) secreted by bacterial 
OMV (periodontal pathogens and Pseudomonas aerugi-
nosa) have been shown to enter host cells and modulate 
host immunity [155, 156]. EV-contained miRNA secreted 
by gastrointestinal nematode has been detected in cir-
culation, which can be internalized by small intestinal 
epithelial cells and modulate host innate response [157]. 

Microbiota derived RNA may act as ligands for Toll-like 
Receptor (TLR) and regulators for host innate immunity 
[158, 159].

More recent research revealed that OMV may cross the 
blood–brain barrier and contribute to neuroinflamma-
tion and cognitive impairment linked with neurodegen-
eration disease such as Alzheimer’s disease, Parkinson’s 
disease and dementia. The possible mechanism may 
involve transfer of small RNA non-coding RNA elements 
contained within OMV into host cells, thereby regulating 
host gene expression [160–165].

EV derived miRNA in metabolic disease
Obesity, Metabolic Syndrome and diabetic mellitus are 
known risk factors for the development of CNS disor-
ders including cerebrovascular disease, neurodegenera-
tive diseases and dementia. Several lines of evidence have 
revealed that EV derived miRNA originated from gut 
microbiota, adipose tissue, steatotic hepatocytes, mesen-
chymal stem/stromal cells (MSC), and pancreatic islets 
play crucial role in the pathogenesis of those metabolic 
disease and associated target organ injury [166–171]. 
Their role and relevance to GBMAXs and cerebral dis-
ease remains an area of active investogatyion. The impact 
of EV derived miRNA on neurological and metabolic dis-
ease are summarized in Table 3.

Controversies and challenges
EV derived miRNA has gain great attention in the 
research of GBMAx. However, controversies and chal-
lenges remain in this fields.

EV classsification and miRNA extraction
The heterogeneity of EV may be far greater than we have 
recognized previously. A more complex classification 
system based on EV proteome, nucleic acid distribu-
tion and biological function (rather than only 3 subsets 
mentioned above) has been predicted1 [172–174]. Prac-
tical difficulty may exist in extraction of EV-derived 
miRNA including (1) tedious and costly procedures of 
ultracentrifugation and density gradient extraction, and 
purification; (2) lack of standardization with technologi-
cal platforms and quantitative assays; (3) non-selective 
enrichment of specific EV subpopulations or differential 
cellular origins; and, (4) uncoupling from conventional 
reverse transcriptase quantitative PCR [175–177]. Novel 
extraction approach and technological improvements are 
warranted.

Environmental and human genetic factors
It must be acknowledged that the regulatory system of 
EV-derived miRNA on GBMAXs is not restricted to EV 
or miRNAs originating from gut microbiota, gut or brain. 
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Environmental factors (e.g. diet, medications, smoking, 
environmental contaminants, stress) and human genet-
ics also play a crucial modulatory role in GBMAXs via: 
(1) secreting miRNA containing EVs; (2) shaping gut 
microbiota; (3) stimulating microbial metabolic prod-
ucts; and, (4) regulation of miRNA expression and func-
tion of the host gut and brain [178–184]. The expression 
of host miRNA ( fecal miRNA or intestinal epithelial cell-
derived miRNA) and its associated function is impacted 
by these host genetic and environmental factors, which 
will ultimately modulate the composition of metabo-
lite and function of gut microbiota [34, 185, 186]. Those 
environmental and genetic factors may be considered 
as an extension of the EV-derived miRNA system for 
GBMAXs, and should be taken into accounting novel 
drug development and therapeutic strategies targeting 
GBMAx.

Non‑miRNA RNA biotypes and non‑vesicle carriers
miRNA is the most studied extracellular RNA but only 
constitutes a minor composition of RNA biotype in the 
EV cargo. Other RNA biotypes including small nucleolar 
RNA (snoRNA), small nuclear RNA (snRNA), long non-
coding RNA (lncRNA), Y RNA may be more abundant 
in EV cargo [187–189]. EV is not the only RNA carrier 
for miRNA. Non-vesicular miRNAs presenting as ribo-
nucleoprotein complex have been detected in various 
fluids and circulation, which are becoming candidates 
for biomarkers and therapeutic targets [190, 191]. The 

regulatory systems consisting of non-miRNA RNA bio-
types and non-vesicle carriers in GBMAx and their rela-
tionship with EV derived miRNA should be explored in 
further study (Table 4).

Conclusions
MiRNAs play a potentially critical role in gut microbiota-
gut interaction and gut microbiota-brain bi-directional 
communication. EVs can be derived from brain, gut and 

Table 3  The impact of EV derived miRNA on neurological and metabolic disease

EV sRNA EV origination Function References

hsa-miR-23a-3p, hsa-miR-126-3p, hsa-let-7i-5p, hsa-
miR-151a-3p

(Downregulated)

Plasma Unknown in Alzheimer’s disease [123]

miR-212 and miR-132
(Downregulated)

Neurally derived plasma EV Unknown in Alzheimer’s disease [124]

miR-23a-3p, miR-223-3p, miR-190a-5p, miR-100-3p,
(Downregulated)

Neurally Derived Plasma EV Unknown in Alzheimer’s disease [125]

miRNA cargo
(periodontal bacteria)

Aggregatibacter actinomy-
cetemcomitans

Neuroinflammation in Alzheimer’s disease [165]

miR-27b,miR-126
miR-130, miR-296

Pancreatic islets Beta cell-endothelium cross-talk in diabetes [165]

miR-221-3p
(up regulated)

Perivascular adipose tissue Vascular remodeling in obesity [168]

miR-1
(up regulated)

Steatotic hepatocytes Atherogenesis in Non-alcoholic fatty liver disease [170]

miR-136-3p, miR-4798-5p
miR-12,136, miR-222-3p
(Downregulated)
miR-630, miR-144-3p, miR-143-5p, miR-4787-3p miR-

769-5p, miR-8074, miR-181a-5p)
(up regulated)

Mesenchymal stem cells Renal tubular cells senescence in metabolic syn-
drome

[171]

Table 4  The work-flow of the literature review

Topic References

1.Gut-brain-microbiota axis (GBMAx) [1-4, 9-15]

2.microRNA( miRNA)

2.1.miRNA biogenesis [16-19]

2.2.miRNA function [20-28]

3.Gut microbiota-host miRNA interaction

3.1.gut microbiota-gut miRNA interaction [7, 29-43]

3.2.gut microbiota-brain miRNA interaction [44-48]

4. Extracellular vesicles (EVs)

4.1.EV biogenesis [49-55, 82-95]

4.2.EV function [60-81, 172-177, 
166-171, 187-
191]

4.3.Environmental and genetic influence [178-186]

4.4.EV entrapment of fecal miRNA [7, 96, 97]

4.5.Brain- derived EVs [98-125]

4.6. Microbiota derived EVs [126-165]
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gut microbiota, coordinating cell-to-cell communica-
tion via transfer of miRNAs. We hypothesize that an EV-
miRNA system throughout GBMAx could play a central 
role in exchange of molecular information among gut 
microbiota, gut and brain. This EV-miRNA based regula-
tory system is schematically outlined in Fig. 1. However, 
current research in this field remains in the early stages. 
Further investigations should be performed to eluci-
date: (1) the direct effect of brain-derived EVs on gut and 

gut micribota; (2) the precise regulatory mechanisms 
of EV miRNA transfer, and their biological function on 
GBMAx; (3) the functional link between EV-miRNA and 
other classical neuro-immune-endocrine pathways. Pro-
gress in this field will provide new insight into the com-
prehensive understanding of GBMAx and help advance 
the clinical development of novel biomarkers and thera-
peutic target for the variety of diseases associated with 
GBMAx imbalance.

Fig. 1  Schematic presentation of EV derived miRNA acting as a novel regulatory system for bi-directional communication in gut-brain-microbiota 
axis. A proposed regulatory system consisting of extracellular vesicles (EVs) derived from the brain, gut and gut microbiota which modulate 
bi-directional communication in gut-brain-microbiota axis (GBMAx) via intercellular transfer of microRNAs (miRNAs). Brain-derived EVs may 
modulate the gut and gut microiota via a “top-down” manner by migrating from brain to gut and regulating the expression of gut miRNAs and 
fecal miRNAs. Fecal miRNAs entrapped within EVs can enter bacteria and shape gut microbiota via targeting bacterial nucleic acid sequences. 
Alternatively, or in parallel, microbiota derived-EVs (bacterial membrane vesicles) may modulate the brain via a “bottom-up” manner by crossing 
the blood brain barrier and exerting a direct effect on the central nervous system. Microbiota derived-EVs can also potentially modulate gut barrier 
function and the immune response directly
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