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Deconvolution of sarcoma methylomes 
reveals varying degrees of immune cell 
infiltrates with association to genomic 
aberrations
Malte Simon1,3†, Sadaf S. Mughal1†, Peter Horak2,5, Sebastian Uhrig1, Jonas Buchloh1, Bogac Aybey1, 
Albrecht Stenzinger4, Hanno Glimm6,7, Stefan Fröhling2,5, Benedikt Brors1,5 and Charles D. Imbusch1*   

Abstract 

Background:  Soft-tissue sarcomas (STS) are a heterogeneous group of mesenchymal tumors for which response to 
immunotherapies is not well established. Therefore, it is important to risk-stratify and identify STS patients who will 
most likely benefit from these treatments.

Results:  To reveal shared and distinct methylation signatures present in STS, we performed unsupervised decon-
volution of DNA methylation data from the TCGA sarcoma and an independent validation cohort. We showed that 
leiomyosarcoma can be subclassified into three distinct methylation groups. More importantly, we identified a com-
ponent associated with tumor-infiltrating leukocytes, which suggests varying degrees of immune cell infiltration in 
STS subtypes and an association with prognosis. We further investigated the genomic alterations that may influence 
tumor infiltration by leukocytes including RB1 loss in undifferentiated pleomorphic sarcomas and ELK3 amplification 
in dedifferentiated liposarcomas.

Conclusions:  In summary, we have leveraged unsupervised methylation-based deconvolution to characterize the 
immune compartment and molecularly stratify subtypes in STS, which may benefit precision medicine in the future.
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Background
Soft-tissue sarcomas (STS) are rare cancers of mesenchy-
mal origin that represent < 1% of adult solid malignancies. 
Their high diversity in terms of genetic aberrations and 
histological appearance results in a subclassification into 
more than 70 subtypes [1]. Recently, the TCGA consor-
tium released a study comprising the characterization 

of 206 sarcomas from six subtypes including dediffer-
entiated liposarcoma (DDLPS), leiomyosarcoma (LMS), 
undifferentiated pleomorphic sarcoma (UPS), myxofi-
brosarcoma (MFS), malignant peripheral nerve sheath 
tumor (MPNST) and synovial sarcoma (SS). By analyz-
ing genetic, epigenetic, mRNA and protein expression 
data, the authors stated that subtypes with complex 
karyotypes are mostly driven by copy number alterations 
instead of mutations, and that the presence of certain 
inferred immune cell types and methylation states asso-
ciates with disease-specific survival [2]. Several clinical 
trials on immunotherapies in STS have found low over-
all response rates, which highlights the importance of a 
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more detailed characterization of immune infiltrates and 
the development of robust predictors of clinical benefit in 
these tumors [3, 4]. While a global comparison of immu-
nogenicity in different tumor types has been previously 
presented, to date, no study focused on sarcomas [5, 6].

In this study, we reanalyzed the TCGA-SARC dataset 
from an epigenetic perspective by employing unsuper-
vised deconvolution of the methylation data to discover 
shared as well as subtype-specific methylation profiles. 
By correlating distinct methylation changes with mRNA 
abundances, we derived gene signatures for each profile 
and showed their biological relevance and usability for 
subclassification. Importantly, we identified an immune 
cell-associated component that implies varying degrees 
of immune cell infiltration in STS with enrichment in 
UPS, DDLPS and MFS cases, whereas it was substantially 
lower in LMS and SS. In addition genomic aberrations 
could be identified that harbour the potential to influence 
tumor infiltration. We validated the immune-cell associ-
ated signature as well as associated genomic aberrations 
in independent cohorts.

Results
Deconvolution of methylation data results 
in subtype‑specific patterns
To identify shared methylation patterns (hereafter 
referred to as latent methylation components, LMCs), 
we analyzed the TCGA sarcoma methylation data aggre-
gated within equidistant and non-overlapping genomic 
windows and performed a deconvolution using MeDe-
Com [7]. We chose a factorization into nine LMCs based 
on a low cross-validation error and high stability of the 
resulting methylation patterns (Additional file  1: Figure 
S1). Hierarchical clustering on the proportions of the 
LMCs, which represent the relative occurrence of the 
respective patterns in the tumor samples, showed clear 
associations to histopathological subtypes for several 
components (Fig. 1). The strongest association was found 
for LMC9 and synovial sarcoma (point biserial corre-
lation coefficient (rpb) = 0.97) reflecting the dramatic 
changes to their methylome, which occur in this subtype 
as a consequence of an SS18-SSX gene fusion [8]. We fur-
ther observed a global hypomethylation in SS compared 

Fig. 1  MeDeCom deconvolves subtype-specific methylation patterns. Proportions for the deconvolution of TCGA-SARC methylation data using 
9 LMCs and λ = 0.01 are shown. Unsupervised deconvolution based on non-negative matrix factorization resulted in methylation components 
associated with histological subtypes and tumor tissue sites. LMS, leiomyosarcoma; DDLPS, dedifferentiated liposarcoma; MFS, myxofibrosarcoma; 
UPS, undifferentiated pleomorphic sarcoma; SS, synovial sarcoma; MPNST, malignant peripheral nerve sheath tumor
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to the other subtypes (Additional file 1: Figure S2). LMC1 
was associated with uterine LMS (ULMS, rpb = 0.72), 
whereas LMC7 represented a methylation pattern com-
mon in most nongynecological LMS (STLMS, rpb = 0.81). 
Although having a weaker association, LMC2 was pre-
dominantly shared among UPS cases (rpb = 0.36), and 
LMC4 showed the strongest association with DDLPS 
(rpb = 0.46). Whereas, LMCs 3, 5, 6, and 8 were shared 
among the different sarcoma subtypes.

We validated our findings using an independent meth-
ylation dataset (MASTER) from 56 sarcoma samples 
(Additional file  1: Figure S3). In concordance with the 
deconvolution results from TCGA-SARC, subtype-asso-
ciated methylation patterns were consistently observed 
for LMS and SS. In addition, we also found unique meth-
ylation patterns for gastrointestinal stromal tumors 
(GIST), solitary fibrous tumors (SFT) and myxoid lipo-
sarcoma (MLS). Hierarchical clustering of the LMCs 
from the independent deconvolution of TCGA-SARC 
and HIPO showed a high similarity of the methylation 
patterns associated with the subtypes present in both 
datasets (LMS and SS, Additional file 1: Figure S4). This 
confirms that these subtypes have distinct methylation 
changes, which are consistently observed across datasets.

Integration of methylation and gene expression data 
defines three molecular LMS subgroups
LMS cases were assigned into three groups based on 
their LMC proportions: LMS group 1 (STLMS-associ-
ated) was defined by samples with a LMC7 proportion 
greater than LMC1, LMS group 2 (ULMS-associated) 
as LMC1 proportion greater than LMC7, and samples 
with a proportion smaller than 0.2 in both were defined 
as LMS group 3. To further characterize these subgroups, 
we applied a workflow to extract the LMC-specific meth-
ylation and integration of the mRNA expression (Addi-
tional file 1: Figure S5).

For each LMC, we extracted genomic windows with a 
methylation difference below − 0.2 (hypomethylated) or 
above 0.2 (hypermethylated) in one LMC compared to all 
other LMCs. This resulted in a mean of ~ 1000 windows 
per LMC, to which we subsequently refer to as variably 
methylated regions (VMRs) (Additional file  1: Figure 
S6A). Next, we searched for genomic overlaps of VMRs 
with known genes and calculated the correlation between 
methylation and gene expression. This procedure resulted 
in four LMC-specific combinations: hypo- or hypermeth-
ylated VMRs that are either positively or negatively corre-
lated with gene expression, respectively (Additional file 1: 
Figure S6B). In particular, we were interested in meth-
ylation changes resulting in upregulation of gene expres-
sion, since these provide insights on gene activity in the 
LMC-associated tumors and might constitute potential 

new biomarkers. We calculated the Pearson’s correlation 
between methylation and gene expression to further filter 
VMRs. The cutoff for a significant correlation was greater 
than 0.3 for hypermethylation-upregulation or smaller 
than -0.3 for hypomethylation-upregulation.

Following this approach, we identified 100 genes for 
STLMS-associated LMC7 (Fig.  2), which we termed as 
‘STLMS core signature’. 42 of these genes had hypometh-
ylated and 58 had hypermethylated VMRs. 55% of the 
LMS tumors had the highest proportion in LMC7, with 
the majority of the samples belonging to retroperitoneal/
upper abdominal region and only one uterine sample 
(LMS group 1).

The STLMS core signature also contained the previ-
ously known immunohistochemical markers such as 
MYLK and CASQ2 [9, 10]. Next, we performed func-
tional annotation of these genes and found enrichments 
in gene sets associated with muscle function (Additional 
file  2: Table  S1) such as focal adhesion (P < 0.004), actin 
binding (P < 0.007) and muscle contraction (P = 0.131) 
(Fisher’s exact test and Benjamini - Hochberg correction) 
indicating that LMS group 1 is mostly associated with 
smooth muscle function.

ULMS-associated LMC1 had the highest contribu-
tion in 26% of the LMS tumors (17 ULMS and 4 STLMS, 
LMS group 2). For this LMC, 42 hypermethylated and 
31 hypomethylated genes passed our filtering criteria 
(Additional file  1: Figure S7, LMC1 signature). Enrich-
ment analysis of LMC1 genes also pointed towards mus-
cle function and differentiation signature, although the 
results were not statistically significant.

LMS group 3, comprising 15 cases had low proportions 
of both LMC7 and LMC1. We observed global DNA 
hypomethylation in these tumors compared to LMS 
groups 1 and 2 (Fig.  3a). The samples in this subgroup 
had high proportions for either LMC2, 3, 5 or 6. Gene 
set enrichment showed association with platelet-derived 
growth factor binding (P < 0.001) (LMC2), endocytosis 
(P < 0.006) and B cell receptor signaling pathway (P < 0.03) 
(LMC3), signaling pathways regulating pluripotency of 
stem cells (P < 0.017) (LMC5) and T cell receptor signal-
ing pathway (P < 0.004) (LMC6) (Fisher’s exact test and 
Benjamini−Hochberg correction).

In addition, we observed low expression of STLMS 
core signature genes, which might reflect dedifferentia-
tion, lower muscle-specific activity or low tumor purity. 
This prompted us to compare the expression values of 
known smooth muscle marker genes [9–11] between the 
LMS groups. Figure 3b shows an overall low abundance 
of smooth muscle function-associated transcripts in LMS 
group 3.

Interestingly, the leukocyte fraction estimates based on 
methylation signatures by Abeshouse et al. (2017) showed 
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Fig. 2  STLMS core signature. The heatmap shows DNA methylation and mRNA expression for the top 100 genes in samples with a high proportion 
of LMC7. Samples are clustered within the same histological subtype in columns, and genes are clustered in rows. The three LMS subgroups shown 
in the annotations were assigned based on the proportions of LMC1 and 7. Group 1, associated with LMC7 mainly comprised STLMS, whereas 
group 2 (LMC1) was enriched for tumors belonging to ULMS. Leukocyte fraction scores are shown as estimated by [2]
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Fig. 3  Comparison of DNA methylation and mRNA expression between LMS groups. a Global methylation differences between LMS subgroups. 
For each LMS sample, the mean methylation was calculated by averaging all available CpG probes. Groups were compared pairwise with the 
Wilcoxon test. b mRNA expression of known smooth muscle marker genes [11]. Samples were hierarchically clustered within the LMS groups in 
columns and genes were clustered in rows using the Euclidean distance metric and complete linkage. c Estimated relative cellular composition of 
the LMS groups based on MethylCIBERSORT [12]. The results suggest the presence of immune cells and fibroblasts in several samples across all LMS 
subgroups. Tumor purity correlated with estimated immune cell content, but not with fibroblast content (Pearson correlation purity—immune cell 
fraction − 0.82, Pearson correlation purity—fibroblast fraction -0.06). No association of major blood vessel involvement with any LMS group was 
observed
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enrichment in LMS group 3 cases compared to the other 
LMS groups (Fig.  3) [2]. By applying MethylCIBER-
SORT to methylation profiles, we estimated the relative 
abundance of immune cells in LMS cases. Notably, LMS 
group 3 showed a higher proportion of immune cells and 
fibroblasts, which likely also explains the observed lower 
tumor purity (Fig. 3c).

Immune‑cell infiltration differs substantially 
within and between sarcoma subtypes
We observed a strong correlation of the TCGA-SARC 
LMC3 proportion with the previously predicted leuko-
cyte fraction (Pearson correlation 0.90) [2]. To further 
assess the association of LMC3 to immune cells, we 
deconvoluted methylation data from whole blood and 
sorted blood cell types [13]. Subsequent unsupervised 
hierarchical clustering of LMCs obtained from both data-
sets showed that TCGA-SARC LMC3 had a high simi-
larity to different immune cell types (Additional file  1: 
Figure S4). In addition, the independent deconvolution 
of methylomes from the HIPO sarcoma cohort (HIPO 
LMC6) resulted in a methylation pattern with high simi-
larity to TCGA-SARC LMC3 supporting the robustness 
of the deconvolution.

Similar to the filtering approach described in the previ-
ous section, we enriched for genes with RNA expression 
correlated with methylation changes resulting in a set of 
98 genes (Fig. 4). Of these genes, which we termed ‘TIL 
core signature’, 33 had hypomethylated and 65 had hyper-
methylated regions. A substantial fraction of the TCGA-
SARC LMC3 signature genes were known immune cell 
markers. A comparison with a recently published list of 
cell-specific marker genes of tumor-infiltrating leuko-
cytes (TILs) derived from pan-cancer data showed the 
presence of the B-cell marker FCRL2 and the natural 
killer cell marker IL21R [14].

To get an estimate for the fraction of TILs in individ-
ual samples, we calculated a score based on the median 
expression of the TIL core signature genes for each sam-
ple (Fig. 5a). The results showed a high immune infiltra-
tion score for DDLPS and UPS, an intermediate score 
for LMS and a low score for SS. Additionally this dem-
onstrated a high heterogeneity of TIL content within all 
subgroups except for SS, which generally had a low TIL 
score. A similar trend was observed in two independent 
sarcoma cohorts consisting of 224 sarcoma samples from 
twelve different subtypes (Fig. 5b, c) [15].

Further, to interrogate whether the immune cells in the 
tumor samples exhibited anti-tumor activity or merely 
originated from blood vessels in the tumor tissue, we 
calculated the correlation of TIL score with expression 
of two known cytolytic markers, granzyme A (GZMA) 
and perforin (PRF1) (Additional file  1: Figure S8) [16]. 

As RNA expression levels for both markers strongly cor-
related with the TIL score (Pearson correlation 0.72 and 
0.78), we concluded that TCGA-SARC LMC3 captures a 
signal partly originating from cytotoxic T cells.

Next to test the robustness of the defined TIL scores 
we thought to integrate information from an independ-
ent assay and thus decided to utilize information from 
hematoxylin and eosin stained tumor slides of the same 
patients. For this purpose we used a recently published 
image-based study predicting the tumor-infiltrating lym-
phocyte content [17]. Our TIL scores for TCGA-SARC 
highly correlated with the predicted image-based tumor-
infiltrating lymphocyte score (Pearson correlation 0.71), 
supporting the robustness of the TIL core signature [2, 
17] (Fig. 6).

To investigate whether the TIL score is associated 
with clinical outcomes, we stratified the TCGA-SARC 
cohort into three equally sized groups of high, medium, 
and low TIL score. We then compared overall survival 
(OS) between the high and low TIL group (Fig.  7a). 
High expression of the immune gene signature resulted 
in improved OS within the whole sarcoma cohort 
(P = 0.026, log-rank test). Moreover, survival analysis 
based on the expression of single genes from the TIL core 
signature revealed FCER1A and FCER2 as best predic-
tors for OS (P = 0.021 and 0.006, log-rank test and Ben-
jamini − Hochberg correction) (Additional file  1: Figure 
S9).

In addition to LMC3, a modest correlation was 
observed between LMC6 proportion and the predicted 
leukocyte fraction. Nevertheless, the mean mRNA 
expression for LMC6 signature genes showed a high cor-
relation (Pearson correlation between mean LMC6 gene 
expression and leukocyte fraction 0.80, Additional file 1: 
Figure S10). Among other genes, immune cell markers in 
this component included CD4, CD28 and IL10, indicat-
ing that this LMC captures methylation patterns from T 
cells. Notably, overall survival upon patient stratification 
based on LMC6 derived signature showed better separa-
tion compared to the TIL core signature (P = 0.001, log-
rank test) (Fig. 7b). We also observed a higher fraction of 
promoter-resident CpG probes in LMC6 compared to all 
other LMCs (Additional file 1: Figure S6C).

TILs are associated with specific genomic alterations in UPS 
and DDLPS
To find a potential mechanistic explanation for the vary-
ing degrees of TIL infiltration, we examined associations 
between the high and low TIL groups and their respec-
tive genomic alterations using Fisher’s exact test. We 
included somatic single nucleotide variations (SNVs), 
small insertions/deletions (indels), gene fusions and copy 
number aberrations (CNAs) in our analysis.
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In UPS, we found a deletion of 13q14.2 with a higher 
frequency in tumors with low TIL score compared to 
tumors with high TIL score (Fig. 8). The genes affected by 
the deletion events include RB1, ITM2B, LPAR6, LRCH1, 
RB1-DT, ARL11, EBPL, and KPNA3. RB1 together with 
ARL11 were among the genes with the highest correla-
tion between copy number and TIL score among all 

genes in the UPS cohort (copy number—TIL score Pear-
son correlation 0.46 and 0.43, respectively). In addi-
tion, we observed downregulation of genes affected as a 
result of 13q14.2 deletion. Overall, RB1 expression was 
significantly lower in the low TIL group compared to 
the high TIL group in other sarcoma subtypes from the 

Fig. 4  TIL core signature. The heatmap shows DNA methylation and mRNA expression for genes in samples with a high proportion of LMC3. 
Samples are clustered within the same histological subtype in columns, and genes are clustered in rows. The proportion of LMC3 strongly correlates 
with the predicted leukocyte fraction defined by [2]
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TCGA-SARC and Lesluyes et al. [15] cohorts (Additional 
file 1: Figure S11).

Next, we sought to investigate genomic alterations in 
DDLPS associated with the TIL groups. In the low TIL 

group, an amplification of chromosome 12q21.1 com-
prising the genes LGR5, TSPAN8, TRHDE, RAB21, 
TBC1D15 and TRHDE-AS1 was enriched (Fig. 9a). All of 
the genes had a high correlation between copy number 

Fig. 5  TIL score indicates varying degrees of immune cell infiltration in STS. TIL score of the sarcoma datasets. a TCGA-SARC, b Lesluyes et al. [15] 
and c in-house HIPO. The cohorts contain RNA sequencing data from 206, 135 and 89 samples, respectively. DDLPS, dedifferentiated liposarcoma; 
UPS, undifferentiated pleomorphic sarcoma; MFS, myxofibrosarcoma; MPNST, malignant peripheral nerve sheath tumor; LMS, leiomyosarcoma; 
SS, synovial sarcoma; PLS, pleomorphic liposarcoma; PRMS, pleomorphic rhabdomyosarcoma; GIST, gastrointestinal stromal tumor; WDLS, 
well-differentiated liposarcoma; LS, liposarcoma; NOS, sarcoma—not otherwise specified; MLS, myxoid liposarcoma
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and expression (copy number—normalized RNA expres-
sion Pearson correlations 0.56—0.87) hinting towards the 
functional impact of the amplification. The multipotent 
stem cell marker gene LGR5 and TRHDE were signifi-
cantly upregulated in the low TIL group compared to the 
intermediate and high TIL groups for DDLPS (P < 0.001 

and < 0.03, Wilcoxon rank-sum test). We also detected 
fusion events with genes known in the context of cancer 
such as LGR5-TSPAN8 in the low TIL group (Additional 
file 1: Table S2).

In the high TIL group, a strong enrichment for 
an amplification event of chromosome 12q23.1 was 

Fig. 6  TIL score accords with image-based predicted tumor-infiltrating lymphocyte score. Scatterplot of image-based scores of tumor-infiltrating 
lymphocytes against TIL score for TCGA-SARC. The Pearson correlation coefficient is indicated in the top left corner. Colours indicate the histological 
subtypes

Fig. 7  Kaplan–Meier analysis shows significant differences in overall survival between TIL groups. The overall survival of patients in the upper 
expression tertile was compared against patients in the lower tertile for the TCGA-SARC cohort using a the TIL core signature score or b the TIL 
score calculated from LMC6 signature genes as predictor
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observed (Fig.  9b). The amplification status was highly 
correlated with the expression of the genes ELK3, CDK17 
and LTA4H located within this region (copy number—
normalized RNA expression Pearson correlations 0.82, 
0.67 and 0.87). Besides amplifications, gene fusions 
involving ELK3, a transcription factor with a multifaceted 
role in cancer and immune infiltration, were enriched 
in the medium and high TIL groups (Additional file  1: 
Table  S2). The presence of ELK3 fusion transcripts was 
confirmed in our in-house HIPO sarcoma dataset and 
was validated using Sanger sequencing for 5 cases (Addi-
tional file 1: Table S3).

We further found that BAGE2, a cancer testis antigen, 
harboured SNVs in five DDLPS samples in the high TIL 
group and one sample in the low TIL group, respectively.

Discussion
Here, we present the first study that uses unsupervised 
methylation-based deconvolution to identify distinct 
methylation signatures within and across sarcoma sub-
types. Prior studies on the identification of STS subtypes 
have mainly relied on differential gene expression [9, 10]. 
However, given the higher stability of DNA methylation 
over RNA expression [18], we chose to perform deconvo-
lution on methylation data. Our novel approach enabled 
the discovery of unbiased profiles of methylation changes 
with altered gene expression, which were significantly 
associated with histopathological subtypes, tumor tis-
sue localization and degree of immune cell infiltration. 
In particular, we identified components highly associated 
with STLMS, ULMS, SS and TILs. Contrarily, no distinct 

Fig. 8  TILs are associated with a deletion of 13q14.2 in UPS. Samples were split into three equally sized groups based on their TIL score. The 
oncoprint shows deletions, fusions and SNVs enriched in the lower TIL score tertile for UPS. For each group and gene, the percentage of samples 
with at least one alteration is given. Additionally, the bottom heatmaps show matched gene expression data (pink: not available). With the 
exception of ATP7B, all of the deleted genes were located in the 13q14.2 region. The tumor suppressor gene RB1 was deleted in seven out of 15 
samples belonging to the low TIL group
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methylation patterns were found for DDLPS, UPS, MFS 
and MPNST, indicating a higher degree of heterogeneity 
among these tumor types.

Through unsupervised deconvolution of tumor methy-
lomes, we identified three molecular subgroups for LMS 
based on molecular differences in DNA methylation and 
gene expression. We showed that LMS have different 
degrees of muscle specificity, which is high in STLMS-
associated group 1, intermediate in ULMS-associated 
group 2, and low in LMS group 3. On the one hand, 
we could attribute differences in STLMS core signa-
ture expression to a lower purity in these tumors. The 
results from MethylCIBERSORT indicated the presence 
of immune cells in a fraction of samples belonging to all 
LMS subgroups, which was concordant with the esti-
mated leukocyte fraction and tumor purity.

On the other hand, group 3 LMS tumors may represent 
some degree of dedifferentiation resulting in a less prom-
inent smooth muscle phenotype. Furthermore, the dedif-
ferentiated state in group 3 LMS might be linked to global 
hypomethylation, a mechanism frequently employed in 
cancer initiation and progression [19–21]. Our findings 
are in accordance with the prior studies using expres-
sion profiling to investigate subgroups in LMS [9, 10]. In 
addition, the prognostic immunohistochemical markers, 
MYLK and CASQ2, were also part of the derived STLMS 
core signature [21].

Chakravarthy et  al. performed a pan-cancer methyl-
ation-based deconvolution of tumor samples and clas-
sified sarcomas as ‘immune cold’, characterized by low 
infiltrates of cytotoxic T-lymphocytes (CTLs) [12]. How-
ever, the notion that sarcomas are immune-quiescent 
tumors is challenged by an increasing number of studies 
[5, 22, 23].

In our study, we showed a varying degree of immune 
cell infiltration within and between sarcoma subtypes. 
Our results suggest that UPS and DDLPS on average 
have a higher immune cell infiltration compared to SS 
and LMS. Our findings are broadly in agreement with the 
TCGA-SARC study, where a high degree of macrophage 
infiltration in UPS/MFS and DDLPS and high score for 
CD8 positive cells was reported in DDLPS [2].

Results from the pioneer SARC028 clinical trial, where 
several metastasized STS subtypes together with bone 
sarcomas were treated with the anti-PD-1 antibody 

pembrolizumab, showed an 18% objective response 
rate, mainly coming from UPS and DDLPS patients [3]. 
A recent study by Keung et al., 2020, based on the pre-
treatment biopsies from patients enrolled in the afore-
mentioned trial, reported higher densities of activated 
T cells as well as infiltration of tumor-associated mac-
rophages in patients who responded to pembrolizumab 
[24]. The results show that only subgroups of patients 
with high immune cell infiltration might benefit from 
immunotherapy.

Furthermore, we found a strong correlation of TIL 
score with the expression of the cytolytic marker genes 
GZMA and PRF1 indicating an abundance of CTLs and 
NK cells in these tumor samples. On the contrary, several 
genes with immunosuppressive effect such as inhibitory 
cytokines IL10 and TGFB1 and the cell surface recep-
tor HAVCR2 [25–27] were also expressed in the samples 
with high immune cell infiltration. Together, these pro-
teins play an important role during T cell exhaustion, a 
condition frequently observed in the tumor microenvi-
ronment [28].

Among the genes belonging to the TIL core signature, 
expression of FCER1A and FCER2 showed the highest 
association with overall survival in patients. These genes 
encode the Fc fragments of immunoglobulin epsilon 
(IgE) receptors FcεRI, highly expressed on mast cells and 
basophils [29], and FcεRII, found on the surface of vari-
ous immune cells such as B and T cells, and also other 
cell types [30], respectively. In a recent study by Petitprez 
et al., B cells have shown to be a strong predictor of sur-
vival and response to PD1 blockade therapy in sarcoma 
[31]. Tumor-associated mast cells can have favourable 
or unfavourable effects on survival dependent on cancer 
type [32].

In summary, while there have been conflicting reports 
on the influence of immune cell infiltration on the clinical 
outcomes of sarcoma patients [33], our study indicates an 
overall beneficial effect of TILs on patient survival.

A limitation of our study is that an unbiased deconvo-
lution is unable to completely disentangle the immune 
cell-associated component into contributions from dif-
ferent immune cell types based on their methylomes. 
LMC signature genes and corresponding GO and KEGG 
terms indicate that LMC3 captures a signal partly com-
ing from B cells and LMC6 from T cells. To estimate the 

(See figure on next page.)
Fig. 9  TILs are associated with specific copy number alterations and fusions in DDLPS. Samples were split into three equally sized groups based 
on their TIL score. The oncoprint shows genomic alterations enriched in the lower (a) and upper (b) TIL score tertile for DDLPS. In this sarcoma 
subtype, amplifications and fusions were most abundant. For each group and gene, the percentage of samples with at least one alteration is given. 
Additionally, the bottom heatmaps show matched gene expression data (pink: not available). In the low TIL group, 12q21.1 amplification affected 
the genes LGR5, TSPAN8, TRHDE, RAB21, TBC1D15 and TRHDE-AS1, whereas an amplification of 12q23.1 including ELK3, CDK17 and LTA4H was enriched 
in samples from high and intermediate TIL score expression tertiles
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Fig. 9  (See legend on previous page.)
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contributions from different immune cell types to the 
overall immune fraction, reference-based methods such 
as MethylCIBERSORT or CIBERSORT have been used 
[12, 34]. Here, a potential issue is that reference signa-
tures were derived from cell lines, which may differ sub-
stantially from the cells in the tumor environment [35].

Previous studies have characterized the tumor micro-
environment and immune profile of STS but there is 
limited knowledge about the specific immunogenicity in 
context of genomic alterations [5, 22, 23, 31].

In the low TIL UPS subgroup, we detected a 13q14.2 
deletion including the tumor suppressor gene RB1. These 
results are in line with a recent pan-cancer analysis, 
where the authors reported a significant negative corre-
lation between RB1 deletion and their derived immune 
signature score [36]. Besides UPS, we also detected a 
consistent positive correlation between RB1 expression 
and TIL score for LMS and DDLPS in two independent 
datasets (TCGA-SARC, Lesluyes et  al. [15]). Previous 
studies have shown that retinoblastoma protein regu-
lates the immune response by activating immune signal-
ling pathways and its loss leads to decreased leukocyte 
recruitment resulting in tumor immune evasion [37–39]. 
RB1 downregulation may present an immune evasion 
mechanism in sarcomas particularly of relevance in LMS, 
which are almost invariably characterized by loss of RB1 
function [40].

In the low TIL DDLPS subgroup, we observed a recur-
rent amplification of chromosome 12q21.1 harboring the 
multipotent stem cell marker LGR5 and its correspond-
ing upregulation. LGR5 has been shown to positively 
regulate the Wnt signalling pathway, which is inversely 
correlated to B and T cell infiltration [41–44]. This rela-
tionship is concordant with our observation of a higher 
LGR5 expression in the low TIL group.

In the high TIL DDLPS subgroup, there was an over-
represented amplification of chromosome 12q23.1. 
Amongst other genes, ELK3, a Ras-activated transcrip-
tion factor from the ETS-family, is located within this 
region. In addition, we found novel ELK3 fusion events 
in high and intermediate TIL DDLPS groups. In previous 
studies, ELK3 upregulation resulted in increased meta-
static behaviour of breast cancer and liver cancer stem 
cells by enhancing cell migration and invasion, whereas 
its suppression led to a reversal of the epithelial-mesen-
chymal transition in breast cancer cells [45–47]. We also 
observed frequent mutations of BAGE2, a cancer tes-
tis antigen, in the high TIL DDLPS group. Mutations in 
BAGE2 have been hypothesized to play a role in immune 
evasion in osteosarcomas [48]. However, functional vali-
dations are required to test the role of these alterations in 
cancer with respect to TIL.

In summary, our unsupervised deconvolution of 
methylation data and subsequent integration with gene 
expression data revealed that STS exhibit varying degrees 
of immune cell infiltration, which is associated with clini-
cal outcomes. Moreover, our results suggest that LMS 
can be stratified into three distinct subtypes based on 
methylation profiles. Finally, integration of genomics 
data unveiled key immune modulatory alterations associ-
ated with TIL infiltration. Overall, our study provides an 
important resource for patient stratification and predict-
ing response and disease outcome to immune therapies.

Methods
Data availability and processing
We used the TCGA legacy data portal (https://​portal.​
gdc.​cancer.​gov/​legacy-​archi​ve) to download molecular 
data including level 2 Infinium Illumina HumanMeth-
ylation450 BeadChip (HM450K) array, level 3 whole-
transcriptome RNA-sequencing data, level 2 non-silent 
somatic single nucleotide variations called by MuTect 
(v.1.1.6), and copy number variation data (segmented 
data from Affymetrix SNP array 6.0, level 3) of the 
SARC cohort. For gene expression analysis, we used the 
RSEM-quantified transcript counts, which were normal-
ized within-sample to the fixed 75th percentile. To show 
relative differences in expression, the normalized counts 
for each gene were divided by its median expression in 
the cohort and subsequently log2-transformed. The 206 
TCGA-SARC HM450k array samples were filtered for 
CpG probes with measurements available for all samples 
(394,363 probes). We further removed probes on the sex 
chromosomes and non-CpG probes.

DNA and RNA from the tumor specimen were iso-
lated using the QIAamp DNA Mini Kit, the AllPrep 
DNA/RNA/Protein Mini Kit and the AllPrep DNA/
RNA/miRNA Universal Kit (Qiagen). The Generead 
DNA FFPE kit and the QIAamp DNA FFPE Tissue Kit 
(both Qiagen) were used for extracting the nucleic acids 
from formalin-fixed paraffin embedded (FFPE) sam-
ples. Quality control and quantification steps were done 
using a Qubit Fluorometer (Life Technologies) and the 
E-Gel Agarose Electrophoresis System (Invitrogen) or 
the 2200 TapeStation system (Agilent). The methyla-
tion analysis was carried out according to the manufac-
turer’s specifications (Illumina Infinium HD methylation 
assay reference guide and for FFPE samples Illumina 
Infinium-HD-FFPE-assay-reference-guide).

Preprocessing of in-house sarcoma methylation data 
(MASTER) [53] was done with RnBeads (v.2.0.0) in R 
(v.3.5.1) [49]. First, raw idat files generated from Illumina 
MethylationEPIC BeadChip microarrays were imported 
into R using the function ’rnb.execute.import’. We then 
removed all probes overlapping SNPs (’rnb.execute.snp.

https://portal.gdc.cancer.gov/legacy-archive
https://portal.gdc.cancer.gov/legacy-archive
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removal’), probes with detection p-values above 0.05 
(’rnb.execute.greedycut’), probes located on sex-chromo-
somes (’rnb.execute.sex.removal’), probes outside of CpG 
context (’rnb.execute.context.removal’), and probes with 
standard deviation below 0.005 (’rnb.execute.variability.
removal’). Normalization was performed using ‘BMIQ’ 
together with ‘enmix.oob’ as a background correction 
method using the function ’rnb.execute.normalization’. 
We kept all samples from sarcoma subtypes occuring at 
least twice in the dataset resulting in 56 samples from 13 
different histopathological entities.

Four RNA-seq datasets were additionally included for 
validation of the results from TCGA-SARC: we down-
loaded RNA-seq data from a second sarcoma cohort 
with 135 samples [15] (GEO: GSE71119) and 60 HM450k 
array samples with blood cells from magnetic-activated 
cell sorting [13] (GEO: GSE35069). Eventually, two in-
house cohorts were used for validation of the TIL score 
(HIPO28) and fusion validations (HIPO21), respectively.

RNA sequencing libraries were prepared using the 
TruSeq RNA Sample Preparation Kit v2 (Illumina), nor-
malized to 10 nM, pooled to 11-plexes, and clustered on 
a cBot system (Illumina) to a final concentration of 10 pM 
with a spike-in of 1% PhiX Control v3 (Illumina). Paired-
end sequencing (2 × 101 bp) was carried out with a HiSeq 
2000 instrument (Illumina). Reads were mapped with 
STAR (version 2.3.0e). 1000 Genomes reference sequence 
with GENCODE version 17 transcript annotations was 
used for building the index. For alignment, the follow-
ing parameters were used: alignIntronMax 500,000, 
alignMatesGapMax 500,000, outSAMunmapped Within, 
outFilterMultimapNmax 1, outFilterMismatchNmax 3, 
outFilterMismatchNoverLmax 0.3, sjdbOverhang 50, 
chimSegmentMin 15, chimScoreMin 1, chimScoreJuncti-
onNonGTAG 0, chimJunctionOverhangMin 15. The out-
put was converted to sorted BAM files with SAMtools, 
and duplicates were marked with Picard tools (version 
1.90).

Detection of gene fusions
Using our in-house pipeline Arriba (v0.8) [54], high-
confidence gene fusion predictions were extracted from 
chimeric alignments produced by STAR. Arriba removes 
recurrent alignment artifacts, transcript variants which 
are also observed in normal tissue, or a low number of 
supporting reads relative to the overall number of pre-
dicted events in a gene, and reads with low sequence 
complexity as well as events with short anchors or break-
points in close proximity. The fusions were filtered for 
genes, which occur in at most 20 samples and have sup-
porting split reads (split_reads1 + split_reads2 > max(1, 
discordant_mates/10)).

Fusion validation assays
Selected fusions were validated by the Center for Molec-
ular Pathology at the Institute of Pathology of the Hei-
delberg University Hospital using orthogonal techniques 
such as Sanger sequencing.

Non‑negative matrix factorization with MeDeCom
We used reference-free non-negative matrix factoriza-
tion of methylation data implemented in the MeDeCom 
package to recover biologically meaningful methylation 
patterns [7].

Prior to deconvolution with MeDeCom (v.0.2), beta 
values of HM450k array CpG probes were averaged over 
a window size of 5 kb, referred to as windows to decrease 
the size of the input matrix and to cover all available 
genomic regions. Only windows with at least one CpG 
probe were kept. For TCGA-SARC, MeDeCom was run 
with K = 9.. 11, λ = 10−5.. 1, maximum 300 iterations, 10 
random initializations, and tenfold cross-validation. For 
downstream analysis, K = 9 latent methylation compo-
nents (LMCs) and λ = 0.01 was chosen. For the blood cell 
dataset, we ran MeDeCom with K = 5.. 20 and used 13 
LMCs and λ = 0.001 for further analysis.

Extracting LMC‑specific hypo‑/hypermethylated regions
To extract windows which are LMC-specific we catego-
rized each LMC into hypo- and hypermethylated win-
dows. For each window we compared the deconvoluted 
beta values in each LMC: a window was categorized 
hypomethylated for a LMC if the deconvoluted beta value 
of the window was smaller by at least 0.2 compared to the 
beta values of all other LMCs. Analogously we applied 
the definition to extract hypermethylated windows.

Correlation of hypo‑/hypermethylated windows to gene 
expression
We intended to enrich the hypo- and hypermethylated 
LMC-specific windows for functional regions. Therefore, 
we correlated the beta values of LMC specific hypo- and 
hypermethylated windows using the expression values of 
the gene associated with the window. In detail, beta val-
ues from the CpG probes lying within the LMC-specific 
genomic windows were extracted and averaged by their 
associated gene using annotations from the IlluminaHu-
manMethylation450kanno.ilmn12.hg19 package (v.0.6.0) 
in R. We further filtered the genes with matched meth-
ylation and mRNA expression values by applying a cor-
relation threshold of ± 0.3 using Pearson correlation. This 
workflow thus led to four categories of windows:

a)	 Hypomethylated/negatively correlated
b)	 Hypermethylated/negatively correlated
c)	 Hypomethylated/positively correlated
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d)	 Hypermethylated/positively correlated

To derive signature gene sets for each LMC, we filtered 
for correlation patterns a) and d).

Proportion and methylation‑mRNA expression heatmaps
For a clear representation of subtype associations, sam-
ples were hierarchically clustered within each histological 
subtype using the Euclidean distance metric and com-
plete linkage. To show methylation and corresponding 
mRNA expression values, we averaged beta values from 
LMC-specific CpG probes associated with each gene and 
calculated their relative mRNA expression as described 
in “Data availability and processing”. Genes were clus-
tered based on their methylation values using the Euclid-
ean distance metric and complete linkage.

TIL score
The TIL score was calculated for each sample i as the 
median of log-normalized mRNA expression values from 
all LMC3-specific genes:

where i is the sample and j is the gene from the LMC3-
specific signature containing n genes in total. For gene 
counts, normalized RSEM-quantified transcript counts 
(TCGA-SARC) or FPKM values (GSE71119) were used. 
Thus, assuming count ≫ 1, a value of 0 is equivalent to 
the TIL score of a sample being identical to the median 
TIL score for the cohort.

Survival analysis
We investigated the association of signature gene expres-
sion with overall survival. For Kaplan–Meier survival 
analysis, the samples were grouped into three equally 
sized groups by TIL score or the expression level of sin-
gle LMC3 and 6 signature genes. The 33% of samples 
with the highest score/expression were compared to the 
33% of samples with the lowest score/expression. P val-
ues were calculated using the log-rank test. The log-rank 
P values for single signature genes were adjusted for mul-
tiple testing using the Benjamini–Hochberg method. We 
additionally performed univariable Cox regression with 
TIL score or the expression values of a single gene from 
LMC 3 or 6 as predictor.

Identification of TIL group specific genomic alterations
To gain insight into the reasons for variable TIL abun-
dance in the tumor samples, we performed an explora-
tory analysis of the differences in their genomic 
alterations. To this end, we grouped the samples for 

TILi = median(Ai), with Ai = Uj log2

(

counti,j

median(countj)+ 0.01

)

for j = (1...n)

each subtype according to the TIL score into tertiles. 
In the comparison of genomic alterations, we included 
non-silent somatic single nucleotide variations, small 
insertions/deletions, deletions and amplifications, as 
well as fusion events. For each alteration type and gene, 
the number of occurrences in the upper TIL score ter-
tile was compared to the number of occurrences in the 
lower TIL score tertile using Fisher’s exact test. All genes 
with a P < 0.2 in at least one of the compared alteration 
types were retained. Eventually, P values were adjusted 
for genes with events in multiple alteration types using 
Fisher’s method implemented in the ‘sumlog’ function 
from the metap package in R. Likewise, genes with P < 0.2 
after adjustment were retained. For clarity, we included 
a maximum of ten genes with the lowest P values in the 
oncoprints. Since all genes in the dataset were tested, the 
results may include false positives arising from multiple 
testing and should therefore be regarded as exploratory.

In the oncoprints, genes were sorted based on the 
number of samples with at least one alteration within the 
TIL group of interest. Samples were sorted within each 

TIL group to show mutual exclusivity as implemented in 
the oncoPrint function of the ComplexHeatmap package 
(v.1.99.5) in R.

LMS subgroups
We assigned the LMS cases to three groups based on 
their LMC proportions. Samples with proportion < 0.2 
in both LMC1 (ULMS-associated) and LMC7 (STLMS-
associated) were defined as LMS group 3. LMS group 1 
was defined as LMC7 > LMC1 and LMC7 > 0.2, and LMS 
group 2 as LMC1 > LMC7 and LMC1 > 0.2.

Gene ontology analysis
For gene ontology enrichment analysis, the online tool 
Enrichr 3 was used (queried on 2019/01/18) [50]. For 
determination of significance, the tool applies Fisher’s 
exact test, and subsequent P value adjustment for multi-
ple testing with the Benjamini–Hochberg method. Gene-
set libraries were employed from the Gene Ontology 
2018 and KEGG 2016 databases [51, 52].

Cibersort
As we noticed different tumor purities in the LMS sub-
groups, we applied MethylCIBERSORT deconvolu-
tion on the methylation data to get an estimate of the 
frequency of cell types in these tumor samples [12, 
34]. We used the sarcoma signature matrix provided in 
the MethylCIBERSORT package in R, which contains 
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methylation signatures for immune cells, fibroblasts and 
cancer cells from cell lines. The CIBERSORT algorithm 
was run without prior quantile normalization and 1,000 
permutations. Subsequently, we summed up the result-
ing relative fractions from all immune cell types to allow 
a comparison of the overall proportion of immune cells, 
fibroblasts and sarcoma cells in each sample.

Predictions of tumor‑infiltrating lymphocytes 
from histopathology image slides
Predictions of tumor-infiltrating lymphocyte abundances 
from tissue slides were obtained from [17]. For each sar-
coma sample the mean prediction score across all image 
tiles was calculated and used for comparison with the 
RNA-based TIL score.

Assignment of probes to promoter, intragenic 
and intergenic regions
Gene annotations were extracted from the TxDb.Hsapi-
ens.UCSC.hg19.knownGene annotation package (v.3.2.2) 
in R. We defined promoters as the region from 1000 bp 
upstream to 100  bp downstream of the transcription 
start site.
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