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Abstract 

Background:  To understand the molecular mechanisms of the antitumour response, we analysed the immune land-
scape of cervical cancer to identify novel immune molecular classes.

Methods:  We established a stable immune molecular classification using a nonnegative matrix factorization algo-
rithm and validated the correlation in two validation sets of 249 samples.

Results:  Approximately 78% of cervical cancers (CCs) (228/293) were identified to show significant enrichment in 
immune cells (e.g., CD8 T cells and macrophages), a type I IFN response, enhanced cytolytic activity and high PDCD1, 
and these CCs were referred to as the “immune class”. We further identified two subtypes of the immune class: active 
immune and exhausted subtypes. Although the active immune subtype was characterized by enrichment of IFN sig-
natures and better survival, the exhausted subtype expressed activated stroma, a wound healing signature, enhanced 
M2 macrophages and absence of CD8 T cells and the TGF-β response signature. Integrative analysis of multiomics 
data identified EGFR, JUN, MYC, FN1 and SERPINE1 as key modulators of the tumour immune microenvironment and 
potential targets for combination therapies which was validated in two validation sets.

Conclusions:  Our study introduces a novel immune classification that might predict ideal candidates to receive 
immunotherapy or specific combination therapies.
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Introduction
Cervical cancer (CC) remains the fourth most commonly 
diagnosed female malignancy and one of the leading 
causes of cancer-related mortality worldwide, especially 
in developing countries [1, 2]. More than half of all CC 
cases are currently diagnosed at advanced stages [3]. For 
patients with recurrent and metastatic cancers, thera-
peutic options are extremely limited. Chemotherapy 
doublets combined with bevacizumab, constitute first-
line therapy for recurrent and metastatic cervical carcer. 

Although the survival was improved, bevacizumab is not 
curing anyone, and while GOG 240 addressed an unmet 
clinical need in a high-risk population who progress on 
first-line therapy. Progress definitely, but much more is 
required [4].

In recent years, immune checkpoint inhibitors (ICIs) 
that initiate effective antitumour activity have driven 
further exploration of this new therapy in CCs. In June 
2018, pembrolizumab was approved for the treatment 
of patients with recurrent or metastatic CC with disease 
progression on or after chemotherapy whose tumours 
express PD-L1 in ≥ 1% of cells by immunohistochem-
istry. Despite the promising anticancer activity, only a 
fraction of patients exhibited dramatic effects on sin-
gle-agent anti-PD-L1/PD-1 antibody treatment. In the 
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KEYNOTE-158 study, patients were treated with pem-
brolizumab, the median follow-up was 10.2  months, 
and the objective response rate (ORR) was only approx-
imately 12.2% [5]. To determine the population that 
will benefit from PD-1 blockade treatment, there are 4 
FDA-approved assays of PD-L1 expression by immuno-
histochemistry to help guide decisions. However, PD-L1 
expression before immunotherapy may be useful but not 
sufficient to act as a definitive predictive biomarker. For 
instance, patients with melanoma can exhibit a clinical 
response regardless of PD-L1 expression status.

Successful antitumour immune responses following 
PD-1/PD-L1 blockade require reactivation and clonal 
proliferation of tumour-specific T cells in the tumour 
microenvironment (TME), and the differences in the 
effects of ICIs can be partially attributed to the heteroge-
neity of the TME [6, 7]. The “hot”, immune-inflamed TME 
that is associated with higher densities of CD8 + tumour-
infiltrating lymphocytes (TILs) may predict benefit from 
anti-PD-1 therapy. In contrast, non-inflamed tumours 
with a “cold” TME generally respond poorly to anti-PD-
L1/PD-1 therapy [8–10]. Estimation of non-cancerous 
cell proportions from samples can be performed using 
genomics data. During the last decade, multiple com-
putational approaches have been developed intending 
to calculate TME cell type population estimates and we 
adopt several of them for TME analysis [11].

However, why some tumours are “inflamed” with effec-
tor T cell infiltration whereas others are not remained to 
be elucidated. The elicited durable clinical responses to 
PD-1 pathway blockade largely depend on TME profiles. 
Because of the complexity of TME, combination thera-
pies represent the next wave of clinical cancer treatment 
to overcome the limitations associated with single-agent 
therapy [12]. Therefore, for rational combination thera-
pies, we aim to provide targets in various TME subtypes 
and an integrative stable immune class that may predict 
benefit from single agents or combination therapies in 
specific patients.

As we all know, tumours are complex mixtures of stro-
mal cellular elements. Nonnegative matrix factorization 
(NMF) is a virtual separation approach that could help 
separate molecular signatures of tissue compartments 
from measurements of bulk tumor samples. It is well 
suited for biological data as it constrains all sources to be 
positive in nature. Moffitt RA et al. have recently demon-
strated that NMF is useful for analyzing gene expression 
to identify tumour-specific and stroma-specific subtypes 
with biologic relevance in pancreatic ductal adenocarci-
noma [13].

Using NMF, we deconvoluted gene expression data 
and isolated the inflammatory signal to character-
ize the immunologic landscape of CC. We identified an 

immune-specific class of CC associated with prognosis 
and immune modulatory alterations and conducted an 
integrative analysis of multiomics data to identify key 
modulators of the tumour immune microenvironment 
and potential individual treatments in various immune 
classes.

Materials and methods
Patients and samples
For the purpose of the study, the gene expression profiles 
from a total of 542 human cervical cancer samples were 
analysed (Additional file  1: Fig. S1). All samples of the 
training set were previously obtained from TCGA. RNA 
profiling, CNV data and mutation data were available for 
all 291 samples. An additional 249 samples of patients 
from 2 datasets of GEO (GSE63514 and GSE68339) were 
used for external validation [14, 15].

Identification of the immune class
Virtual microdissection of gene expression data was per-
formed in the training set using unsupervised NMF [16], 
as previously described [13], with k = 3 as the number 
of factors. An immune-related expression pattern was 
revealed by integrating NMF-identified factors with the 
immune enrichment score calculated by single-sam-
ple gene set enrichment analysis (ssGSEA). Once the 
immune expression pattern was deconvoluted by NMF 
and characterized by integration with ssGSEA scores, 
we listed the top-ranked genes according to their weight-
ing. Unsupervised clustering of the top-ranked genes was 
then performed.

Molecular characterization of the immune class
Enriched molecular pathways and gene expression signa-
tures were evaluated using GSEA and ssGSEA. Previously 
published cervical cancer molecular classifications were 
analysed [17–19]. We identified differentially expressed 
genes (DEGs) between immune class and non-immune 
class with criteria of false discovery rate < 0.05 and log 
fold-change > 1.0 by the R package “limma”. Gene set 
enrichment analysis (GSEA) was applied to identify path-
ways enriched in each subgroup and was performed on 
a Java GSEA desktop application (www.​broad.​mit.​edu/​
gsea/). Absolute immune cell scores from gene expres-
sion datasets were computed for 22 immune cell types 
according to gene signatures from CIBERSORT (https://​
ciber​sort.​stanf​ord.​edu/) [20].

Genomic correlations with the immune class
Scores for copy number burden, aneuploidy, homologous 
recombination deficiency (HRD), SNV neoantigens, and 
non-silent mutation rate were derived [18]. The number 
of altered fractions in the copy number burden score and 
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the number of segments represented the fraction of bases 
deviating from baseline ploidy (defined as above 0.1 or 
below—0.1 in the log2-normalized relative copy number 
(CN) space) and the total number of segments in each 
copy number profile, respectively. Altered aneuploidy 
scores were calculated as the sum of amplified or deleted 
arms [21]. In addition, Spearman correlations were deter-
mined between the leukocyte fraction and measures of 
DNA alteration.

Copy number variation analysis
The TCGA copy number (gene-level) data were down-
loaded from https://​genome-​cancer.​ucsc.​edu/ in January 
2020. Segment mean values larger than 0.3 were defined 
as copy number gains, and those less than -0.3 were 
defined as copy number losses. The chi-square test was 
adopted to identify the significantly different copy num-
ber variants (CNVs) between immune subgroups, and 
Circos analyses were performed by the R package “Rcior-
cos” [22].

Somatic mutation analysis
Somatic mutation profiles, which are available from the 
Genomic Data Commons Data Portal (https://​portal.​gdc.​
cancer.​gov/), detected by VarScan 2 and with a somatic 
mutation frequency > 5% were considered to compare 
values among distinct subgroups. OncoPrints for somatic 
mutation patterns were generated by the R package 
“maftools”. Michael R. Stratton reported a mathematical 
approach and computational framework to extract muta-
tional signatures from catalogues of somatic mutations 
from cancers and identified 33 mutational signatures in 
all cancer types [23].

MicroRNA expression and long noncoding RNA expression 
analysis
The lncRNA and miRNA data were downloaded from 
https://​genome-​cancer.​ucsc.​edu/. Among the candidate 
miRNAs and lncRNAs, we further identified potential 
regulators and target genes using the following criteria: 
the mature miRNA has experimentally validated targets 
from miRTarBase [24] and computationally predicted 
targets from two well-established miRNA target pre-
diction databases, miRanda and miRDB [25, 26]. For 
differentially expressed functional miRNAs (DEFMs) 
analysis, we used miRNA data in limma with adjusted 
P-value of ≤ 0.05. In addition, we identified differentially 
expressed lncRNAs between immune class and non-
immune class with criteria of false discovery rate < 0.05 
and log fold-change > 1.0 by the R package “limma”.

Protein expression analysis
Three subgroups were used to perform comparisons 
using protein (RPPA) data from https://​www.​tcpap​ortal.​
org/​tcpa/​downl​oad.​html. Ranking with the t-test p-value 
generated the top-ranked proteins induced in the sub-
groups, using a cut off t-test p-value of < 0.05. T-test were 
performed using the R language. The Search Tool for the 
Retrieval of Interacting Genes (STRING) database was 
used to construct a protein–protein interaction network 
of top-ranked proteins.

Validation in independent datasets
The immune class was generated using the “NMF 
method” in the training set (n = 293). The ability of the 
“NMF method” to capture the immune class was vali-
dated in our validation sets (GSE63514 and GSE68339). 
In addition, GSEA was applied to validate pathways 
enriched in the immune class.

Statistics
Statistical analyses were performed with SPSS Statistics 
software version 24 and R software 3.6.1. Correlations 
between immune classes and clinicopathological vari-
ables were analyzed by Chi-square test (and the Fisher’s 
exact test when appropriate) and Wilcoxon rank-sum test 
for categorical and continuous data, respectively. Cor-
relations between immune classes and three published 
molecular classes were analyzed by Chi-square test. One-
way ANOVA and Least—Significant Difference (LSD) 
tests were performed for multiple group comparisons. 
Kaplan–Meier estimates and log-rank test were per-
formed to analyze the association of immune classes with 
overall survival. The propensity score matching (PSM) 
was performed for adjustment for risk factors. P-val-
ues < 0.05 were considered statistically significant.

Results
A novel molecular immune class of cervical cancer
We first performed NMF in the training cohort (n = 293) 
to extract gene expression signatures related to immune 
pathways (Additional file 1: Fig. S1). We confirmed that 
one of the NMF-identified clusters was linked to inflam-
matory markers and immune cells, which was corrobo-
rated by an observed lowest immune enrichment score, 
as previously reported [8, 10] (Additional file 1: Fig. S2). 
Consensus clustering of exemplar genes identified a 
new molecular immune phenotype present in 77.82% 
of the cohort (228/293), which we refer to herein as the 
“immune class” (Additional file 1: Fig. S3). We refer to the 
other 22.18% of the cohort herein as the “non-immune 
class”. Samples within the immune class showed sig-
nificant enrichment of signatures identifying immune 
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cells (e.g., CD8 T cells, B cells, DCs, and macrophages), 
the type I IFN response, and enhanced cytolytic activ-
ity (ANOVA, all, P < 0.001) (Additional file  1: Fig. S3). 
In contrast, we detected strong and significant lack of 
signatures identifying immune cells and lower immune 
enrichment score in the non-immune class (ANOVA, all, 
P < 0.001). The class comparison identified 1,497 genes 
that were significantly upregulated in the immune ver-
sus non-immune classes (Additional file  1: Table  S1). 
GSEA identified TNF alpha signalling via NF-KB and 
IFN-related signalling in immune class, while oxidative 
phosphorylation and xenobiotic metabolism pathways in 
non-immune class (FDR < 0.05, Additional file 1: Fig. S4, 
Table S2).

Two subtypes of the tumour microenvironment 
in the immune class: active immune and exhausted classes
Given that the immune system exerts both antitumour 
and protumour activity, we next explored the type of 
immune modulation in response to the tumour microen-
vironment within the immune class. Figure 1a shows that 
32.89% of samples in the immune class (75/228) were 
characterized by a previously reported activated stromal 
gene signature that captures the activated inflammatory 
stromal response [13]. Samples with the activated stro-
mal gene signature were associated with a lower immune 
enrichment score (ANOVA, P = 0.002) than samples 
lacking the activated stroma signature. We named these 
two clusters exhausted and active immune subgroups. 
Clinicopathological data and follow-up data for patients 
included in the training datasets are summarized in 
Table  1. Among these immune subgroups, the signifi-
cantly different factors include HPV status (ANOVA, 
P = 0.002), HPV16/18 state (ANOVA, P < 0.001) and 
pathological type (ANOVA, P < 0.001). We found that 
patients negative for HPV were most abundant in the 
non-immune class, whereas patients with negative for 
HPV16/18 state were most common in the exhausted 
subgroup. In addition, the non-immune class consisted 
mostly of adenocarcinomas compared with other sub-
groups. Including these factors, univariate and multivari-
ate analysis were performed (Additional file 1: Tables S3, 
S4). We also observed enrichment of PDCD1 in the active 
immune subgroup, which was previously reported to 
predict anti-PD1 treatment response (ANOVA, P < 0.001) 
[27]. Samples in the exhausted subgroup showed sig-
nificant enrichment of signatures identifying immune 
cells (e.g., macrophages), an activated stroma, and the 
TGF-β response signature (ANOVA, all, P < 0.001). 
DEGs between the classes are shown in Additional file 1: 
Table S5. GSEA confirmed the driver role of the oxidative 
phosphorylation pathway, as well as myc target pathways, 

in the exhausted subgroup (FDR < 0.05, Additional file 1: 
Fig. S5, Table S6).

To explore the relationship of this immune-related 
classification of CC and signatures capturing the pres-
ence of immune cells and IFN-γ-signaling, the patho-
logical pattern and the response to radiation and immune 
checkpoint therapy. We next sought to integrate these 
immune molecular subgroups with the three pub-
lished molecular classes in cervical cancer [17–19]. For 
Radiosensitivity-PD-L1 classification [19], we detected 
the highest proportion of the active immune subgroup 
within the radiosensitive (RS)-PD-L1-low subtypes (Chi-
square, 77.5%, P < 0.05), while the exhausted immune 
subgroup of tumours harboured the highest proportion 
of the radioresistant (RR)-PD-L1-high subtype (Chi-
square, 63.3%, P < 0.05). These observations are in keep-
ing with a report from Tobin Strom et al. suggesting that 
upon tumour generation, the immune system was acti-
vated and was associated with high radiosensitivity [28]. 
We also found the highest frequency of the non-immune 
class in the RR-PD-L1-low subtypes (Chi-square, 21.2%, 
P < 0.05) (Fig.  1b). For the pathological pattern-related 
classification [17], we found that approximately 90% of 
non-immune samples belonged to the adenocarcinoma 
subtype, while exhausted samples accounted for 52.5% of 
keratin-low samples (Fig. 1b). In line with previous data, 
the results suggested that active immune response were 
more frequently distributed in squamous cell carcinoma 
than those in adenocarcinoma [29]. For integration with 
the six pan-cancer immune subtypes [18], we found that 
approximately 97% of CC patients belong to the wound 
healing (C1) (26.3%) or IFN-γ-dominant (C2) (70.6%) 
subtypes, while other subtypes accounted for only 3% of 
CC samples (Fig.  1b) [30]. It is suggested that the IFN-
γ-dominant subtype could benefit from immunotherapy, 
and as expected, the highest proportion of the active 
immune subgroup (85.6%) was shown in the IFN-γ-
dominant subtype. All things considered, these analyses 
suggest that we successfully identified an immune-related 
class of CC enriched with signatures capturing radiosen-
sitivity and PD-L1 expression, signatures of pathological 
pattern and signatures of response to immunotherapy.

Molecular characterization of the immune class
Additionally, the active immune subgroup was signifi-
cantly associated with lymphocyte infiltration, mac-
rophage regulation and IFN-γ response, while the 
exhausted subgroup showed significant correlations 
with immunosuppressive components, e.g., the TGF-β 
response signature and the wound healing signature, 
which suggest fibroblasts activation [31] (Fig.  1c). In 
addition, the highest TIL proportions and TCR expres-
sion were detected in patients within the active immune 
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Fig. 1  Identification of the immune class of CC and the molecular characterization of the subgroups. a NMF analysis of whole-tumour gene 
expression data using a molecular signature able to identify the immune class of CC. In the heatmap, high and low gene set enrichment scores 
are represented in red and blue, respectively; the same representation is used for high and low gene expression. b An integrated analysis of these 
immune molecular subgroups with the three published molecular classes. c The five modules of the immune subgroups are indicated by the 
heatmap. High and low scores are represented in red and blue, respectively. d Correlation of key immune characteristics with immune subgroups. e 
Infiltration of immune cells by immune subgroups. *p < 0.05; **p < 0.01; ***p < 0.001
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subgroup (ANOVA and LSD test, P < 0.05) (Fig.  1d). 
Conversely, in samples within the exhausted subgroup, 
we observed the highest proliferation rate (ANOVA and 
LSD test, P < 0.05) which may suggest tumour-promoting 
characteristics (Fig.  1d). In contract, the non-immune 
class showed lowest immune activating component 
including lymphocyte infiltration, macrophage regula-
tion and IFN-γ response. To further explore infiltrating 
immune cells in detail, we analysed the type of infiltrat-
ing immune cells in samples within the three subgroups. 
Among these cell populations, memory B cells, resting 
dendritic cells (DCs), M1 macrophages, resting mast 
cells, monocytes, activated memory CD4 T cells and 
helper follicular T cells were significantly increased in 
the active immune subgroup. Tumour samples in the 

exhausted subgroup showed the highest infiltration of 
M2 macrophages, M0 macrophages and neutrophils. 
The non-immune class had the highest density of naïve 
B cells, plasma cells, resting memory CD4 T cells, CD8 
T cells and regulatory T cells (Tregs) (ANOVA and LSD 
test, P < 0.05) (Fig. 1e).

Validation of the immune class across datasets
The presence of the immune class was further evalu-
ated in 2 additional datasets [14, 15] (GSE63514 and 
GSE68339) (n = 249, Additional file 1: Fig. S1) using the 
“NMF method”. Similar to our training cohort, the valida-
tion cohort had 108 (43.37%) samples that were success-
fully predicted to fall within the active immune subgroup, 
while 52 (20.88%) samples were in exhausted subgroup 

Table 1  Clinicopathological characterization of patients included in the training datasets

Variable Group P value

Active immune (n = 153) Exhausted (n = 74) Non-immune (n = 64)

Age 48.86 (14.29) 47.31 (14.00) 47.17 (12.43) 0.611

BMI 28.54 (8.52) 27.60 (6.32) 26.92 (5.97) 0.366

Smoke 0.852

 Yes 32 (20.9%) 19 (25.7%) 12 (18.8%)

 No 101 (66.0%) 46 (62.2%) 45 (70.3%)

 Unknown 20 (13.1%) 9 (12.2%) 7 (10.9%)

HPV state 0.002

 Positive 147 (96.1%) 70 (94.6%) 53 (82.8%)

 Negative 6 (3.9%) 4 (5.4%) 11 (17.2%)

HPV16/18 state  < 0.001

 Positive 107 (69.9%) 42 (56.8%) 39 (60.9%)

 Negative 45 (29.4%) 32 (43.2%) 13 (20.3%)

 Unknown 1 (0.7%) 0 (0.0%) 12 (18.8%)

Clinical stage 0.121

 Stage I 84 (54.9%) 32 (43.2%) 43 (67.2%)

 Stage II 35 (22.9%) 18 (24.3%) 11 (17.2%)

 Stage III 23 (15.0%) 13 (17.6%) 5 (7.8%)

 Stage IV 7 (4.6%) 9 (12.2%) 5 (7.8%)

 Unknown 4 (2.6%) 2 (2.7%) 0 (0%)

Lymph node state 0.289

 Yes 95 (62.1%) 37 (50.0%) 42 (65.6%)

 No 22 (14.4%) 11 (14.9%) 8 (12.5%)

 Unknown 36 (23.5%) 26 (35.1%) 14 (21.9%)

Radiation therapy 0.931

 Yes 77 (50.3%) 35 (47.3%) 31 (48.4%)

 No 31 (20.3%) 13 (17.6%) 12 (18.8%)

 Unknown 45 (29.4%) 26 (35.1%) 21 (32.8%)

Pathological type  < 0.001

 Squamous 150 (98.0%) 73 (98.6%) 18 (28.1%)

 Adenosquamous 0 (0.0%) 1 (1.4%) 3 (4.7%)

 Adenocarcinoma 3 (2.0%) 0 (0.0%) 43 (67.2%)
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Fig. 2  Validation of the immune class in independent publicly available datasets. Presence and molecular characteristics of the immune classes 
were successfully validated in 2 additional independent datasets. Results in validation set 1 (a) and validation set 2 (b) are here reported. High and 
low gene set enrichment scores are represented in red and blue, respectively



Page 8 of 19Lyu et al. J Transl Med          (2021) 19:200 

(Fig.  2). Molecular characterization of the immune 
class confirmed a significant enrichment of signatures 
identifying immune cells (i.e., NK cells, B cells, CD8 T 
cells, mast cells, and macrophages, ANOVA, P < 0.05) 
and immune-related pathways (i.e., interferon gamma 
response, interferon alpha response, TGF-β signalling, 
and TNF alpha signalling via NF-KB, P < 0.05, Additional 
file 1: Tables S7, S8).

Correlation of DNA damage with the immune class
The immune infiltrate was related to measures of DNA 
damage, including aneuploidy, homologous recom-
bination deficiency (HRD), nonsilent mutation rate, 
copy number variation (CNV) burden (both in terms 
of number of segments and fraction of genome altera-
tions) and SNV neoantigens (Fig. 3a). We observed that 
the exhausted subgroup was associated with the high-
est aneuploidy, homologous recombination deficiency 
(HRD), nonsilent mutation rate and fraction of genome 
alterations (ANOVA and LSD test, P < 0.001). Interest-
ingly, the non-immune class exhibited the highest num-
ber of segments and SNV neoantigens (ANOVA and 
LSD test, P < 0.001). These results may suggest the dif-
ferent effects of multiple smaller copy number events 
versus larger events on immune infiltration in various 
immune subgroups. LF correlated negatively with the 
number of CNV segments, with a significant correlation 
in the active immune (Spearman correlation, r = − 0.306, 
P < 0.001) and exhausted (Spearman correlation, r = − 
0.384, P = 0.001) subgroups and a non-significant corre-
lation in the non-immune class (Spearman correlation, 
P = 0.597).

Correlation of copy number variants with the immune class
Considering the upregulation of immune-related genes 
in the immune class, we wondered if such regulation 
could mirror epigenetic alterations in these tumours. 
According to supervised analysis of level-3 CNV data and 
somatic or germline mutation data, CNVs have a critical 
role in cancer development and progression. A chromo-
somal segment can be deleted or amplified as a result of 
genomic rearrangements. The CNVs in the immune class 
compared with the non-immune class are presented in 
Fig. 3b. The results revealed 380 genes with the trend of 
differential copy number alterations in the immune class 
compared with the non-immune class but were not sta-
tistically different (P < 0.05, adjP > 0.05) (Additional file 1: 
Table  S9). In addition, 263 genes with differential copy 
number alterations were in the exhausted subgroup com-
pared with the active immune subgroup but without sta-
tistically different (P < 0.05, adjP > 0.05) (Additional file 1: 
Table  S10). Pathway enrichment in the immune class 
compared with the non-immune class was carried out 

for both the amplified genes and the deleted genes (Addi-
tional file  1: Table  S11). The deleted genes were highly 
associated with pathways related to metabolism, such as 
the GnRH signalling pathway and ovarian steroidogen-
esis. The pathways enriched using the amplified gene sets 
were associated with pathways related to the immune 
system, such as the pathway involved in Herpes simplex 
virus 1 infection.

Correlation of somatic mutations with the immune class
Somatic mutation can be decomposed into muta-
tional signatures (MutSigs). Specific MutSigs have been 
reported to be associated with specific biological pro-
cesses including exogenous mutagens (e.g. UV-light, 
smoking), age-related deamination, and DNA repair 
machinery [30]. Michael R. Stratton reported a math-
ematical approach and computational framework to 
extract mutational signatures from catalogues of somatic 
mutations from cancers [23]. Correlation analysis of 
immune parameters and 7 MutSigs was performed. 
Consistent with previous study, MutSigs 2 and 13 were 
positively related to immune parameters and displayed 
a ‘hot’ immune contexture (Fig. 3c). In addition, correla-
tions of immune parameters with MutSig 2 were stronger 
than with MutSig13. We further explore the correlation 
between immune classes and MutSigs. MutSigs 2 showed 
a trend to enriched in active immune subgroup (Chi-
square, 57.5%, P = 0.079), while MutSigs 13 exhibited a 
trend to enriched in exhausted subgroup (Chi-square, 
34.8%, P = 0.130) (Fig. 3d).

We further analysed the related mutated genes 
among subgroups of the cohort (Fig.  3e, f ). Analysis 
of 272 mutation annotated files highlighted 23 highly 
mutated genes in the non-immune class and 2 highly 
mutated genes in the immune class but without statis-
tically different (P < 0.05, adjP > 0.05) (Additional file 1: 
Table S12). Furthermore, we identified a higher relative 
frequency for 23 mutated genes and a lower relative 
frequency for 3 mutated genes in the exhausted sub-
group compared to the active immune subgroup but 
were not statistically different (P < 0.05, adjP > 0.05) 
(Additional file 1: Table S13). Including related mutated 
genes among subgroups (P < 0.01), SNPs data were cor-
related with transcriptomic data. We identified KRAS, 
ITGAX and MCF2 mutation were significant for up-
regulation of gene expression at the transcriptive lev-
els (Additional file  1: Fig. S7). KRAS mutation status, 
which was highly mutated in the non-immune class, 
was connected to gene expression changes and down-
regulation of signaling pathways associating to immune 
microenvironment (Additional file  1: Tables S14, S15) 
[32]. Gene ontology identified O-glycan processing and 
epithelial cilium movement involved in extracellular 
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Fig. 3  Differences in the mutational landscape according to immune classes. a Correlation of DNA damage (rows) with immune subgroups. 
b Differential CNVs between the immune class and non-immune class. Circle: Differential CNV-associated genes in samples according to 
their chromosomal location. Genes that were gained are labelled in black, and genes that were deleted are labelled in blue. c Correlation of 
immunological parameters with mutational signatures. d Correlation between immune classes and MutSigs 2 and 13. e OncoPrint of the 
distribution of mutations in genes between patients of the immune class and non-immune class. f OncoPrint of the distribution of mutations in 
genes between patients of the exhausted class and active immune class
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fluid movement in up-regulation genes, while immune 
system process and innate immune response pathways 
in down-regulation genes.

Correlation of microRNA expression with the immune class
Next, we identified 39 differentially expressed func-
tional miRNAs (DEFMs) (− 1 > log2 FC > 1, FDR < 0.05) 
between the immune class and non-immune class (Addi-
tional file  1: Table  S16). Target gene prediction for the 
miRNAs revealed 95 DEFM-mRNA links in the immune 
class (Additional file 1: Fig. S7). For miRNAs, 15 DEFM-
DEG links were identified, of which 6 were upregulated 
DEGs in the immune class. However, we failed to iden-
tify DEFMs between the exhausted and active immune 
subgroups.

Correlation of long noncoding RNA expression 
with the immune class
We investigated 507 differentially expressed lncRNAs 
(− 1 > log2 FC > 1, FDR < 0.05) between the immune class 
and non-immune class (Additional file 1: Table S17). Tar-
get miRNA prediction revealed 1748 lncRNA-miR links, 
including 30 lncRNAs and 42/207 miRNAs as part of 
highly conserved miR families according to the miRcode 
database, of which 147 of the target mRNAs (n = 1500) 
were in DEGs and 74/147 DEGs were upregulated in 
the immune class. Furthermore, between the exhausted 
and active immune subgroups, we identified 54 differ-
entially expressed lncRNAs and predicted 125 target 
miRNAs (Additional file 1: Table S18). 23 target mRNAs 
(n = 1162) were among the DEGs in the exhausted sub-
group. Based on the differentially expressed lncRNAs, 
predicted miRNA links and targeted genes, a complex 
network was generated that summarizes the underlying 
molecular traits of distinct tumour immune phenotypes 
(Fig. 4a, Additional file 1: Fig. S8).

Correlation of protein expression with the immune class
To explore the immune response at the protein expres-
sion level, we investigated the differentially expressed 
proteins among immune subgroups. Of all 220 measured 
modified proteins and native proteins, 18/45 proteins 
had significantly higher levels in the immune class (Addi-
tional file 1: Table S19). Furthermore, 9/16 proteins were 
upregulated in the exhausted subgroup compared to the 
active immune subgroup (Additional file  1: Table  S20). 
The analysis of protein–protein interactions according 
to the STRING database highlighted EGFR and ESR1 as 
key nodes and endocrine resistance, Th1 and Th2 cell dif-
ferentiation and proteoglycans in cancer as key pathways 
within the network (Fig. 4b).

Multi‑omics data analyses of genetic and epigenetic 
regulation according to immune class
In total, 219 genes were identified in at least two out of 
the four analyses described above between the immune 
class and non-immune class. Furthermore, 28 genes were 
identified between the exhausted subgroup and the active 
immune subgroup (Fig. 5a). The KEGG pathway network 
was constructed using the most significantly enriched 
pathways (p < 0.05) (Fig.  5b–d), which highlighted path-
ways related to tumourgenesis, cancer proliferation and 
inflammatory reaction, including p53 signaling pathway, 
cell cycle, Hepatitis B and epithelial cell signaling in heli-
cobacter pylori infection pathways within the immune 
class network. The genes enriched in non-immune class 
were highly associated with pathways related to stem 
cells and suppression of inflammation, such as the sig-
nalling pathways regulating pluripotency of stem cells 
and TGF-beta signalling pathway. A protein–protein 
interaction network was constructed using the key genes 
in the KEGG pathway network (Fig.  5e, f ). Considering 
all the key nodes within the protein–protein interaction 
network, Kaplan–Meier survival curves showed that 
EGFR, JUN, MYC, FN1 and SERPINE1 were significant 
for predicting patients’ overall survival in the subgroups 
(Fig.  5g), which may provide targets for treatment to 
improve the prognosis in specific subgroups. Significantly 
higher EGFR, JUN and MYC expression in immune class 
as compared to non-immune class was evident in 2 vali-
dation datasets. Significantly higher FN1 and SERPINE1 
expression in exhausted group as compared to active 
immune group was also detected in 2 validation datasets 
(ANOVA, P < 0.05) (Fig. 5h).

Prognostic association and therapeutic strategies 
according to immune class
We further explored the prognostic implications of the 
type of immune response by correlating the subgroups 
with clinicopathologic parameters (Fig.  6a, b). Of note, 
patients within the exhausted subgroup showed worse 
overall survival than the remaining patients before and 
after adjustment for risk factors (log-rank test, P = 0.0116, 
P = 0.0220) (Fig. 6c). In line with progression-free inter-
vals and disease-specific survival were also the worse in 
the exhausted subgroup after adjustment for risk factors 
(Additional file 1: Fig. S9).

Recently, it has been suggested that the abundance of 
PD-1 mRNA in tumour samples might explain the differ-
ences in overall response rates (ORRs) observed following 
anti-PD-1 monotherapy across cancer types [33]. In our 
study, PD1 mRNA was significantly enriched in the active 
immune subgroup (ANOVA and LSD test, P < 0.0001), 
which suggested a higher response following anti-
PD1 monotherapy. Additionally, in the active immune 
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Fig. 4  Differences in lncRNA expression and protein expression according to immune classes. a The network summarizes complex connections 
between differentially expressed lncRNAs (pink dots), miRNAs targeted by lncRNAs (green dots), and DEGs (yellow dots, log2 FC > 1 & FDR < 0.05). b 
The network of protein–protein interactions according to the STRING database with highlighted key nodes and key pathways
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Fig. 5  An integrative analysis of multiomics analyses and prognostic impacts according to immune classes. a Venn diagrams show different genes between the immune class and 
the non-immune class (left) or the exhausted class and the active immune class (right) affected by at least one of the indicated CNV, DEG, lncRNA, miRNA, protein or SNP events. 
The KEGG pathway network was constructed using the most significantly enriched pathways (p < 0.05) in the immune class (b), non-immune class (c), and exhausted and active 
immune subgroups (d). e, f The network of protein–protein interactions was constructed using the key genes in the KEGG pathway network in the immune class and non-immune 
class. g The Kaplan–Meier survival curves, including all the key nodes within the protein–protein interaction network, showed that 5 mRNAs were significant for predicting patient 
overall survival in the immune class, non-immune class and exhausted class. h 5 mRNAs expression was evident in 2 validation datasets. *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 5  continued
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subgroup, CTLA4 mRNA expression was increased 
with the highest significance (ANOVA and LSD test, 
P < 0.0001) (Fig. 6d). Charoentong et al. [34] proposed an 
IPS for defining patients likely to respond to anti-CTLA4 
therapy. As illustrated in Fig. 6e, the exhausted subgroup 
had the lowest IPS under anti-CTLA4 treatment and 
predicted a poor response to anti-CTLA4 treatment. 
Recently, stromal immunotypes were proven to be a 
practical predictive tool to identify patients who would 
benefit from chemotherapy [35]. We next estimated the 
chemosensitivity in subgroups, and log-transformed 
IC50 values are shown in Fig. 6f. Most drugs showed the 
highest sensitivities in the active immune and exhausted 
groups (Additional file 1: Table S21). As the hallmarks of 
the immune class, EGFR was significantly upregulated in 
the exhausted subgroup compared with the other sub-
groups, which confirmed the reduced effect of immuno-
therapy in the exhausted subgroup (Fig. 6g). Interestingly, 
significantly higher EGFR expression in exhausted group 
as compared to other groups was also detected in valida-
tion set 1 (Fig. 5h).

Discussion
Despite the promising anticancer activity offered by 
PD-1 and PD-L1 inhibitors, only a fraction of patients 
exhibited dramatic responses to single-agent anti-
PD-L1/PD-1 antibody treatment, and the objective 
response rate (ORR) is only approximately 12.2% [5]. 
This finding highlights the need to identify ideal sub-
groups for immunotherapy, seek combined therapeutic 
targets in various immune subgroups to improve the 
response rate to a single immunotherapy, and make 
treatment decisions on a personalized basis.

Our study conducted an integrative analysis of mul-
tiomics data of the CC tumour immune landscape. We 
identified 8 key modulators of the tumour immune 
microenvironment and potential drug targets.

We performed NMF in the training cohort (n = 293). 
The result identified a class, herein named the immune 
class. In addition, the robustness of this classification 
was supported by successful replication in 2 inde-
pendent datasets. Approximately 78% of samples 
were classified into the immune class, whose molecu-
lar characteristics, including enrichment of immune 

cell infiltration and enhanced cytolytic activity and 
type I IFN response, are likely to induce potent clini-
cal responses to immunotherapy [33, 36, 37]. In 2017, 
approximately 25% of hepatocellular carcinoma (HCC) 
samples were reported to be classified within immune 
classes [38]. Consistently, Chen et al. [39] reported that 
40% of samples were in immune classes in head and 
neck squamous cell carcinoma (HNSCC). Our study 
differs from other recently published studies [38, 39], 
as we performed an integrative analysis of multiomics 
data to identify associations between tumour immune 
classifications, tumour genetics and therapy.

However, the presence of the immune class alone 
does not absolutely predict response to immunothera-
pies. It is generally accepted that differences in the 
effects of immunotherapy are attributed to the het-
erogeneity of the TME. Therefore, we next identified 
two microenvironment-based clusters within sam-
ples of the immune class, recognized as two separate 
classes: active immune and exhausted. Although the 
active immune subgroup was characterized by antitu-
mour characteristics, the exhausted subgroup showed 
tumour-promoting characteristics (e.g., wound heal-
ing signature, enhanced M2 macrophages and absence 
of CD8 T cells). In particular, the TGF-β response 
signature, the immunoregulatory cytokine pathway 
frequently overexpressed in aggressive tumours and 
angiogenesis, EMT and metastasis signatures were sig-
nificantly enriched in the exhausted subgroup.

As expected, patients within the active immune sub-
group had a significantly favourable prognosis. Integra-
tion of copy number, methylation, mRNA and miRNA 
data using iCluster R package, the cancer genome atlas 
research network highlighted a pathological pattern-
related classification of cervical carcinomas including: a 
squamous cluster with high expression of keratin gene 
family members (keratin-high), another squamous clus-
ter with lower expression of keratin genes (keratin-low), 
and an adenocarcinoma-rich cluster with CpG island 
hypermethylated (adenocarcinoma) [17]. Integration of 
immune molecular subgroups with the published patho-
logical pattern-related classification revealed that the 
active immune subgroup was more common in squa-
mous cluster than in adenocarcinomas. In a study by 

Fig. 6  Prognosis and therapeutic strategies according to immune classes. a Kaplan–Meier plots of overall survival according to the immune and 
non-immune classes. b Kaplan–Meier plots of overall survival according to the active immune, exhausted, and non-immune classes. c Kaplan–
Meier plots of overall survival according to the exhausted and non-exhausted classes before and after adjustment for risk factors. d The expression 
of PDCD1 and CTLA4 was significantly upregulated in the active immune class compared with the other classes. e Immunophenoscore (IPS) 
of patients under anti-CTLA4 treatment in the active immune, exhausted, and non-immune classes. f Chemosensitivity according to the active 
immune, exhausted, and non-immune classes. The drugs with red box are used for First- and second-line treatment in CCs. g The expression of 
EGFR was significantly upregulated in the exhausted class compared with the other classes. *p < 0.05; **p < 0.01; ***p < 0.001

(See figure on next page.)
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Heeren, the rate of PD-L1 positivity in patients with SCC 
was significantly higher than that in patients with AC 
[40], which suggested higher responses to PD-1 antibod-
ies in active immune subgroup patients. Recently, across 
33 diverse cancer types, the Pan-Cancer Atlas of TCGA 
identified six pan-cancer immune subtypes: wound 
healing, IFN-γ dominant, inflammatory, lymphocyte 
depleted, immunologically quiet, and TGF-β dominant 
[18]. When we integrated six pan-cancer immune sub-
types in our study, we observed that most CCs belonged 
to the wound healing (26%) or IFN-γ dominant (71%) 
subtypes, while the other four subtypes only accounted 
for 3% of CCs. Thus, it seems that this classification may 
not be applicable to CCs. Based on the mRNA expres-
sion of the 31-gene radiosensitivity signature and PD-L1, 
we previously identified the radiosensitivity-PD-L1 clas-
sification and predicted the respond to PD-1 immu-
notherapy and radiotherapy [19]. Interestingly, for the 
radiosensitivity-PD-L1 classification used in our previous 
study, the exhausted subgroup was significantly enriched 
in the RR-PD-L1-high subtype characterized by resist-
ance to radiotherapy or immunotherapy alone and may 
benefit from combination therapy.

The immune response is more likely regulated by a 
combination of both extrinsic immune cell infiltration 
present in the microenvironment and tumour-intrinsic 
factors based on the genetic composition of the tumour. 
We observed that the exhausted subgroup was associated 
with the highest aneuploidy, homologous recombina-
tion deficiency (HRD), and nonsilent mutation rates and 
fraction of genome alterations. Our findings confirmed 
previous work showing that aneuploidy and fraction of 
genome alterations (above 0.1 or below—0.1 in the log2-
normalized relative copy number (CN) space), which 
defined as larger copy number events, may play a role in 
regulating immune evasion and reducing the response to 
immunotherapy [41, 42], while the number of segments 
(total number of segments in each copy number profile) 
was not associated with the exhausted subgroup. Apply-
ing an integrative analysis of multiomics data, and tak-
ing into account genetic and epigenetic alterations and 
their impact on differential gene expression, we identified 
upregulated EGFR and JUN expression as the hallmarks 
of the immune class. Activated EGFR was reported to 
induce keratin 5 and keratin 14 expression and was asso-
ciated with the keratin expression percentages in the 
immune class, while the non-immune class was mostly 
composed of adenocarcinomas [43]. Consistently, Nori-
yasu Hirasawa et  al. demonstrated that EGFR trans-
activation is induced by TNF-α expression in human 
keratinocytes [44]. Given the higher level of EGFR in 

squamous cell carcinoma comparing with adenocar-
cinomas which made up the bulk of the non-immune 
class, EGFR was significantly enriched in immune class 
comparing with non-immune class. In immune class, 
EGFR was significantly enriched in exhausted subgroup 
comparing with active immune subgroup. Rizvi H et  al. 
reported that reduced response of immunotherapy in 
patients with EGFR mutations, in particular lung cancer 
[42]. Our findings confirmed previous work showing that 
highest level of EGFR expression in exhausted subgroup 
which was characterized with the worse effect of immu-
notherapy. Consistently, Esra A Akbay et al. identified a 
correlation between EGFR pathway activation and a sig-
nature of immunosuppression manifested by decreasing 
CTLs and increasing markers of T-cell exhaustion [30]. 
The transcription factor JUN was reported to activate 
the transcription of the promoters of several key UPR 
effectors, such as XBP1 and ATF4, to inhibit tumour cell 
apoptosis [45, 46]. The hallmark of the exhausted sub-
group, SERPINE1, induced by TGF-β in the microen-
vironment, may act as a target to reverse the exhausted 
immune response [47].

Interestingly, the p53 signaling pathway was the most 
significantly enriched within the immune class. In line 
with us, Blagih et al. reported that activation of p53 path-
way improved endogenous antigen presentation and 
increased the secretion of IL-6, IL-8 and CCL22, which 
can regulate the recruitment of leukocytes including 
macrophages, neutrophils and T cells [48].

Consistently, patients in the active immune subgroup 
displaying a type I immune response had a favourable 
prognosis [49]. In addition, in our study, PD-1 mRNA 
was significantly enriched in the active immune sub-
group (p < 0.0001), which suggested a higher response 
following anti-PD-1 monotherapy. The exhausted 
subgroup showed the highest proliferation signature 
and TGF-β response signature, which are frequently 
overexpressed in aggressive tumours. This may par-
tially explain the poor prognosis in patients within 
the exhausted subgroup. The exhausted subgroup had 
the lowest IPS under anti-CTLA4 treatment and had 
a poor response to anti-CTLA4 treatment. Patients 
within the exhausted subgroup could benefit from the 
combination of TGF-β inhibition plus immune check-
point blockade (NCT02423343 ongoing). In particu-
lar, SERPINE1 acted as both a downstream molecule 
of TGF-β and a key gene in the exhausted subgroup, 
which may provide an extra target for combination 
therapy. In addition, several chemotherapeutic drugs 
may be effective in the exhausted subgroup and need 
further clinical trials for clinical applications. We 
found that patients within the active immune sub-
group were the most sensitive to cisplatin and were 
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recommended to receive CCRT. One explanation for 
this result is the enhancement of NK cells induced by 
platinum compounds [35].

There are some limitations to use TCGA data. For 
TCGA data, samples with no more than 60% tumour 
cell nuclei were excluded, thus potentially removing 
the most immune-infiltrated tumours from our analy-
sis. The degree to which this biases the results is dif-
ficult to ascertain.

Conclusions
Stable and reproducible immune subgroups were 
found and were associated with immune modulatory 
alterations, genetic and epigenetic events, prognosis 
and response to various therapeutic strategies and 
might help predict ideal candidates to receive spe-
cific combination therapies (Fig. 7). Further investiga-
tions of this immune classification in a large cohort of 
patients receiving individual treatment are needed to 
determine its potential use in predicting response in 
clinical trials.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​021-​02845-y.

Additional file 1.  Fig. S1. Flow chart of the study. A total of 542 human 
cervical cancer samples were analysed in this study. A training cohort 
including 293 samples was virtually microdissected to identify an Immune 
class. Validation was then performed in 2 independent datasets. Fig. S2. 
Identification of an immune expression pattern. (A) We used Nonnegative 
Matrix Factorization (NMF, k=3 factors) to analyze the microarray-based 
gene expression data of 293 samples. One of the 3 expression factors 
showed the lowest intra-tumoral immune cells (indicated in blue) as 
shown in the heatmap. High and low gene set enrichment scores are 
represented in red and blue, respectively. Fig. S3. Identification of the 
immune class. Heatmap indicates NMF consensus-clustering on exemplar 
genes and the Immune class. High and low gene set enrichment scores 
are represented in red and blue, respectively. The tumor purity, ESTIMATES 
score, immune enrichment score and stromal enrichment score is also 
indicated. Fig. S4. Molecular characterization of the immune class. Gene 
set enrichment analysis (GSEA) between the immune class and non-
immune class confirmed enrichment of inflammation–related pathways, 
signatures of immune cells (p<0.05, FDR<0.05). Fig. S5. Molecular 
characterization of the two subtypes of the tumour microenvironment in 
the immune class: active immune and exhausted classes. Gene set enrich-
ment analysis (GSEA) between the exhausted class and active immune 
subgroups (p<0.05, FDR<0.05). Fig. S6. Correlation between SNP data and 
transcriptomic data. KRAS, ITGAX and MCF2 mutation were significant for 

Fig. 7  Characterization of the immune class in cervical cancer
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up-regulation of gene expression (p<0.05). Fig. S7. Differentially expressed 
miRNAs between immune class and non-immune class. The network 
summarizes complex connections between differentially expressed 
miRNAs (green dots) and targeted gene (yellow dots) (-1>log2 FC>1, FDR 
< 0.05). Fig. S8. Differentially expressed lncRNAs between exhausted and 
active immune subgroups. The network summarizes complex connec-
tions between differentially expressed lncRNAs (pink dots), targeted 
miRNAs (green dots) and targeted gene (yellow dots) (-1>log2 FC>1, FDR 
< 0.05). Fig. S9. Disease-specific survival and progression-free intervals 
according to immune classes before and after adjustment for risk factors. 
Disease-specific survival and progression-free intervals were the worse in 
the exhausted subgroup before and after PSM. Table S1 DEGs (Immune-
vs-non-immune). Table S2 GSEA (Non-immune-vs-Immune). Table S3 
Univariate analysis for overall survival (OS), disease-specific survival (DSS) 
and progression-free interval (PFI). Table S4 Multivariate analysis for for 
overall survival (OS), disease-specific survival (DSS) and progression-free 
interval (PFI). Table S5 DEGs (Exhausted-vs-Active immune). Table S6 
GSEA (Exhausted-vs-Active immune). Table S7 GSEA Validation set 1 
(Non-immune-vs-Immune). Table S8 GSEA Validation set 2 (Nonimmune-
vs-Immune). Table S9 CNV (Immune vs Non-immune). Table S10 CNV 
(Exhausted vs Active immune). Table S11 The pathway enrichment of 
genes involving in the amplification and deletion (Immune vs Non-
immune). Table S12 SNP (Immune vs Non-immune). Table S13 SNP 
(Exhausted vs Active immune). Table S14 connect KRAS mutation status 
to gene ontology - Biological process (upregulation). Table S15 connect 
KRAS mutation status to gene ontology - Biological process (downregula-
tion). Table S16 DEFM (Immune vs Non-immune). Table S17 Differentially 
expression lncRNAs (Immune vs Non-immune). Table S18 Differentially 
expression lncRNAs (Exhausted vs Active immune). Table S19 Dif-
ferentially expressed proteins (Immune vs Non-immune). Table S20 
Differentially expressed proteins (Active immune vs Exhausted). Table S21 
Sensitive chemotherapeutic drugs in subgroups.

Acknowledgements
Not applicable

Authors’ contributions
XL and GL drafted the manuscript and coordinated the study. QQ revised 
the manuscript. XL and GL performed the data processing. XL designed and 
supervised the study and performed the statistical analyses. All authors read 
and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets generated and/or analysed during the current study are available 
in the Genomic Data Commons Data Portal (https://​portal.​gdc.​cancer.​gov/), 
UCSC Xena platform (https://​genome-​cancer.​ucsc.​edu/) and the NCBI Gene 
Expression Omnibus (GSE63514 and GSE68339).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 2 December 2020   Accepted: 18 April 2021

References
	1.	 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global 

cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
	2.	 Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and 

mortality rates and trends–an update. Cancer Epidemiol Biomarkers Prev. 
2016;25:16–27.

	3.	 Pfaendler KS, Tewari KS. Changing paradigms in the systemic treatment 
of advanced cervical cancer. Am J Obstet Gynecol. 2016;214:22–30.

	4.	 Minion LE, Tewari KS. Cervical cancer—State of the science: from 
angiogenesis blockade to checkpoint inhibition. Gynecol Oncol. 
2018;148:609–21.

	5.	 Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, 
Manzuk L, Piha-Paul SA, Xu L, Zeigenfuss S, et al. Efficacy and safety of 
pembrolizumab in previously treated advanced cervical cancer: results 
from the phase II KEYNOTE-158 Study. J Clin Oncol. 2019;37:1470–8.

	6.	 Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune 
checkpoint inhibitors. Br J Cancer. 2018;118:9–16.

	7.	 O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to 
PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71–81.

	8.	 Schmetterer KG, Pickl WF. The IL-10/STAT3 axis: contributions to immune 
tolerance by thymus and peripherally derived regulatory T-cells. Eur J 
Immunol. 2017;47:1256–65.

	9.	 Hong JW, Lim JH, Chung CJ, Kang TJ, Kim TY, Kim YS, Roh TS, Lew DH. 
Immune tolerance of human dental pulp-derived mesenchymal stem 
cells mediated by CD4(+)CD25(+)FoxP3(+) regulatory T-cells and 
induced by TGF-beta1 and IL-10. Yonsei Med J. 2017;58:1031–9.

	10.	 Skaggs BJ, Singh RP, Hahn BH. Induction of immune tolerance by activa-
tion of CD8+ T suppressor/regulatory cells in lupus-prone mice. Hum 
Immunol. 2008;69:790–6.

	11.	 Jimenez-Sanchez A, Cast O, Miller ML. Comprehensive benchmarking 
and integration of tumor microenvironment cell estimation methods. 
Cancer Res. 2019;79:6238–46.

	12.	 Wu X, Gu Z, Chen Y, Chen B, Chen W, Weng L, Liu X. Application of 
PD-1 blockade in cancer immunotherapy. Comput Struct Biotechnol J. 
2019;17:661–74.

	13.	 Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, Rashid 
NU, Williams LA, Eaton SC, Chung AH, et al. Virtual microdissection identi-
fies distinct tumor- and stroma-specific subtypes of pancreatic ductal 
adenocarcinoma. Nat Genet. 2015;47:1168–78.

	14.	 Lando M, Fjeldbo CS, Wilting SM. B CS, Aarnes EK, Forsberg MF, Kristensen 
GB, Steenbergen RD, Lyng H: Interplay between promoter methylation 
and chromosomal loss in gene silencing at 3p11-p14 in cervical cancer. 
Epigenetics. 2015;10:970–80.

	15.	 den Boon JA, Pyeon D, Wang SS, Horswill M, Schiffman M, Sherman 
M, Zuna RE, Wang Z, Hewitt SM, Pearson R, et al. Molecular transi-
tions from papillomavirus infection to cervical precancer and cancer: 
role of stromal estrogen receptor signaling. Proc Natl Acad Sci USA. 
2015;112:E3255-3264.

	16.	 Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular 
pattern discovery using matrix factorization. Proc Natl Acad Sci USA. 
2004;101:4164–9.

	17.	 Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical 
Biological S, Barretos Cancer H, Baylor College of M, Beckman Research 
Institute of City of H, Buck Institute for Research on A, Canada’s Michael 
Smith Genome Sciences C, Harvard Medical S, Helen FGCC, et al: 
Integrated genomic and molecular characterization of cervical cancer. 
Nature. 2017, 543:378–84.

	18.	 Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-
Pardo E, Gao GF, Plaisier CL, Eddy JA, et al. The Immune landscape of 
cancer. Immunity. 2018;48(812–830):e814.

	19.	 Lyu X, Jiang Y, Zhang M, Li G, Li G, Qiao Q. Genomic stratification based 
on radiosensitivity and PD-L1 for tailoring therapeutic strategies in cervi-
cal cancer. Epigenomics. 2019;11:1075–88.

	20.	 Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, 
Diehn M, Alizadeh AA. Robust enumeration of cell subsets from tissue 
expression profiles. Nat Methods. 2015;12:453–7.

	21.	 Taylor AM, Shih J, Ha G, Gao GF, Zhang X, Berger AC, Schumacher SE, 
Wang C, Hu H, Liu J, et al. Genomic and functional approaches to under-
standing cancer aneuploidy. Cancer Cell. 2018;33(676–689):e673.

	22.	 Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track 
plots. BMC Bioinf. 2013;14:244.

https://portal.gdc.cancer.gov/
https://genome-cancer.ucsc.edu/


Page 19 of 19Lyu et al. J Transl Med          (2021) 19:200 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	23.	 Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, 
Stratton MR. Clock-like mutational processes in human somatic cells. Nat 
Genet. 2015;47:1402–7.

	24.	 Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, 
Lee CJ, Chiu CM, et al. miRTarBase: a database curates experimentally vali-
dated microRNA-target interactions. Nucleic Acids Res. 2011;39:D163-169.

	25.	 Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of 
mammalian microRNA targets. Cell. 2003;115:787–98.

	26.	 Wong N, Wang X. miRDB: an online resource for microRNA target predic-
tion and functional annotations. Nucleic Acids Res. 2015;43:D146-152.

	27.	 Pare L, Pascual T, Segui E, Teixido C, Gonzalez-Cao M, Galvan P, Rodriguez 
A, Gonzalez B, Cuatrecasas M, Pineda E, et al. Association between PD1 
mRNA and response to anti-PD1 monotherapy across multiple cancer 
types. Ann Oncol. 2018;29:2121–8.

	28.	 Strom T, Harrison LB, Giuliano AR, Schell MJ, Eschrich SA, Berglund A, Fulp 
W, Thapa R, Coppola D, Kim S, et al. Tumour radiosensitivity is associated 
with immune activation in solid tumours. Eur J Cancer. 2017;84:304–14.

	29.	 Chen L, Cao MF, Zhang X, Dang WQ, Xiao JF, Liu Q, Tan YH, Tan YY, Xu YY, 
Xu SL, et al. The landscape of immune microenvironment in lung adeno-
carcinoma and squamous cell carcinoma based on PD-L1 expression and 
tumor-infiltrating lymphocytes. Cancer Med. 2019;8:7207–18.

	30.	 Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, 
Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, et al. Activation of 
the PD-1 pathway contributes to immune escape in EGFR-driven lung 
tumors. Cancer Discov. 2013;3:1355–63.

	31.	 Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, 
Chi JT, van de Rijn M, Botstein D, Brown PO. Gene expression signature of 
fibroblast serum response predicts human cancer progression: similarities 
between tumors and wounds. PLoS Biol. 2004;2:E7.

	32.	 Nagy A, Gyorffy B. muTarget: a platform linking gene expression changes 
and mutation status in solid tumors. Int J Cancer. 2021;148:502–11.

	33.	 Bald T, Landsberg J, Lopez-Ramos D, Renn M, Glodde N, Jansen P, Gaffal 
E, Steitz J, Tolba R, Kalinke U, et al. Immune cell-poor melanomas benefit 
from PD-1 blockade after targeted type I IFN activation. Cancer Discov. 
2014;4:674–87.

	34.	 Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder 
D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal 
genotype-immunophenotype relationships and predictors of response 
to checkpoint blockade. Cell Rep. 2017;18:248–62.

	35.	 Fu H, Zhu Y, Wang Y, Liu Z, Zhang J, Xie H, Fu Q, Dai B, Ye D, Xu J. Identifica-
tion and validation of stromal immunotype predict survival and benefit 
from adjuvant chemotherapy in patients with muscle-invasive bladder 
cancer. Clin Cancer Res. 2018;24:3069–78.

	36.	 Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic 
properties of tumors associated with local immune cytolytic activity. Cell. 
2015;160:48–61.

	37.	 Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, Berger R, 
Eder JP, Burtness B, Lee SH, et al. Antitumor activity of pembrolizumab in 
biomarker-unselected patients with recurrent and/or metastatic head 
and neck squamous cell carcinoma: results from the phase Ib KEY-
NOTE-012 Expansion Cohort. J Clin Oncol. 2016;34:3838–45.

	38.	 Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro 
de Moura M, Putra J, Camprecios G, Bassaganyas L, Akers N, et al. 

Identification of an immune-specific class of hepatocellular carcinoma. 
Based on molecular features. Gastroenterology. 2017;153:812–26.

	39.	 Chen YP, Wang YQ, Lv JW, Li YQ, Chua MLK, Le QT, Lee N, Colevas AD, 
Seiwert T, Hayes DN, et al. Identification and validation of novel micro-
environment-based immune molecular subgroups of head and neck 
squamous cell carcinoma: implications for immunotherapy. Ann Oncol. 
2019;30:68–75.

	40.	 Heeren AM, Punt S, Bleeker MC, Gaarenstroom KN, van der Velden J, 
Kenter GG, de Gruijl TD, Jordanova ES. Prognostic effect of different PD-L1 
expression patterns in squamous cell carcinoma and adenocarcinoma of 
the cervix. Mod Pathol. 2016;29:753–63.

	41.	 Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with 
markers of immune evasion and with reduced response to immuno-
therapy. Science. 2017;355:78.

	42.	 Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plod-
kowski A, Long N, Sauter JL, Rekhtman N, et al. Molecular determinants 
of response to anti-programmed cell death (PD)-1 and anti-programmed 
death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung 
cancer profiled with targeted next-generation sequencing. J Clin Oncol. 
2018;36:633–41.

	43.	 Chang MC, Chen YJ, Chang HH, Chan CP, Yeh CY, Wang YL, Cheng RH, 
Hahn LJ, Jeng JH. Areca nut components affect COX-2, cyclin B1/cdc25C 
and keratin expression, PGE2 production in keratinocyte is related to 
reactive oxygen species, CYP1A1, Src EGFR and Ras signaling. PLoS ONE. 
2014;9:e101959.

	44.	 Segawa R, Shigeeda K, Hatayama T, Dong J, Mizuno N, Moriya T, Hiratsuka 
M, Hirasawa N. EGFR transactivation is involved in TNF-alpha-induced 
expression of thymic stromal lymphopoietin in human keratinocyte cell 
line. J Dermatol Sci. 2018;89:290–8.

	45.	 Zhou C, Martinez E, Di Marcantonio D, Solanki-Patel N, Aghayev T, Peri S, 
Ferraro F, Skorski T, Scholl C, Frohling S, et al. JUN is a key transcriptional 
regulator of the unfolded protein response in acute myeloid leukemia. 
Leukemia. 2017;31:1196–205.

	46.	 Lyu X, Zhang M, Li G, Cai Y, Li G, Qiao Q. Interleukin-6 production 
mediated by the IRE1-XBP1 pathway confers radioresistance in human 
papillomavirus-negative oropharyngeal carcinoma. Cancer Sci. 
2019;110:2471–84.

	47.	 Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, 
Sevillano M, Nadal C, Jung P, Zhang XH, et al. Dependency of colorectal 
cancer on a TGF-beta-driven program in stromal cells for metastasis initia-
tion. Cancer Cell. 2012;22:571–84.

	48.	 Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response. J 
Cell Sci. 2020;133:55.

	49.	 Galon J, Angell HK, Bedognetti D, Marincola FM. The continuum of cancer 
immunosurveillance: prognostic, predictive, and mechanistic signatures. 
Immunity. 2013;39:11–26.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Identification of an immune classification for cervical cancer and integrative analysis of multiomics data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Materials and methods
	Patients and samples
	Identification of the immune class
	Molecular characterization of the immune class
	Genomic correlations with the immune class
	Copy number variation analysis
	Somatic mutation analysis
	MicroRNA expression and long noncoding RNA expression analysis
	Protein expression analysis
	Validation in independent datasets
	Statistics

	Results
	A novel molecular immune class of cervical cancer
	Two subtypes of the tumour microenvironment in the immune class: active immune and exhausted classes
	Molecular characterization of the immune class
	Validation of the immune class across datasets
	Correlation of DNA damage with the immune class
	Correlation of copy number variants with the immune class
	Correlation of somatic mutations with the immune class
	Correlation of microRNA expression with the immune class
	Correlation of long noncoding RNA expression with the immune class
	Correlation of protein expression with the immune class
	Multi-omics data analyses of genetic and epigenetic regulation according to immune class
	Prognostic association and therapeutic strategies according to immune class

	Discussion
	Conclusions
	Acknowledgements
	References




