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Abstract 

Background: The onset of the SARS‑CoV‑2 pandemic has resulted in ever‑increasing casualties worldwide, and after 
15 months, standard therapeutic regimens are yet to be discovered.

Main body: Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable thera‑
peutic option in alleviating major COVID‑19 complications like acute respiratory distress syndrome. However, the 
superior properties of their cognate exosomes as a cell‑free product make them preferable in the clinic. Herein, we 
discuss the current clinical status of these novel therapeutic strategies in COVID‑19 treatment. We then delve into the 
potential of interfering RNAs incorporation as COVID‑19 gene therapy and introduce targets involved in SARS‑CoV‑2 
pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned 
targets.

Conclusion: Finally, we present a therapeutic platform of mesenchymal stem cell‑derived exosomes equipped 
with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID‑19 management aiming to 
prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, 
and ultimately, enhance the antiviral immune response.
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Background
As of December 2020, roughly 67 million confirmed 
cases with severe acute respiratory syndrome coronavi-
rus 2 (SRAS-CoV-2) infection had been reported, with 
over a million and a half demises [1]. In response to the 

SARS-CoV-2 outbreak, many therapeutic approaches 
have been proposed and clinically evaluated to reduce the 
Coronavirus Disease 2019 (COVID-19) mortality rate. 
However, there is no unanimously approved product in 
the global market as COVID-19 therapy for SARS-Cov-2 
positive patients [1]. Hence, developing new therapeu-
tics, particularly advanced therapeutic platforms, is still 
enduring.

Although gene transfer-based approaches have been 
singularly exploited in vaccine design and multiple can-
didates are now under clinical evaluation [2], except Del-
taRex-G, no gene therapy has been clinically tested for 
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COVID-19 treatment (NCT04378244). Considering the 
extensive research aimed at developing short interfering 
RNAs for therapeutic purposes, RNA interference can 
serve as a genetic treatment approach for SARS-CoV-2 
critically ill cases. Due to their natural characteristics, 
exosomes are considered suitable carriers for interfering 
RNA (iRNA) delivery.

Exosomes collected from several cell types have shown 
promise in inducing remission in virally infected patients, 
especially SARS-CoV-2 positive individuals [3, 4]. Multi-
ple clinical trials are now assessing the administration of 
mesenchymal stem cell (MSC)-derived exosomes in criti-
cally ill COVID-19 patients [4].

This article reviews the current status of exosome-
based therapies, particularly those derived from MSCs 
and their promise as genetic material-delivery vec-
tors. The MSCs’ immune-modulatory and regenera-
tive capabilities in alleviating pulmonary complications, 
specifically COVID-19, are then elaborated, serving as 
a rationale for their assignment as the exosome source. 
Afterward, we delve into the ongoing clinical studies on 
the administration of exosomes on COVID-19 treatment. 
Thereafter, the promise of RNA interference (RNAi) 
-based gene therapy for COVID-19 is explained.

Then, the potential interfering RNA candidates and 
their cognate targets are introduced in four classes, 
pro-viral microRNAs (miRNAs), the viral genes them-
selves, host genes mediating the virus entry and replica-
tion, and those of hosts playing roles in the induction of 
hyper-inflammation.

We culminate by depicting a pipeline for the adminis-
tration of MSC-derived secretomes carrying a cocktail of 
the mentioned iRNAs as a novel therapeutic approach for 
COVID-19 patients in critical status.

Main text
Immunomodulatory and regenerative capacity of MSCs
Upon its entry into the lung through respiration, SARS-
CoV-2 primarily invades and destroys pulmonary epi-
thelial cells. The released viral molecular structures 
are then recognized via pattern recognition receptors 
(PRRs) on lung-resident innate immune cells, includ-
ing dendritic cells and macrophages. The local immune 
response is then triggered, and inflammatory cytokines 
and chemokines are produced, attracting other immune 
cells, including T lymphocytes and monocytes. Under 
normal circumstances, the subsequent anti-viral immune 
response wipes out the virus with minimal damage 
before its extensive spread throughout the body. How-
ever, the aberrant hyper-inflammatory response in some 
individuals results in a sudden release of an excessive 
amount of pro-inflammatory cytokines, a process known 
as “cytokine storm” [5–7]. Cumulative reports correlate 

the severity of COVID-19 with the excessively-height-
ened level of pro-inflammatory mediators including 
interleukin 1 (IL-1), interleukin 6 (IL-6), tumor necrosis 
factor-alpha (TNF-α), alongside multiple agents, lists of 
which reported elsewhere [8–11]. As a result of cytokine 
storm, blood circulating immune cells, including neutro-
phils and T lymphocytes, are outrageously recruited into 
the lung, leading to significant tissue damage, and conse-
quently, lung injury. Lung injury may progress into acute 
respiratory distress syndrome (ARDS), which is the lead-
ing cause of morbidity among COVID-19 patients [12].

MSCs are well known for their profound performance 
in immunomodulation and tissue repair when encoun-
tering a highly-inflamed milieu, particularly in the lung. 
These cells exert their immunomodulatory and reparative 
impacts either via direct cell–cell interaction or through 
the paracrine release of the underlying mediators, includ-
ing the cell’s migratory elements, immune regulatory 
agents, antiapoptotic factors, and angiogenic mediators 
[13–15].

They shift the immune system status from inflamma-
tion toward regulatory mode by suppressing T lympho-
cytes’ proliferation and converting the balance between 
Th1 inflammatory cells and T regulatory cells toward the 
latter [16, 17]. They also induce the conversion of pro-
inflammatory M1 macrophages to anti-inflammatory M2 
ones, which in turn results in reduced neutrophil infil-
tration into the lung [18, 19]. MSCs are also reported to 
inhibit dendritic cell maturation and activation and also 
prevent natural killer cell function and proliferation [74], 
and prevent dendritic cell (DC) maturation and activa-
tion [20, 21].

Following modulating the immune response within 
the lung, they instigate the regeneration of the injured 
tissues through reversing lung dysfunction and halting 
pulmonary fibrosis [22]. These dual beneficial therapeu-
tic mechanisms paved MSCs’ way into multiple clinical 
studies on COVID-19 therapy [23].

Although the safety and efficacy of MSC-based treat-
ment are demonstrated by a handful of studies, the pos-
sibility of SARS-Cov-2 infection on MSCs was unknown. 
Recently a study conducted in china illustrates that the 
ACE2 and TMPRSS2—the two vital receptors for viral 
entry—are not expressed on MSC cells, and injection of 
MSC has no role in inducing infection of other cell types 
[24]. The result of this study revealed the safety of MSC-
based therapy for COVID-19 patients.

Despite its tremendous benefits, utilizing MSCs as 
immunomodulatory and regenerative agents is not 
devoid of limitations, particularly when administered 
through the IV route [25]. For example, these cells might 
be entrapped at the capillary level and can be almost 
cleared from the circulation, with a small proportion of 



Page 3 of 15Jamalkhah et al. J Transl Med          (2021) 19:164  

them surviving on their way to the target site [26, 27]. 
Therefore, for efficient trafficking of the cells to the tar-
get site, a sufficient cell number needs to be administered 
and monitored, which can be a resource-consuming 
process [28]. Moreover, MSCs express tissue factor (TF/
CD142) that raises the concern of thromboembolic 
events [25].

Exosomes as therapeutic agents
After almost three decades since the first report [29], 
exosomes are now recognized as vital mediators of cell–
cell communication [3, 29–31]. They are also key players 
in fundamental cell biology and pathologies, including 
cancer [32] and cardiovascular diseases [33]. Exosomes 
are extracellular vesicles of endocytic origin that are 
secreted by almost every cell type and typically range in 
30–100 nm size [30]. They carry macromolecules, includ-
ing lipids, proteins, and nucleic acids (mainly RNA), 
and their composition depends on their parent cell [3, 4, 
29–31].

Secreted exosomes containing biologically active mac-
romolecules can deliver their cargo to the target cell by 
two distinct mechanisms. First, following the selective 
binding to cell surface receptors, exosomes are thought 
to transduce specific intracellular signaling, thereby 
inducing physiological changes in recipient cells [34]. The 
second mechanism is the direct transfer of intra-exoso-
mal content such as mRNA and miRNAs into the recipi-
ent cells by fusion with the cell membrane [35].

From the pharmaceutical aspect, exosomes demon-
strate therapeutic potential when utilized in their native 
form. For instance, exosomes originated from stimu-
lated platelets have demonstrated superior efficiency in 
occlusive thrombosis suppression [36]. Furthermore, 
MCS-derived secretomes, which will be discussed later, 
display a wide range of capabilities as native extracellular 
vesicles, including regenerative function in skin, muscle, 
cardiac and skeletal injuries [37]. However, as illustrated 
later, exosomes can be manipulated as nanocarriers to 
deliver various medicinal cargo, including non-coding 
RNAs (ncRNAs), to the cells of interest as well [38].

Clinical studies on exosome‑based COVID‑19 therapy
The present pandemic renewed many researchers’ inter-
est in the applicability of exosomes as an effective and 
safe therapeutics for combating COVID-19 associated 
diseases. As of November 2020, seven clinical trials have 
been submitted on clinicaltrials.gov to evaluate the safety 
and/or efficacy of exosome-based therapeutic regimens 
on SARS-CoV-2 positive patients (Table 1).

MSC‑derived exosome therapy in  COVID‑19 MSC-
derived exosomes can be considered as an alternative since 

they are repeatedly proven to exert similar immune-mod-
ulatory and regenerative impacts under distinct circum-
stances, including hyper-inflammatory situations during 
pulmonary complications [39–45]. Despite the potency 
of MSCs for COVID-19 therapy, MSC-derived exosomes 
are a better option in the clinic in comparison to their 
cellular counterparts. While they lead to the same result, 
MSC-derived exosomes as a cell-free product are more 
stable, easier to store, and less immunogenic [37], making 
it a superb substitute as a treatment for several diseases, 
including lung injury [46]. Furthermore, the cost-effectiv-
ity of these natural products makes them a superior thera-
peutic option for pandemics. Especially in underdevel-
oped countries, that lack of proper facilities hampers the 
utilization of any cell-based therapies, whereas the easier 
delivery of exosomes as freeze-dried powder augment 
their accessibility in these regions [47, 48]. As another 
advantage over cell-based therapies, exosomes can also 
be administrated non-invasively through inhalation [49], 
which lowers the dosage and prevents the costs and side 
effects accompanying IV injection.

As the first of its kind, in a pilot phase I study in Rui-
jin Hospital, China, allogenic adipose MSC-derived 
exosomes (MSCs-Exo) were administrated to severe 
patients afflicted with SARS-CoV-2 pneumonia through 
aerosol inhalation (NCT04276987). Although the study 
was reportedly completed in July 2020, the results are yet 
to be published. In another ongoing parallel clinical study 
on healthy volunteers, Rujin Hospital evaluates the safety 
and tolerance and determines the clinical dose reference 
for the aerosol inhalation of the exosomes mentioned 
above (NCT04313647).

In phase I prospective nonrandomized open-label 
cohort study during April 2020, Direct Biologics dem-
onstrated the safety and efficacy of its product ExoFlo™. 
This product is made of allogeneic bone marrow mes-
enchymal stem cells-derived exosomes and has been 
tested on 24 severe COVID-19 patients with moder-
ate-to-severe ARDS. A single intravenous injection of 
ExoFlo displayed no adverse event, and a survival rate 
of 83% was observed with the restoration of oxygena-
tion, significant improvements in absolute neutrophil 
count and lymphopenia, and reduction in acute phase 
reactants including C-reactive protein, ferritin, and 
d-dimer [4]. Consequently, a phase II multicenter ran-
domized double-blinded placebo-controlled trial study 
(EXIT COVID-19) is planned to assess ExoFlo’s poten-
tial in treating moderate-to-severe ARDS in COVID-19 
patients (NCT04493242).

In July 2020, Russia launched a study to assess the 
efficacy of aerosol inhalation of the exosomes in treat-
ing severe patients hospitalized with novel coronavirus 
pneumonia, joining the race toward having MSC-derived 
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secretome designated against cytokine release syndrome-
mediated ARDS (NCT04491240).

However, it is worth noting that there are hurdles 
that need to be considered in the application of MSC-
derived exosome therapy in the COVID-19. These 
hurdles include developing established methods of iso-
lation, loading, real-time monitoring of trafficking, and 
potential off-target effects of the exosomes. For exam-
ple, the targeting efficacy of theses delivery tools can be 
enhanced by attaching novel ligands specific to the target 
tissue [50]. Moreover, similar to the MSC administra-
tion, the pro-coagulant ingredients of the exosomes are 
a major aspect that needs to be focused on. COVID-19 
patients are at the risk of hypercoagulable state (e.g., dis-
seminated intravascular coagulation (DIC) and thrombo-
embolism), and these adverse effects have been reported 
following the administration of some MSC products [25, 
51]. Hence, in the clinical settings, the coagulative state 
of patients needs to be monitored, and preventive meas-
ures have to be adopted. Finally, due to the ongoing pan-
demic’s complexities, along with growing global demand, 
it is crucial yet challenging to develop robust logistics to 
provide sufficient and efficient MSCs and exosomes as 
their products in a consistent manner.

Non‑MSC‑derived exosome therapy in COVID‑19 Extra-
cellular vesicles derived from other cells have also paved 
their way to clinical studies for COVID-19 treatment. 
CSTC-Exo is a product based on the exosomes derived 
from virus-specific T lymphocytes, which are activated 
and expanded in vitro by their exposure to viral peptide 
fragments in the presence of activating and co-stimu-
latory signals. These T cells-secreted exosomes carry 
immune mediators, and furthermore, they can serve 
as off-the-shelf therapeutics in contrast with the virus-
specific T cell-based immunotherapy, which is mostly 
HLA-restricted. In a single-arm open-labeled combined 
interventional (phase I/II trials) clinical trial in TC Erciyes 
University, Turkey, CSTC-Exo is being administrated to 
patients at early stages of SARS-CoV-2-related pulmonary 
disease. This medication is being delivered via a metered-
dose inhaler to assess its potential in halting the disease 
progression (NCT04389385).

Zofin (Organicell Flow) is another non-MSC-derived 
exosome-based medication developed by Organicell 
Regenerative Medicine and is under evaluation for its 
safety and potential efficacy profile in a phase1/2 clini-
cal trial for the treatment of COVID-related moder-
ate to severe acute respiratory syndrome. Zofin is an 
acellular, minimally manipulated product derived from 
human amniotic fluid (HAF) and contains various anti-
inflammatory agents such as commonly known miRNAs 
(NCT04384445).

RNAi as a gene therapy agent
ncRNAs are post-translational gene silencers and guide 
the mechanism of sequence-specific gene regulation 
through a process called RNA interference (RNAi). There 
are two types of RNAi mediators in this process: small 
interfering RNAs (siRNAs) and miRNAs.

siRNAs are a part of antiviral immunity that target 
viral genes and silence their expression. siRNA therapeu-
tic potentials were recently (2018) confirmed after the 
FDA-approval of the first siRNA-based drug (i.e., Pati-
siran by Alnylam) for the treatment of nerve damage in 
hereditary transthyretin-mediated amyloidosis (hATTR) 
in adults [52]. Antiviral siRNA-based therapeutics have 
also entered clinical trials against various viral infections, 
including HIV, Ebolavirus, and RSV, illustrating efficacy 
in inhibiting the replication of various viral pathogens 
despite distinct mechanisms exploit to evade host immu-
nity [53–55].

MicroRNAs, as another class of RNAi, can regulate 
post-transcriptional-level gene expression in a broader 
range [56]. In viral infections, the host miRNA expres-
sion plays a major role in controlling the replication of 
the virus by direct binding to the viral genome [57] and 
mediating T cells and antiviral effector functions [58]. 
miR-32, the first-ever miRNA targeting viral RNA, binds 
to the retrovirus PFV-1 transcripts and diminishes the 
virus replication [58].

Two modalities are mostly recruited concerning 
miRNA-based therapies, miRNA mimics, and anti-
miRNA oligonucleotides. miRNA mimics delivery serves 
to restore a given miRNA concentration, which had been 
suppressed as a part of the pathology of the disease. Con-
versely, anti-miRNA oligonucleotides target perilously 
overexpressed miRNAs. Both strategies are being vastly 
assessed in clinical trials for various complications [59, 
60].

Since RNAi-based therapeutics have demonstrated 
promising outcomes in treating various pulmonary dis-
eases [61, 62], including earlier SARS virus [63], RNAi-
based drugs for SARS-CoV-2 could emerge as a potential 
treatment for hospitalized patients.

Choosing the right cocktail of iRNAs for COVID‑19 therapy
SARS-CoV-2 entry mechanisms into the lung epithelium 
have long been established to be mediated by binding 
of the virus spike (S) protein to the angiotensin-con-
verting enzyme 2 (ACE2) receptor and the subsequent 
S protein priming via transmembrane serine protease 2 
(TMPRSS2) processing [64, 65]. Upon cell entry, SARS-
CoV-2 hijacks multiple cellular pathways and machinery 
to propagate and damp immune response and ultimately 
debilitate the host’s survival upon the virus infection.



Page 6 of 15Jamalkhah et al. J Transl Med          (2021) 19:164 

Intervention in the pathways involved in the virus 
pathophysiology can theoretically block the virus propa-
gation and pathogenesis via targeting either the virus 
genes or the host genes harnessed by the virus, mostly 
the ones involved in the viral entry and replication and 
immune escape and the following hyper-inflammation 
induction.

Multiple studies have unveiled RNAi candidates that 
target the virus transcripts and also the host mRNAs, 
genes of which take part in the virus pathogenesis. RNAi-
dependent gene expression manipulation has also been 
repeatedly demonstrated to partly mediate the virus 
pathophysiology. Virus-originating miRNAs and the host 
cell’s upregulated miRNAs, which contribute to the virus 
replication cycle, can additionally serve as potential ther-
apeutic targets (Fig. 1) [66].

Viral genes SARS-CoV-2 genome has 14 open reading 
frames (ORFs) and encodes 27 proteins, of which four are 
structural, an envelope protein (E), Nucleocapsid protein 
(N), matrix protein (M), and spike protein (S). Fifteen non-
structural proteins (NSPs) within the ORF1a and ORF1b 
regions are located at the 5′ end of the genome, and the 3′ 
end of the genome comprises the sequences pertaining to 

eight accessory proteins and structural proteins [67]. The 
regions of interest for iRNAs targeting should be highly 
conserved in terms of mutational rate and essential for 
the viral life cycle. N and E proteins-encoding genes and 
RNA-dependent RNA polymerase (RdRp) gene are highly 
conserved and encode elements that are indispensable 
for viral replication and spread; hence they can serve as 
appropriate iRNA candidates design [68–71].

Designing siRNAs is a versatile process, and multi-
ple siRNA designing approaches exist and have been 
reviewed elsewhere [72]. Several groups have been 
developing siRNAs against conserved regions of the 
virus genome. Using computational analysis, Lin et  al. 
introduced nine potential siRNAs against RdRp and N 
and other genes, but their efficacy is yet to be assessed 
experimentally [73]. In another study, of 78 siRNA can-
didates, eight were predicted to effectively target N and S 
genes [74]. Major pharmaceuticals have also initiated the 
development of siRNA-based therapy for COVID-19. Vir 
Biotechnology and Alnylam Pharmaceuticals have joined 
forces to assess 350 siRNAs designed against SARS-cor-
onavirus genomes, including the conserved regions [75]. 
Throughout separate projects, OilX Pharmaceuticals and 

Healthy donor Patient

Exosome isolation 
& purification

Exosome isolation 
& purification

Unimplanted exosomes

iRNA-carrying exosomes

Transfection of shRNA & 
miRNA- carrying vectors

Transfection of siRNA, 
miRNA mimics & anti-miRNA

oligonucleotides
Fig. 1 Potential targets for interfering RNAs in COVID‑19. Targeting essential viral genes within the conserved regions of its genome hampers the 
virus’s cycle of life. As the virus‑encoded miRNAs and host pro‑viral miRNAs contribute to the virus’s pathogenesis, their hindrance via anti‑miRNA 
oligonucleotides can disrupt the mentioned mechanisms. Human genes responsible for viral entry and the ones hijacked by the virus can also serve 
as promising iRNAs targets. Targeting various inflammatory genes associated with the SARS‑CoV‑2 clinical manifestations like ARDS can alleviate the 
COVID‑19 respiratory complications
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Sirnaomics are also exploring the potential of siRNAs 
targeting the virus’s crucial genes [76, 77].

When designing siRNAs, it is worth considering that 
following SARS-CoV-2 entry to the cell, the positive-
sense, single-stranded genomic RNA is translated into 
viral polymerase proteins. Subsequently, the complemen-
tary negative-sense RNA is synthesized and the regions 
encoding the structural proteins, and some accessory 
proteins begin to serve as a template for viral mRNA 
transcription [78, 79]. Therefore, the RNAs encoding 
these proteins are present with higher copy numbers 
than those encoded by the ORF1a and ORF1b.

Accordingly, the virus’s various genome loci are differ-
ently present in the host and hence will be targeted dis-
proportionately. Genes within the first 20  kb portion of 
the virus’s genome are present in two forms, positive and 
negative sense strands. This portion holds the sequences 
of ORF1a and ORF1b, and designing a siRNA against the 
sequence within these loci would theoretically lead to 
the viral genome double-targeting. With respect to the 
10 kb of the genome at the 3′ end, the negative and posi-
tive sense strands alongside the viral mRNAs could be 
triple-targeted via both siRNA strands, yielding a higher 
viral propagation inhibition [80]. However, recently there 
has been evidence that targeting sequences within the 
10  kb of the genome at 3′ end would decrease siRNA’s 
drug efficacy. The reason could be that high amounts of 
sub-genomic replicates compete with genomic RNAs for 
binding to siRNAs and RNA-induced silencing complex 
(RISC) for subsequent cleavage. Therefore, the ORF1, 
which is contained solely in genomic RNA, was found 
to be the most effective target against the SARS-CoV-2 
genome. However, this higher efficiency may also be 
due to better accessibility of ORF1 for RNAi machinery 
because of the ORF1’s secondary RNA structure or lower 
abundance of the nucleocapsid proteins [81]. The study 
also showed that during the RNAi targeting, the negative-
sense genomic RNA remains untouched; however, we 
believe that this strand could also be targeted by chang-
ing siRNA strands’ thermodynamic stability at 5′ ends. 
In this unique situation, the lack of preference between 
the two siRNA strands gets Argonaute to load both of 
them into the RISC, which in turn leads to simultane-
ous targeting of target both negative and positive-sense 
viral genomic RNAs [82]. Further empirical evidence is 
needed to identify the best target site in the SARS-CoV-2 
genome for RNAi machinery.

Human miRNAome has been exhaustively explored 
to select miRNAs with prospective potential against the 
virus genes. Of the human miRNA repertoire, seven 
miRNAs were predicted to target and inhibit SARS-
CoV-2 genes, including N [83]. In a study by Liu et  al., 
human hsa-miR-4661-3p was revealed to target the N 

gene, serving as a host antiviral response [84]. Adan 
et  al. also identified 479 human miRNAs against vari-
ous SARS-CoV-2 genes, including N, E, and RdRp [85]. 
In an attempt to differentiate the epigenetic regulation 
between various pathogenic coronaviruses, Khademul 
Islam et al. identified 106 host antiviral miRNAs against 
SARS-CoV-2, of which three had displayed experimental 
evidence of having antiviral roles during infections [86]. 
In an integrated sequence-based analysis of SARS-CoV2 
genomes, nine miRNAs were identified to target the 
SARS-CoV-2 genome, of which six also had targets on 
human genes, including IFNB as well [87].

Pro‑viral miRNAs Numerous studies have discovered 
viral miRNAs and pro-viral human miRNAs contribu-
tion to virus pathogenesis, some of which shedding light 
on their ablation via anti-miRNA oligonucleotides. Anti-
miRNA oligonucleotides are synthetic oligonucleotides 
neutralizing miRNAs of interest [88]. Computational 
analysis of SARS-CoV-2 genome predicted putative viral 
miRNAs against antiviral response-mediating genes, 
including human genes involved in pathways like EGF 
receptor signaling, apoptosis signaling, VEGF signaling, 
FGF receptor signaling [89]. Using the same approach, Liu 
and colleagues predicted 45 miRNAs on the virus genome, 
of which 40 targeted 3′ UTR of 73 human genes, mostly 
involved in immune response, and 11 targeted 5′ UTR of 
13 genes, and many of them are engaged in cytoskeleton 
organization. This study further demonstrated that viral 
MR147-3p elevated TMPRSS2 expression in the gut. Sev-
eral virus-encoded miRNAs were also found to target 5′ 
UTR of viral genes encoding structural proteins [84]. In 
a study by Adan et al., viral miRNA-like oligonucleotides 
were found to target 1367 human genes, resulting in nul-
lifying the immune system’s impact and decreasing the 
host transcription rate to benefit viral gene expression, a 
phenomenon named “Host shutoff” [85]. Khademul Islam 
and colleagues disclosed 170 SARS-CoV-2 mature miR-
NAs with the potential to target host genes involved in 
host immune responses, such as autophagy, ErbB signal-
ing, VEGF signaling, Wnt signaling, FGF receptor bind-
ing, T-cell-mediated immunity, mTOR signaling, TGF-
beta signaling, TNF-alpha signaling, and MAPK signaling 
[86].

Host genes The number of identified host genes and path-
ways involved in viral entry, replication, and pathogenesis 
is on the rise, and their targeting has been introduced as a 
therapeutic intervention for COVID-19. Numerous stud-
ies are evaluating their perturbation to identify proteins 
and pathways exhibiting antiviral impacts.

Viral entry is mediated via membrane-bound ACE2 
protein binding on lung cells, and its presence on 



Page 8 of 15Jamalkhah et al. J Transl Med          (2021) 19:164 

infected cell surface declines due to endocytosis with the 
viral particle, and this event participates in the disease’s 
pathogenesis. Although it may seem like an exciting can-
didate, its knockdown accompanies serious side effects 
[90, 91]. Nonetheless, inhibition of Type 1 Angiotensin 
II Receptor (ATR1), which is stimulated during the virus 
infection, is proven to ameliorate acute lung failure in 
mice models [92]. Furthermore, TMPRSS2 protein con-
vertase (PC) and cathepsin B/L also contribute to virus 
entry, and their blockade has been proposed as a promis-
ing therapeutic strategy [65, 93, 94].

Furin, namely paired basic amino acid cleaving enzyme 
(PACE), is another PC and mediates the exposure of S 
protein binding and fusion domains and is indispen-
sable for the virus entering the cell. Inhibition of furin 
may have a therapeutic potential via blocking viral entry 
in SARS-CoV-2 and other viruses that possess the furin 
cleavage domain. Furin protein inhibitors demonstrated 
promising outcomes in various pathogens disease mod-
els, including influenza A virus, Pseudomonas aerugi-
nosa, and HIV. GM-CSF bi-shRNA furin plasmid (VP) 
carries two short hairpin RNAs (shRNAs) against furin 
is now under clinical evaluation for Ewing’s sarcoma and 
ovarian cancer and is proposed as a repurposing drug 
for inhibition of viral propagation and immune response 
promotion [95, 96].

In a genome-wide CRISPR-based screening assay, 
Wilen et  al. identified Cathepsin L, a mediator of viral 
entry through endocytosis [97], the SWI/SNF chromatin 
remodeling complex, and SMAD3 protein, a member of 
the TGF-β signaling pathway, as novel pro-viral agents 
and their inhibition via small molecules demonstrated 
therapeutic potential [98]. Construction of the gene net-
work expression revealed genes co-expressed with ACE2 
and TMPRSS2 and presented ADK, DPP4, IL13RA2, 
HDAC8, and CD55 as potential therapeutic targets [99]. 
Krogan et al. also identified 66 druggable human proteins 
or host factors by constructing a protein–protein inter-
action map between the host and SARS-CoV-2 proteins 
[100].

The possibility of the iRNAs’ efficacy against the men-
tioned genes as COVID-19 therapy is yet to be assessed, 
and to our knowledge, only one study has been con-
ducted from this perspective. Seven candidate miRNAs 
were revealed in a study by Ramakrishnan and colleagues 
to target host-encoded proteins in signaling pathways 
involved in receptor activation and host protein hijack-
ing machinery during the pathogenesis of SARS-CoV-2 
[101].

Anti-miRNA oligonucleotides can also be designed to 
target the host miRNAs that assist viral pathogenesis. 
SARS-CoV-2 infection-induced human miRNAs are 
found to downregulate multiple pathways in antiviral 

defense response, including different Toll-Like Receptors 
(TLRs) [86].

Inflammatory genes One of the clinical manifestations 
of COVID-19 is viral-induced inflammation, leading to 
ARDS. This syndrome is preceded by a significant rise 
in inflammatory parameters, such as C-reactive protein 
(CRP) levels, serum ferritin, the erythrocyte sedimenta-
tion rate, and d-dimers as a result of pro-inflammatory 
cytokines increase [102].

Inflammation generally consists of four steps, stimuli 
recognition by PRRs, inflammatory pathways activation, 
the release of inflammation mediators, and recruitment 
of immune cells to the inflammation site. Upon bind-
ing damage-associated molecular patterns (DAMPs) 
and pathogen-associated molecular patterns (PAMPs) 
to PRRs like TLRs and nod like receptors (NLRs), tran-
scription factors within multiple inflammatory pathways 
including nuclear factor kappa B (NF-κB), mitogen-acti-
vated protein kinase (MAPK), and the Janus kinase signal 
transducer and activator of transcription (JAK–STAT) 
pathways translocate into the nucleus and upregulate 
the expression of various inflammatory cytokines and 
chemokines. A handful of inflammatory elements such 
as CRPs, high mobility group box protein 1 (HMGB1), 
superoxide dismutase (SOD), glutathione peroxidase-1 
(GPx), NADPH oxidases (NOX), inducible nitric oxide 
synthase (iNOS), and cyclooxygenase-2 (Cox-2) are 
released from the afflicted cells and promote inflam-
mation through their binding to inflammatory recep-
tors [103]. Myriad of inflammatory signaling cascades 
involved in pulmonary diseases have been characterized, 
some of which have proof-of-concept contribution to the 
SARS-CoV-2 pathogenesis.

Cox-2 synthesizes prostaglandins in response to 
cytokines and mediates inflammation and tissue dam-
age. Its promoter contains regulatory response elements 
to NF-kB and IL-6, and SARS-CoV N protein has been 
previously shown to induce its expression [104, 105]. 
Although in a recent clinical trial, Cox-2 targeting non-
steroidal anti-inflammatory drugs h demonstrated safety 
in treating COVID-19 patients [106], its natural expres-
sion in the kidney poses a major drawback for its system-
atic blockade, making its localized inhibition an optimal 
situation [96].

Despite lack of experience in iRNA-mediated Cox-2 
silencing in COVID-19, its knockdown and subsequent 
inflammation modulation have been vastly investigated 
for other diseases, including cancer and hepatic fibrosis. 
In a comprehensive review by Espisni et al., lists of stud-
ies analyzing various siRNAs and miRNAs are provided 
[107, 108]. In another study, miR-146a is proven to spe-
cifically inhibit Cox-2 in lung epithelial cells [109].
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Of the MAPK signaling groups, the p38 MAPK path-
way is aberrantly upregulated during SARS-CoV-2 infec-
tion, leading to the production of pro-inflammatory 
cytokines such as IL-6, TNF-α, and interleukin 1 beta 
(IL-1β). Multiple clinical studies are evaluating p38 
inhibitors for a variety of complications [110]. Numerous 
studies have assessed siRNA candidates for p38 down-
regulation in various afflictions, including breast cancer, 
in an ischemia–reperfusion injury lung transplantation 
model, and more importantly, lung adenocarcinoma can-
cer and all have been proven to be efficient suppressors 
leading to ameliorated inflammation [111–113].

Several miRNAs have also demonstrated efficacy in 
downregulating p38 and can serve as therapeutic candi-
dates. In an attempt to reveal the mechanisms of action 
of three antiviral miRNAs, miR-124, miR-24, and miR-
744, p38 was identified as a ubiquitous antiviral target 
in multiple viral infections, including influenza and res-
piratory syncytial virus (RSV) infection [114]. In an early 
pulmonary fibrosis mouse model caused by ARDS, miR-
200b/c overexpression was concomitant with the inhibi-
tion of p38 MAPK and TGF-β/smad3 signaling pathways 
and alleviation of ARDS [115]. In a rat model of chronic 
inflammation, the miR-16 carrying vector administration 
palliated the inflammation-induced pain by inhibiting 
p38 activation [116]. miR-375 is found to prevent myofi-
broblast trans-differentiation and collagen synthesis by 
blocking the p38, which is a crucial pathophysiological 
process in pulmonary fibrosis [117].

NF-kB has repeatedly been demonstrated to orches-
trate inflammation and contribute to inflammation-
consequent pulmonary complications, including ARDS 
[118]. NF-kB is an established transcription factor in 
SARS-CoV pathogenesis. It is activated in response to 
the virus elements, including N protein [119], and accu-
mulating evidence is attributing the same feature to it in 
COVID-19 as well. The binding of DAMPs to TLRs and 
cytokine receptors triggers NF-kB. Its activation upreg-
ulates pro-inflammatory agents, including IL-1b, IL-6, 
and TNF-a, leading to complications such as cytokine 
release syndrome CRS and pro-inflammatory immune 
cell recruitment. In a feedback-positive looping manner, 
these cytokines induce further activation of NF-kB [120, 
121].

As a significant regulator of numerous inflammatory 
cytokines and chemokines, targeting NF-kB transcrip-
tion factors inhibits multiple pro-inflammatory cascades 
simultaneously, serving as a superior therapeutic can-
didate. Cumulating evidence pinpoint the potential of 
NF-kB suppression in coronavirus-mediated SARS treat-
ment as NF-kB inhibition in SARS-CoV animal models 
increased its survival and decreased pro-inflammatory 
agents’ expression [122]. The preliminary results of the 

RECOVERY clinical trial (NCT04381936) also ratify the 
rationale of NF-kB inhibition, wherein Dexamethasone, 
a chemical with NF-kB suppression as its mechanism of 
action, resulted in a significant reduction in COVID-19 
critically ill patients [123, 124].

A manifold of siRNAs is designed and proven to effec-
tively downregulate NF-kB or members of NF-kB signal-
ing pathway and subsequently reduce expression of the 
NF-kB-regulated genes associated with inflammatory 
pathways in various pulmonary settings, including sep-
sis-induced acute lung injury in mice models, lipopoly-
saccharide-induced acute lung injury in rat models, lung 
cancer cells [125–128].

A myriad of miRNAs has been discovered which 
down-regulate the NF-kB pathway in various organs 
and modalities. Several papers listed the major miRNAs 
with altered expression levels in cancer with an impact 
on this pathway, some of which can serve as therapeutic 
candidates [129, 130]. Concerning the lung complica-
tions, upregulation of miR-140-5p is shown to dampen 
inflammatory cytokine production in acute lung injury 
via targeting the TLR4/MyD88/NF-κB signaling pathway 
[131]. miR-23b cluster and miR-125a-5p are confirmed to 
silence multiple components of KRAS and NF-kB path-
ways hence suppressing lung tumorigenesis [132]. By 
regulating the NF-κB/MMP-9/VEGF pathway, Micro-
RNA-26b is shown to suppress metastasis in lung cancer 
[133]. miR-449a also suppresses invasion of lung cancer 
through blocking HMGB1-Mediated NF-κB Signaling 
Pathway [134].

RNAi suppressors as a challenge of using RNAi 
against SARS‑CoV‑2
It has long been established that interfering RNA-
mediated defense mechanism against viruses is mostly 
confined to fungi, invertebrates, and plants. However, 
animal viruses are also discovered to be subject to the 
host RNAi-mediated suppression. Hence, within the evo-
lutionary arms race between host and viruses, viruses 
have also evolved ways to nullify RNAi-mediated cel-
lular anti-viral defense. Viral proteins underlying these 
mechanisms are referred to as RNAi suppressors. Aside 
from their roles in the viral life cycle in various ways, 
these proteins also manipulate histone and DNA meth-
yltransferases as the components of the host’s transcrip-
tional gene-silencing mechanisms to dampen the cellular 
antiviral silencing mechanism [135]. Many mammalian 
viruses, such as HIV and Ebola, were found to encode 
RNAi-blocking proteins [136]. Such RNAi suppressors 
were also found in the SARS-CoV; one is derived from 
ORF7a, and the other is SARS-CoV’s structural nucle-
ocapsid protein [137, 138]. Given the homology of the 
two viruses, it is most likely that the 7a and N protein 



Page 10 of 15Jamalkhah et al. J Transl Med          (2021) 19:164 

Fig. 2 Pipeline of iRNA‑carrying exosome production from MSCs. Therapeutic iRNA‑carrying exosomes can be produced in two ways. The 
plasmid encoding the miRNA or/and shRNA of interest may be transferred into the MSCs, and the iRNA‑containing exosomes will subsequently be 
harvested and enriched. Alternatively, synthesized miRNAs mimics or/and siRNAs or/and anti‑miRNA oligonucleotides may be chemically inserted 
into the MSC‑derived exosomes, and the resulting loaded exosomes will be then collected and isolated. The consequent exosomes of either way 
would then be administrated to the COVID‑19 critically‑ill patients
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act as RNA interference suppressors as well in the SARS-
CoV-2 [139]. Karjee et  al. also recommended that both 
the full RdRP and the spike protein may be candidate 
RNAi suppressors in the SARS-CoV-2 genome, based 
on the motifs shared in these proteins and a subset of 
common RNAi suppressors [136]. Such RNAi suppres-
sors might limit the efficiency of using RNAi technology 
against the SARS-CoV-2. Thus, targeting them could be 
considered as a strategy against the virus.

Exosomes‑based gene therapy for nucleic acid delivery
Utilizing exosomes as a drug delivery system was pro-
posed in 2011 [140], and it gained much attention so 
far because of the exosomes’ small size, the capability 
to escape the immune system, deformable cytoskeleton, 
similarity to cell membranes, and slightly negative zeta 
potential, which allows them to circulate in the body for a 
longer period of time [140]. Noncoding RNAs are highly-
suitable cargo for exosomes, that can target specific 
pathways to diminish inflammation in various diseases, 
including lung injury [141].

Due to the regenerative functions of exosomes secreted 
from MSC, they are an ideal source of exosomes in a vari-
ety of diseases such as cardiac ischemia, liver fibrosis, 
and cerebrovascular diseases. The therapeutic effects of 
miRNAs delivered by MSC-derived exosomes have been 
demonstrated by a handful of studies as well [142, 143].

In COVID-19, similar to other infectious diseases, the 
immune cells utilize miRNA-carrying exosomes to tar-
get the infected cells’ viral RNA. Thus, further delivery of 
specifically-designed ncRNAs by MSC-derived exosomes 
can accelerate the combat against SARS-CoV-2 and 
induce tissue regeneration [144]. To assess the anti-infec-
tivity capacity of iRNAs inside the host cells’ exosomes, 
Moon et  al. have unveiled anti-SARS-CoV-2 miRNA-
content of MSC-derived extracellular vesicles [144]. This 
study sheds light on the mechanism of action of MSC-
derived exosome as a carrier for nucleic acid-based ther-
apies in COVID-19 to some extent.

Production of iRNA‑carrying exosomes
To combine the aforementioned anti-COVID-19 impact 
of MSC-derived exosomes with the iRNAs against SARS-
CoV-2 pathogenesis, exosomes collected from MSCs 
should be loaded with the iRNAs of interest. MSCs of 
multiple sources can be used as exosome donors, includ-
ing the umbilical cord, bone marrow, and adipose tissue 
[145]. Mainly, exosomes can be loaded with small RNAs 
either by direct insertion of the nucleic acids into them 
or by their collection from genetically-modified MSCs 
(Fig. 2).

When synthesized exogenously, siRNAs, miRNA mim-
ics, and anti-miRNA oligonucleotides can be transferred 

into the exosomes via electroporation, lipofection, soni-
cation, calcium chloride, co-incubation, or Saponin per-
meabilization [146, 147]. Multiple studies have reported 
the successful delivery of exogenous iRNAs into the 
MSC-derived exosomes and observed the expected func-
tionality [148–151].

Alternatively, it is established that increasing the con-
centration of iRNAs in the cytosol of the cell is concomi-
tant with their heightened copy number in exosomes 
[152]. In this regard, MSCs can be manipulated to 
express shRNA or miRNA of interest via transfection or 
transduction. The released exosomes can be isolated fol-
lowing their verification regarding the presence of the 
desired small RNAs. This methodology has demonstrated 
applicability in a handful of reports [153–156].

Conclusion
Multiple clinical trials are assessing the efficacy of MSCs 
and MSC-derived exosomes in alleviating COVID-19 
manifestations in critically-ill patients. Enrichment of 
MSC-derived exosomes carrying exogenous iRNAs for 
COVID-19 therapy serves as an unprecedented strategy 
and is yet to be exploited in clinical settings. The right 
cocktail of iRNAs would not only impede viral propa-
gation, inflammation induction, and immune escape in 
already-infected cells but also can obstruct the viral par-
ticles’ entrance to the un-infected cells and the virus’s 
further spread within the lung tissue.
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