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Abstract 

Background:  tRNA-derived fragments (tRFs) are 14–40-nucleotide-long, small non-coding RNAs derived from spe-
cific tRNA cleavage events with key regulatory functions in many biological processes. Many studies have shown that 
tRFs are associated with Argonaute (AGO) complexes and inhibit gene expression in the same manner as miRNAs. 
However, there are currently no tools for accurately predicting tRF target genes.

Methods:  We used tRF-mRNA pairs identified by crosslinking, ligation, and sequencing of hybrids (CLASH) and cova-
lent ligation of endogenous AGO-bound RNAs (CLEAR)-CLIP to assess features that may participate in tRF targeting, 
including the sequence context of each site and tRF-mRNA interactions. We applied genetic algorithm (GA) to select 
key features and support vector machine (SVM) to construct tRF prediction models.

Results:  We first identified features that globally influenced tRF targeting. Among these features, the most significant 
were the minimum free folding energy (MFE), position 8 match, number of bases paired in the tRF-mRNA duplex, and 
length of the tRF, which were consistent with previous findings. Our constructed model yielded an area under the 
receiver operating characteristic (ROC) curve (AUC) = 0.980 (0.977–0.983) in the training process and an AUC = 0.847 
(0.83–0.861) in the test process. The model was applied to all the sites with perfect Watson–Crick complementarity to 
the seed in the 3′ untranslated region (3′-UTR) of the human genome. Seven of nine target/nontarget genes of tRFs 
confirmed by reporter assay were predicted. We also validated the predictions via quantitative real-time PCR (qRT-
PCR). Thirteen potential target genes from the top of the predictions were significantly down-regulated at the mRNA 
levels by overexpression of the tRFs (tRF-3001a, tRF-3003a or tRF-3009a).

Conclusions:  Predictions can be obtained online, tRFTars, freely available at http://trfta​rs.cmuzh​ennin​glab.org:3838/
tar/, which is the first tool to predict targets of tRFs in humans with a user-friendly interface.
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Background
tRNA-derived fragments (tRFs) are small non-coding 
RNAs derived from tRNAs with lengths of 14–40 nucleo-
tides (nts). They have been identified at high abundances 
in many species [1–3] and can be divided into five cat-
egories: (i) tRF-5  s, from the 5′ ends of mature tRNAs; 
(ii) tRF-3  s, from the 3′ ends of mature tRNAs with 
3′-CCA termini; (iii) i-tRFs, from the internal cleavage of 
mature tRNAs; (iv) tRF-1 s (3′U tRFs), from the 3′ trail-
ing sequences of pre-tRNAs with poly-U residues; and (v) 
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tiRNAs, tRNA halves from cleavage at the anticodon of 
mature tRNAs [2–4]. Accumulating evidence has shown 
that tRFs are derived from specific tRNA cleavage events 
catalyzed by enzymes such as angiogenin, tRNase Z, 
RNase P and Dicer (not necessary) rather than random 
tRNA degradation [5]. Since databases for identifying 
and storing tRF sequences such as tRFdb and tRF2Can-
cer have been published, many studies have reported the 
roles of tRFs in humans [6–10]. Deep sequence analysis 
of small RNAs associated with Argonaute (AGO) com-
plexes, the main components of the RNA-induced silenc-
ing complex (RISC), has allowed a large number of reads 
to be mapped to fragments of tRNA [11–13]. Kumar 
further mined AGO PAR-CLIP data and showed that 
tRF-3 s and tRF-5 s could associate with target mRNAs 
by their 5′ seed sequence (tRF nts 2–7) in a manner simi-
lar to that of miRNAs [11, 12, 14, 15], with hexamers 
complementary to the seed referred to as “seed matches”. 
Moreover, many studies using reporter assays have con-
firmed that tRFs show activity in regulating the expres-
sion of protein-coding genes through complementary 
pairing between the seed sequence and the 3′ untrans-
lated region (3′-UTR) of the target mRNA [3, 11, 16]. 
Although seed pairing is commonly thought to function 
in gene expression regulation [17, 18], studies on specific 
factors that affect tRF targeting are limited.

Identification of the targets of tRFs is central for char-
acterizing the functional roles of tRFs. However, there 
have been few investigations of the relationships between 
tRFs and mRNA, and it is unrealistic to identify all tRF 
targets by experiments. Researchers have no choice but 
to rely on algorithms that predict the targets of miRNAs 
[16, 19, 20]. For example, Maute et al. used TargetScan to 
predict the targets of tRFGlyGCC, but only one in three 
was repressed by the tRF [16]. Similarly, Zhang et al. vali-
dated only one in five mRNAs predicted by miRanda and 
RNAhybrid using real-time PCR [21]. The accuracy of 
such approaches has been poor, and there are currently 
no better methods for predicting the targets of tRFs in 
humans. Therefore, a computation tool for predicting the 
targets of tRFs is urgently needed.

In the present study, we screened features that influ-
enced tRF targeting. Then, we used a support vec-
tor machine (SVM) to build models with key features 
selected by a genetic algorithm (GA) using the pairs iden-
tified by crosslinking, ligation, and sequencing of hybrids 
(CLASH) and covalent ligation of endogenous AGO-
bound RNAs (CLEAR)-CLIP to achieve relatively high 
accuracy in both the training and validation processes. 
We developed the computational tool tRFTars, available 
at http://trfta​rs.cmuzh​ennin​glab.org:3838/tar/ (mirror 
site at http://trfta​r.cmuzh​ennin​glab.org:3838/tar/), which 

is the first database for predicting the potential targets of 
tRFs.

Methods
Data preparation and preprocessing
We obtained mRNA sequences from UCSC 2019 [22]. 
The sequences were annotated according to the human 
genome (hg19) in RefSeq, and only “NM_” transcripts 
were retained. tRF-3 and tRF-5 sequences were down-
loaded from tRFdb [6].

We identified tRF-mRNA pairs in HEK293 cells by 
CLASH and in Huh-7.5 cells by CLEAR-CLIP [23, 24], 
which connect AGO-bound small RNAs and target 
RNAs as chimeric reads in the same RISC complex. After 
removing adaptors and PCR duplicates, we mapped the 
reads to the ends of tRNAs as long as possible until mis-
matches or bulges appeared with blastn (e-value < 0.01) 
[15]. Only tRFs in tRFdb [6] were selected for further 
study to avoid including tRNA degradation products. 
After removing part of the sequence mapped to each 
tRNA, the remaining fragment of the read was mapped to 
the hg19 3′-UTR. Only pairs with perfect Watson–Crick 
complementarities between the tRF seed and 3′-UTR 
sequence were kept in the positive group (the 3′-UTRs 
were required to have at least 6 contiguous bases paired 
with 2–7 bases of the 5′ end of tRFs). After removing 
the transcripts from the positive group, we searched the 
remaining 3′-UTRs for segments with perfect seed pair-
ing to the tRFs in CLASH as the background [25], which 
reflects average levels of the features for all possible seed 
pairing.

We obtained data from poly(A)-position profiling by 
sequencing (3P-seq) with TargetScan 7.2 [26, 27], which 
measured 3′-UTR isoform quantifications. When multi-
ple 3′-UTRs mapped to the same genomic region, those 
with the most 3P-seq tags in the corresponding cell line 
were chosen. The pipeline of the process is presented in 
Additional file 1: Figure S1.

Computational features
After identifying the interactions as described above, 
we analyzed the features of the positive pairs in CLASH 
and the background. We mainly focused on potential 
target sites with seed pairing and considered the pairing 
type, location, and base identity around them. Then, we 
assessed the sequence properties of the whole transcripts 
and tRFs involved in pairing to view their effects on the 
target sites. Moreover, we selected the local 3′-UTR 
regions of the seed matches and considered their indi-
vidual secondary structures and stabilities after binding 
to tRFs. The collected information is listed in Additional 
file 1: Table S1.

http://trftars.cmuzhenninglab.org:3838/tar/
http://trftar.cmuzhenninglab.org:3838/tar/


Page 3 of 15Xiao et al. J Transl Med           (2021) 19:88 	

Notably, when considering the effect of base compo-
nents near the target site, we assumed that the identity 
of bases surrounding the seed matches with different dis-
tances had different weights. The score for AU bases was 
computed following the rubric below [28]:

where di A/U denotes the distance of an A or a U to the 
seed match within a particular range. We separately com-
puted scores of 35  nts upstream or 15  nts downstream 
of the site. Considering more bases tended to pair with 
tRF beyond seed pairing, we therefore also computed the 
score excluding 10 nts immediately upstream of the seed 
match.

The main secondary structure of the target region was 
computed by the “RNAfold” program in the ViennaRNA 
2.0 package (Lorenz et al. 2011, http://www.tbi.univi​e.ac.
at/RNA) [29] with sequences including 40 nts upstream 
and 40 nts downstream of the seed match. The minimum 
free folding energy (MFE) of the duplex was computed 
by the “RNAup” program in the ViennaRNA 2.0 pack-
age (Lorenz et al. 2011, http://www.tbi.univi​e.ac.at/RNA). 
All features listed were compared between the positive 
group and the background.

The model constructed by the GA and SVM
We used SVM to construct a model for predicting the 
targets of tRFs. To balance the numbers of pairs in the 
positive and negative groups during training, we ran-
domly chose 2000 of the tRF-mRNA pairs with the most 
3P-seq tags (five times the number in the positive group) 
from the background as the negative group. To reduce 
the risks of overfitting and selection bias and to facilitate 
parameter optimization, fivefold cross-validation was 
conducted to build the model. All the pairs (pairs iden-
tified by CLASH or CLEAR-CLIP and negative pairs) 
were randomly divided into five subsamples of equal size, 
with four subsamples used for training and the remaining 
subsample used for testing each time. This process was 
repeated five times, with each subsample tested exactly 
once. To improve training efficiency and retain appropri-
ate features, the features mentioned above were selected 
by GA reflecting the process of natural selection. We set 
the number of iterations of the GA to 10,000, with possi-
bilities of crossing and mutation of 10% and 30%, respec-
tively. Finally, we averaged the positive probabilities of 
individual target sites for each fold. We assumed that 
multiple sites typically acted independently from each 
other. The positive probability for each potential target 
transcript with seed matches was computed as follows:

SAU =
i=n
∑

i=1

1/diA/U

where n denotes the number of complementary sites in 
the transcripts and pi denotes the possibility of an indi-
vidual site being predicted as functional by the SVM 
model. The pairs with a positive probability > 0.5 were 
selected as targets of a specific tRF.

The probabilistic model for potential target transcripts
We computed the probability of a specific seed match 
appearing at a potential 3′-UTR target as P by Markov 
model (MM) (order 1), depending on the base composi-
tion of the sequence. For a specific tRF-3′-UTR pair, we 
performed a binomial test to compute Ps as follows:

where l represents the length of the target sequence, k 
represents the number of bases in the seed (k = 6), and f 
represents the frequency of seed matches in the potential 
target transcripts. We used this formula to calculate Ps 
for all tRF-3′-UTR pairs, adjusted the calculated Ps values 
using the Benjamini–Hochberg procedure and evaluated 
the false discovery rate (FDR).

Conservation of the target sites
To support our analysis, we used the Bioconductor 
package GenomicScores, which conveniently provided 
genome-wide position-specific scores [30]. By loading 
a Bioconductor annotation package (phastCons100way.
UCSC.hg19), we obtained phastCons conservation 
scores, which were based on a two-state phylogenetic 
hidden MM (phylo-HMM) and multiple alignments 
of the human genome (hg19) to the genomes of 99 
other vertebrate species [31]. The scores of each seed 
region, 35 nts upstream, 15  nts downstream, and the 
whole 3′-UTR were compared between the target and 
background.

Database organization and web interface
The tRF target prediction workflow is shown in Fig.  1. 
tRFTars was implemented by the R package Shiny and 
hosted on a Linux server (Centos 7.5) with MySQL 5.7.18 
as its database engine. The web layout was built by the 
R package shinydashboard, with results shown in interac-
tive tables by the R package DT.

P = 1 −
n
∏

i=1

pi

Ps =
l−k+1
∑

i=f

(

l− k+ 1
i

)

Pi(1− P)l−k+1−i

http://www.tbi.univie.ac.at/RNA
http://www.tbi.univie.ac.at/RNA
http://www.tbi.univie.ac.at/RNA
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Algorithm evaluation and comparison with miRNA target 
prediction models
To evaluate the universal applicability of tRFTars, the SVM-
GA model was compared with the commonly used miRNA 
target predicting algorithms TargetScan [27] and miRanda 
[32] with the default parameters. The conservative model 
and the probabilistic model were also considered as inde-
pendent prediction criteria to be tested. We compared the 
receiver operation characteristic (ROC) curves of these 
methods in predicting pairs from CLASH/CLEAR-CLIP. 
Moreover, the sensitivity, specificity and Matthews correla-
tion coefficient (MCC) of various methods were assessed 
using the following formulas [33]:

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN+ FP

where TP, TN, FP and FN denote the numbers of true 
positives, true negatives, false positives and false nega-
tives, respectively, which reflect the consistency of pre-
diction and the experimental results. MCC values range 
between − 1 and 1, indicating the correlations between 
predictions and experimental observations. The experi-
mentally tested pairs identified in the reporter assay were 
employed to further evaluate the performance of our 
models.

Validation of prediction results with expression profiles
We quantified the expression of tRFs, miRNAs and 
mRNAs in 20 gastric tumors and matched adjacent 
normal tissues from our institution. The steps of sam-
ple preparation, sequencing and microarray analysis 
are presented in the Additional file 1: Methods. We cal-
culated the Spearman correlation coefficient between 

MCC =
TP*TN− FP*FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
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mRNA and tRF/miRNAs expression levels. All the pairs 
with seed matches and negative expression correla-
tion coefficients were selected for further analysis. We 
defined the pairs with correlation coefficients < − 0.3 as 
negatively related pairs [34]. Moreover, the negatively 
related tRF-mRNA pairs with seed matches in TCGA 
database were downloaded [34]. Considering the com-
plexity of expression-related regulation in tissues, we 
chose only the tRFs in tRFdb with CLASH reads. The 
most relevant pairs in each cancer with correlation 
coefficients < − 0.3 in TCGA (P < 5E−06) were retained. 
To eliminate the influence of the total number of tar-
get genes predicted by the different tools due to the dif-
ferent cut-offs, we used a chi-square test to calculate 
whether the predicted targets of the SVM-GA model 
were more likely to be downregulated and to compare 
our predictions with the results from TargetScan and 
miRanda.

We selected potential target genes of tRF-3001a, tRF-
3003a and tRF-3009a from the top of the predictions. 
We measured the potential target gene expression levels 
after transfection the tRFs through quantitative real-time 
PCR (qRT-PCR) in MGC-803 cells. We mutated part of 
the tRFs seed sequence to the complementary form and 
observed the expression of the potential target genes 
(Additional file 1: Methods).

Statistical programs and software
Statistical analyses of our results were conducted with 
R version 3.5.3 (https​://www.r-proje​ct.org/). Statistical 
significance (P-value) for the features between positive 
group and the background was calculated with Student’s 
t-test and a threshold value of P < 0.05 was considered 
statistically significant (with exceptional circumstances 
explained individually). The SVM algorithm was built 
with the LIBSVM program (Chang et  al. 2018, https​://
www.csie.ntu.edu.tw/~cjlin​/libsv​m/). The SVM and GA 
algorithm was coded with MATLAB 2016a (MathWorks, 
Natick, MA, USA). The source code is freely available at 
Github (https​://githu​b.com/cmuxi​aoqio​ng/SVM_GA_
tRF_targe​ts).

Results
Identification of tRF targets from CLASH data
Based on CLASH data from HEK293 cells and 
CLEAR-CLIP data from Huh-7.5 cells, we obtained 
547 tRF-mRNA pairs (532 from CLASH and 15 from 
CLEAR-CLIP) involving 28 tRFs (20 tRF-3  s and eight 
tRF-5  s) in CLASH and 15 tRFs (six tRF-3  s and nine 
tRF-5 s) in CLEAR-CLIP. A total of 115,418 seed matches 
paired with the tRFs were used as the background.

Characterizing target recognition features
The P-values of features considered in this study that 
may be related to tRF-mRNA interactions are listed in 
Table  1. We observed significant differences in most 
sequence features of individual seed matches, tran-
scripts, or tRFs and the features of the tRF-mRNA 
duplex. The features most significantly different 
between the positive group and background are shown 
in Fig. 2.

Sequence features of target sites
Seed match types and surrounding base properties 
determined the potential of a tRF target site. Posi-
tion 8 matches (P = 2.87E−28) and position 1 matches 
(P = 7.28E−13) were more common in the positive group 
than in the background, while no significant difference 
was observed at position 1 A (P = 0.34). The number of 
different kinds of seed types is provided in Additional 
file 1: Table S2. Consistent with the finding of PAR-CLIP 
[14, 15], 7-mer-m8 sites (binding to positions 2–8 in 
the tRFs) were most enriched in the positive group. The 
bases flanking the functional sites were more likely to be 
A or U compared with the bases in the background. The 
differences in nucleotide identity are listed in Additional 
file  1: Table  S3 and Additional file  1: Table  S4. The GC 
percentages were significantly lower for bases upstream 
(P = 5.89E-13) and downstream (P = 2.18E−11). When 
using the formula to incorporate distances to seed 
matches with different weights, the scores in the positive 
group were significantly higher for all three kinds of sur-
rounding regions, including upstream (P = 7.51E−03), 
upstream excluding 10  nts (P = 2.61E−16), and down-
stream (P = 7.49E−12).

The locations of seed matches in the 3′-UTRs were 
related to the tRF binding activity of the UTRs. The 
cumulative distribution curves of the distance to the 
3′-UTR ends are shown in Additional file  1: Figure S2. 
We observed that effective sites avoided appearing imme-
diately downstream of the stop codon, while tended to 
reside adjacent to the ends within the rest of the 3′-UTR 
in the positive group (P = 2.12E−03), especially the 5′ 
end (P = 2.37E−08).

Sequence features of the transcripts
When focusing on the whole-sequence features to assess 
their impacts on the efficacies of sites, we found that the 
positive group had a significantly lower global GC con-
tent than the background in the 3′-UTR (P = 5.40E−06), 
but this trend was not as significant as that detected in 
local comparisons near seed matches. In agreement with 
the finding that more sites were preferentially adjacent to 

https://www.r-project.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/cmuxiaoqiong/SVM_GA_tRF_targets
https://github.com/cmuxiaoqiong/SVM_GA_tRF_targets
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Table 1  The P-value of features considered in this study that can contribute to tRF-mRNA interaction

Category Feature Including feature P value

Sequence feature of target sites Type of seed match Position 8 match 2.87E−28

Position 1 match 7.28E−13

Position 1 A 0.34

Bases identity immediately flanking seed 
match (2nt)

Base identity of position 2 upstream 0.80

Base identity of position 1 upstream 2.88E−03

Base identity of position 1 downstream 7.67E−07

Base identity of position 2 downstream 0.43

Bases component in the vicinity of seed 
match

GC percentage 35 nt upstream 5.89E−13

GC percentage 25 nt 
upstream(excluding 10 nts immedi-
ately upstream)

4.28E−14

GC percentage 15 nt downstream 2.18E−11

Score 35 nt upstream 7.51E−03

Score 25 nt Upstream (excluding 10 nts 
immediately upstream)

2.61E−16

Score downstream 7.49E−12

Base component 35 nt upstream See Additional files 1, 2, 3: Table

Base component 15 nt downstream See Additional file 1, 2, 3: Table

Dinucleotide component 35  nt 
upstream

See Additional file 1, 2, 3: Table

Dinucleotide component 15 nt down-
stream

See Additional file 1, 2, 3: Table

Distance to the end of tRF Distance to the 5′ end 2.37E−08

Distance to the 3′ end 1.90E−03

Distance to the nearest end 2.12E−03

Sequence feature of transcripts 3′-UTR properties Length of 3′-UTR​ 4.80E−08

GC percentage of 3′-UTR​ 5.40E−06

frequency of seed matches in 3′-UTR​ 0.08

Base component(AGCT) of 3′-UTR​ See Additional file 1, 2, 3: Table

Dinucleotide component of 3′-UTR​ See Additional file 1, 2, 3: Table

CDS properties Length of CDS 1.95E−04

GC percentage of CDS 2.33E−03

Frequency of seed matches in CDS 6.51E−06

5′-UTR properties length of 5′-UTR​ 0.40

GC percentage of 5′-UTR​ 0.08

Frequency of seed matches in 5′-UTR​ 0.02

Sequence feature of tRFs tRF sequence properties Length of tRF 2.77E−21

GC percentage of tRF 2.46E−11

TA Target abundance in genome 7.19E−03

Target abundance in 3′-UTR​ 0.09

SPS GC percentage of seed 8.69E−18

Stability and thermodynamics 
of tRF-mRNA interaction

Secondary structure of target mRNA Nucleotides exposed at seed match 7.49E−03

Nucleotides exposed surrounding seed 
match

0.99

Energy to free base-pairing interactions 
of target site

3.51E−06

Secondary structure of tRF-mRNA Number of bases paired in duplex 1.53E−20

MFE 1.36E−57
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the ends, the target sites were selectively located in the 
shorter 3′-UTRs (P = 4.80E−08).

Sequence features of tRFs
We investigated whether some tRF sequences might be 
intrinsically more capable of targeting than others. In 
tRFdb, tRF-3 and tRF-5 sequences could be categorized 
into tRF-3a (18 nts), tRF-3b (22 nts), tRF-5a (15 nts), tRF-
5b (22 nts), and tRF-5c (31 nts) sequences according to 
their lengths. Compared to those in the background, we 
observed significant differences in the lengths of tRFs 
(lengths in tRFdb) (P = 2.77E−21), consistent with the 
finding that repression was mediated by tRF-3as instead 
of tRF-3bs derived from the 3′ end of the same tRNA 
[11]. tRFs in the positive group had a higher GC percent-
age for both whole sequences (P = 2.46E−11) and seed 
sites (P = 8.69E−18), which could contribute to pairing 

stability, especially for seed regions [35]. In addition, we 
detected significant differences in target site abundance 
(TA) in the genome (P = 7.19E−03), consistent with the 
finding that extensive pairing could decrease the function 
of sRNA pairing to their authentic target sites [36–38].

Structure and thermodynamic properties of the tRF‑mRNA 
duplex
In addition to the sequence features of tRFs and their 
targets, the secondary structures of target mRNAs likely 
contribute to target recognition. We showed that nucleo-
tides in the positive group were more exposed than those 
in the background at the seed matches (P = 7.49E−03), 
while less energy was needed to free base-pairing inter-
actions within the secondary structures of target mRNAs 
(P = 3.51E−06). These features indicated that effective tar-
get sites were more accessible for tRF binding.

Fig. 2  Features that influence tRF targeting. Features most significantly different between the positive group and background are displayed. The 
size of the petal represents -log(P value), which indicates the degree of significance
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Fig. 3  The result of the genetic algorithm (GA) during establishment of the SVM-GA model using the training cohort. The iterations of each variable 
in the GA are presented in the longitudinal axes and the selected variables in the SVM-GA model are presented in the transverse axes. The features 
selected are labeled

(See figure on next page.)
Fig. 4  Comparison of tRF target predicting models. a The receiver operating characteristic (ROC) curve for classification of the pairs for model 
establishment, including SVM-GA model, conservation model, probabilistic model and intersection of miRNA target predicting models (TargetScan 
and miRanda). b The relationship of features for potential target site with the probabilistic model or conservative model. The color of boxes 
represents the coefficient of correlations and *represents the significance of correlations (Pearson’s test). c The intersection of target genes (tRFs 
in CLASH) by three methods of tRFTars and miRNA target predicting models (TargetScan and miRanda). d Ternary plot of the number of targets of 
each tRFs. The value to each axis represents the proportion of targets predicted by corresponding models relative to all potential targets. The node 
color represents the number of potential targets by intersection of three models. As the number of targets increased, the node color changes from 
red to blue. The node size indicates the number of seed pairings in whole 3′-UTR. The larger the node is, the greater number of seed matches the 
3′-UTRs have
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Thermodynamic features of the tRF-mRNA duplex 
were then analyzed. Compared with that in the back-
ground, the tRF seed-target binding in the positive 
group was usually more stable, as revealed by a lower 
MFE (P = 1.36E−57), which represented the most sta-
ble structure of the helix. Moreover, additional pairing 
beyond seed matches contributed to target recognition 
in the positive group (P = 1.53E−20), consistent with 
the experimental discovery of Kuscu et al. [11]. These 
features were considered in our models.

The target prediction model established by SVM and GA
A total of 547 positive pairs (including 489 tRF-3 pairs and 
58 tRF-5 pairs) and 2000 negative pairs (including 1596 
tRF-3 pairs and 404 tRF-5 pairs) were retained according 
to our filtering criteria. The features with significant dif-
ferences between the positive group and negative group 
are listed in Additional file  1: Table  S5, with no signifi-
cant differences observed for the vast majority of features 
between CLASH and CLEAR-CLIP. We considered the 96 
features listed in Table 1 as potentially informative in rela-
tion to tRF targeting, while 51 features were identified by 
the GA after parameter optimization (Fig.  3). These fea-
tures were modeled in an SVM framework to determine 
their individual contributions for model implementation. 
The result of each fold was stable, with an area under the 
ROC curve (AUC) = 0.980 (from 0.977 to 0.983) dur-
ing the training process and an AUC = 0.847 (from 0.83 
to 0.861) during the validation process (Additional file 1: 
Table S6). Fourteen of 15 pairs detected by CLEAR-CLIP 
and 455 of 532 detected by CLASH were predicted, which 
indicated the efficiency of our model in different cell lines.

Predicting the targets with the probabilistic model
Functional tRF-target interactions, which account for a 
small proportion of seed pairings, derive directly from 
coevolution of the tRF and its target. Potential functional 
3′-UTR targets should contain more complementary sites 
overrepresented relative to a random background, which 
was measured by Ps for each tRF-3′-UTR pair. Ps was 
significantly lower in the positive group than in the back-
ground (P = 2.94E−10). We generated the final predic-
tions by ranking adjusted Ps, showing that 26,380 tRF-3 
targets and 8670 tRF-5 targets were overrepresented. 
This method could be used to independently predict the 
targets of tRFs by simulating miRNA target prediction 
tools such as PicTar and PACMIT [39, 40].

Predicting the targets with conserved seed match 
properties
Biologically functional target sites tend to be located in 
conserved tRF-pairing motifs within 3′-UTRs [18]. We 
found that target sites were significantly more conserved 

than the background (P = 3.68E−08), as determined by 
phastCons scores from comparative sequence analyses of 
the human genome (hg19) with the genomes of 99 other 
vertebrate species. Similar levels of performance were 
observed immediately upstream (P = 2.31E−10), imme-
diately downstream (P = 8.29E−10), and in the whole 
transcript (P = 3.66E−13). We applied this measure of 
performance as an independent factor to predict the tar-
gets of tRFs [25, 31, 41]. A total of 111,874 tRF-3 target 
sites and 152,464 tRF-5 target sites were predicted with 
0.5 as a cut-off. We performed gene ontology enrichment 
analysis on the target genes predicted by the conserva-
tion analysis. The results were listed in Additional file 2: 
Table S7.

Algorithm evaluation of tRF target prediction models
The prediction abilities of tRFTars and common miRNA 
target prediction programs were assessed by compre-
hensively comparing their identified pairs with the pairs 
identified by CLASH/CLEAR-CLIP or reporter assays. 
The performance of our model was evaluated with 
ROC curve analysis, yielding an AUC = 0.980 in the 
training process and an AUC = 0.847 in the validation 
process (Fig.  4a), better than commonly used miRNA 
target prediction models (intersection of TargetScan 
and miRanda) (AUC = 0.743, P < 0.0001). Moreover, five 
of seven positive pairs and two of two negative pairs 
were predicted by the SVM-GA model (Table 2) [11, 16, 
42], while only three of seven positive pairs were pre-
dicted by miRNA models. The sensitivity, specificity and 
MCC are listed in Additional file 1: Table S8. Both lines 
of evidence suggested that the SVM-GA model was the 
most effective tool for distinguishing the targets of tRFs 
with a relatively high accuracy. In addition, we searched 
the pairs confirmed by reporter assay with a clear tRF 
sequence beyond those in tRFdb, and KLF12 was pre-
dicted to be the target of tRFGluTTC (positive probabil-
ity = 0.76) [43], which further proved the effectiveness 
of our model.

Moreover, we investigated the relationships between 
different tRF target prediction models. We discovered 
that most of the features for effective target site predic-
tion were correlated with the probabilistic model or 
conservative model (Fig.  4b). The intersections of three 
algorithms and miRNA target prediction models (tRFs 
found in CLASH) are displayed in Fig. 4c, and the inter-
sections are listed in Additional file 1: Table S9. The pro-
portion of targets predicted by each model is presented 
in Fig. 4d.
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Validation of prediction results with expression 
correlations
We applied the filtering criteria and selected 1226 tRF-
mRNA pairs with negative expression correlations in 
TCGA database [34]. The pairs predicted by the SVM-
GA model were more likely to have negative expression 
correlations (P = 8.97E−04), and the model performed 
better than TargetScan (P = 0.79) (Additional file  1: 
Table S10). We have listed the number of pairs in differ-
ent kinds of tumors in Additional file 1: Table S11. More-
over, by analyzing tsRNA sequencing (tsRNA-Seq) and 
lncRNA + mRNA microarray data from our institution, 
34 tRFs with adequate variability and their expression-
related transcripts were chosen. Compared with those 
of TargetScan and miRanda, the predictions of the SVM-
GA model were more enriched in pairs with negative cor-
relations (SVM-GA model: P = 3.09E−03; TargetScan and 
miRanda: P = 0.09) (Additional file  1: Table  S12). Addi-
tionally, we observed significant consistency between the 
correlation coefficients of the pairs and the likelihood of 
a positive result from the SVM-GA model (for tRF-5s: 
P = 1.87E−10; for tRF-3s: P = 2.77E−05). This finding indi-
cates that our predicted tRF targets with higher scores 
tend to be more downregulated. We used Multiple Lin-
ear Regression to exclude the influence of miRNA in the 
sequencing and microarray data from our institution. We 
chose the pairs with mRNAs regulated by multiple highly 
expressed miRNAs, and 96 of 397 tRF-mRNA pairs still 
had significant negative correlation, listed at Additional 
file  3: Table  S13. It showed that nearly 1/4 tRF-mRNA 
pairs played a most vital role in gene expression regula-
tion. We showed the correlation heatmap of 20 tRFs/
miRNAs and mRNAs with the highest frequency among 
the target gene predictions (Additional file 1: Figure S3).

Validation the predictions by qRT‑PCR
We selected potential target genes of tRF-3001a 
(ELAVL1, SOCS7, ATF6B, RINL, PRR11, and ZNF268), 
potential target genes of tRF-3003a (CBX5, EIF4E, 
PRKAA1, TFDP2, SH3TC2, and PDE12) and potential 
target genes of tRF-3009a (ATF6B, ARF3, CDS2, CLN8, 
MAP2K7, and SNX12) from the top of the predictions for 
further confirmation using qRT-PCR (Additional file  1: 
Methods). We evaluated potential target gene expression 
levels after transfection with tRF mimic or the mutated 
tRF mimic in MGC-803 cells. The expression of 13 tar-
get genes was markedly reduced at the mRNA levels by 
transfecting tRF-mimic compared to the corresponding 
NC group in MGC-803 cells (Additional file 1: Table S14, 
Figure S4).

Website
The predicted targets are available online from tRFTars 
(http://trfta​rs.cmuzh​ennin​glab.org:3838/tar/) (mir-
ror site at http://trfta​r.cmuzh​ennin​glab.org:3838/tar/) 
(Fig. 5). Strict matches to the official gene symbols, Ref-
Seq IDs, tRFs in tRFdb or anticodon/amino acids of the 
source tRNA are necessary as input. Users can choose to 
search the specified target sites or transcripts according 
to their needs. Candidates can be ranked according to the 
likelihood of a positive result assigned by the SVM-GA 
model, the conservation score or Ps by the probabilistic 
model, although we recommend adopting the SVM-GA 
model. Users can choose to comprehensively view the 
information for all seed pairings. Details of the prediction 
results can be found on the statistics page of the website.

Discussion
In this study, we analyzed the results of experiments in 
which tRFs were ligated to target RNA in purified AGO 
complexes (CLASH in HEK293 cells and CLEAR-CLIP 
in Huh-7.5 cells) to identify tRF-mRNA interactions and 

Table 2  Validation of the models with tRF-mRNA pairs reported by reporter assay

tRF Gene Whether 
target of tRF

References Prediction 
of SVM-GA model

Prediction 
of conservative 
model

Prediction 
of probabilistic 
model

Prediction 
of miRNA 
model

3027b RPA1 Yes Maute et al.  [16] 0.58 (Yes) 0 (No) 0.06 (No) Yes

3009a DGCR2 Yes Kuscu et al. [11] 0.26 (No) 0 (No) 0.72 (No) No

3009a SLC6A9 Yes Kuscu et al.  [11] 0.89 (Yes) 0 (No) 0.30 (No) No

3009a SMAD1 Yes Kuscu et al.  [11] 0.73 (Yes) 0.62 (Yes) 0.03 (No) No

3009a TBL1X Yes Kuscu et al. [11] 0.10 (No) 0 (No) 0.32 (No) No

3009a FER Yes Kuscu et al. [11] 0.86 (Yes) 0 (No) 0.05 (No) Yes

5030c LRP8 Yes Deng et al.  [42] 0.89 (Yes) 0.47 (No) 0.17 (No) Yes

3027b STAG2 No Maute et al. [16] 0.22 (No) 1 (Yes) 0.01 (No) No

3027b NSD3 No Maute et al.  [16] 0.21 (No) 1 (Yes) 0.02 (No) No

http://trftars.cmuzhenninglab.org:3838/tar/
http://trftar.cmuzhenninglab.org:3838/tar/
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extended the discovery to all tRFs. We first comprehen-
sively assessed features for effective tRF-mRNA inter-
action by statistical analysis and discovered that tRFs 
could indeed act similarly to miRNAs, with most features 
involved in miRNA targeting significantly different from 
those in the background. Features with the most sig-
nificant variance between the positive group and back-
ground were the MFE, position 8 match, number of bases 
paired in the tRF-mRNA duplex, and length of the tRF, 

which were consistent with previous findings [11, 14]. 
The intrinsic mechanisms that influenced the interac-
tions can be explained by binding affinity and target site 
accessibility [28]. SVM was used to incorporate all these 
features and to determine the contributions of individual 
features to target predictions.

We validated the effectiveness of our SVM-GA model, 
obtaining an AUC = 0.847 during the internal validation 
process. Furthermore, seven of nine target/nontarget 

a

c

d

b

Fig. 5  Search the tRF targets in tRFTars with an example of 3001a. a Overview of the Search page interface. b Users can search the target according 
to the tRFs in tRFdb or anticodon/ amino acid of the source tRNA. c Users can input the corresponding name and rank the target candidates 
according to positive possibility assigned by the SVM-GA model, the conservative score or the sites overrepresented by the probabilistic model. d 
The result panel of the target site of tRF 3001a
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genes confirmed by reporter assay were predicted suc-
cessfully, far greater than the number obtained with 
miRNA target prediction algorithms. For example, 
Maute et al. demonstrated that 3027b (CU1276) (human) 
overexpression by both tRNA and tRF hairpin transfec-
tions significantly repressed RPA1 in a B-cell lymphoma 
line, as determined using 3′-UTR reporter assays, west-
ern blotting, and qRT-PCR [16]. NSD3 (WHSC1L1) 
and STAG2, predicted by TargetScan, showed almost 
no response to 3027b overexpression. This is consistent 
with our predictions. Similarly, SMAD1, SLC6A9, and 
FER (FER1, matching the 3′-UTR sequence of FER in 
the NCBI database), which were validated to be targets 
of 3009a (human) using the luciferase reporter assay and 
RNA-seq by Kuscu et al., were also predicted. Conversely, 
although Maute et  al. found that TargetScan-predicted 
genes were significantly enriched in downregulated genes 
by 3027b, the accuracy rate in the study was less than 10% 
for both tRNA and hairpin transfections [16]. Although 
this was not a gold standard method, the prediction accu-
racy was still unsatisfying.

It is undeniable that this is an unfair comparison 
because these interactions were chosen for validation 
after prediction with algorithms for miRNAs. However, 
our SVM-GA model still outperformed the intersection 
of miRNA target prediction models. We aimed to under-
stand the mechanism underlying this accuracy difference. 
Though our model and other miRNA target prediction 
algorithms considered sequence complementarity, ther-
mostatic calculations of duplex formation, and evolution-
ary properties to rank the potential target candidates, the 
detailed contributions of individual features were differ-
ent. For example, different from the relatively fixed length 
of 22 nts of miRNAs, tRFs have a variable length from 14 
to 40 nts. They may act differently from miRNAs, whose 
13–16 bases play an essential role in targeting in addi-
tion to seed pairing. Moreover, conservation may not be 
a determinant of tRF targeting. Prediction by a probabil-
istic model and conservative model will miss some cases 
because of relatively low sensitivity. While, additional 
complementarity downstream from the seed sequence is 
a more essential feature for tRF targeting. Accounting for 
such complementarity can lead to relatively good model 
performance by considering the secondary structure of 
the tRF-mRNA duplex.

However, we investigated why the system missed pre-
dicting targets of 3009a, TBL1X and DGCR2 in two 
cases. Both target sequences were located in the mid-
dle of long 3′-UTRs with a relatively high GC content 
near the seed matches, which was in conflict with the 
requirements for site accessibility. Although TBL1X had 
seven additional bases paired with 3009a, it was not the 
most stable structure because of intrinsic pairing within 

secondary structures near the seed match, as predicted 
by RNAup. However, we believe that extensive base pair-
ing can occur when the interacting molecules are present 
at high concentrations, which could contribute to effec-
tive 3009a-TBL1X interactions. Furthermore, although 
DGCR2 had five additional bases paired with 3009a, the 
resulting duplex had a higher MFE, which was contrary 
to the expectation of site affinity.

This study had some limitations. First, we did not allow 
any mismatches or bulges when mapping reads to tRNAs 
or 3′-UTRs. To avoid influences of the RNase step in the 
CLASH protocol and the inclusion of tRFs from random 
tRNA degradation products, we included only the tRFs 
in tRFdb in our model. We adopted stringent inclusion 
criteria at the expense of excluding some effective pairs 
in the positive group. Second, it was difficult to conduct 
large-scale precision validation of tRF target genes. We 
observed a tendency for predicted targets with higher 
positive probability in SVM-GA model to be more sup-
pressed in mRNA levels. More experiments that quantify 
tRF repression strength by transfection or knockdown of 
a particular tRF will be conducted in different cells and 
under different conditions to improve our model. Third, 
the hg38 sequence information of tRFs is not updated 
in public databases. Additionally, tiRNAs and tRFs not 
included in tRFdb, such as 5′-tiRNAVal and tRF5-Glu, 
which have been reported to repress mRNA by seed 
pairing [18, 44, 45], were not considered in this version. 
Fourth, exceptional cases, such as contiguous pairing of 
the 3′-end and non-canonical binding, need to be further 
investigated [42]. We will also investigate whether tRF-
specific features act in tRF targeting.

Conclusions
The tRFTars is the first website to predict the target of 
tRF in humans. We intend to update predictions of the 
website as more tRFs identified to be functional, and plan 
to extend our model to more species. This website pro-
vides convenience to identify potential human targets of 
particular tRFs for experimental confirmation. Further-
more, it will greatly facilitate our understanding of gene 
regulation and the functions of tRFs.
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