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Exogenous interleukin‑33 promotes 
hepatocellular carcinoma growth 
by remodelling the tumour microenvironment
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Abstract 

Background:  Interleukin-33 (IL-33) is an effective inducer of pro-inflammatory cytokines regulating innate and adap-
tive immunity. Inflammation could be a double-edged sword, promoting or inhibiting tumour growth. To date, the 
roles and mechanisms of IL-33 in tumours remain controversial. Here, we examined the effect of exogenous IL-33 on 
the biological characteristics of hepatocellular carcinoma (HCC) and the possible mechanism of action.

Methods:  In this study, IL-33 expression in the tissues of 69 HCC patients was detected and its relationship with 
prognosis was evaluated. After establishing a mouse HCC model and IL-33 treatment operation, the infiltration of 
splenic myeloid-derived suppressor (MDSCs), dendritic (DCs), regulatory T, and natural killer (NK) cells was detected 
by flow cytometry analysis, and the vascular density of the tumour tissues was detected by immunohistochemistry 
to reveal the mechanism of IL-33 in HCC proliferation. Finally, the Cancer Genome Atlas database was used to analyse 
Gene Ontology terms the and Kyoto Encyclopaedia of Genes and Genomes pathway. Moreover, the chi-square test, 
two-tailed unpaired Student’s t-test, and multiple t-tests were performed using SPSS version 23.0 and GraphPad Prism 
8.0 software.

Results:  The IL-33 expression level was negatively correlated with the overall survival of HCC patients, suggesting 
its potential clinical significance in the prognosis of HCC. We found that systemic IL-33 administration significantly 
promoted the tumour size in vivo. Furthermore, the IL-33-treated mice presented decreased frequencies of tumouri-
cidal NK and CD69+ CD8+ T cells. After IL-33 treatment, the incidence of monocytic MDSCs and conventional DCs 
increased, while that of granulocytic MDSCs decreased. Moreover, IL-33 promoted the formation of intracellular 
neovascularization. Therefore, IL-33 accelerated HCC progression by increasing the accumulation of immunosuppres-
sive cells and neovascularization formation. Finally, we found that the transcription of IL-33 was closely related to the 
PI3K-Akt and MAPK pathways in Gene Set Enrichment Analysis plots, which were involved in the tumourigenesis and 
pathogenesis of HCC.

Conclusions:  Taken together, IL-33 may be a key tumour promoter of HCC proliferation and tumourigenicity, an 
important mediator, and a potential therapeutic target for regulating HCC progression.
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Background
Interleukin-33 (IL-33) has been described as a potent 
promoter of type II immunity that triggers an innate 
immune response to allergic inflammation and parasitic 
infections [1]. Since 2005 the function of IL-33, as a plei-
otropic cytokine, has been widely studied. IL-33 has been 
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found to be involved in the occurrence of many diseases, 
such as atherosclerosis [2] and obesity [3], and plays a 
pro-inflammatory role in asthma [4] and antigen-induced 
arthritis [5]. Endogenous IL-33 is released into the extra-
cellular system, which alerts the immune system after cell 
damage or necrosis. Activated IL-33 binds to a co-recep-
tor, a heterodimer composed of ST2 and IL1RAP, and 
initiates inflammatory pathways [6]. In addition, IL-33 
recruits signal adapters and kinases to activate transcrip-
tion factors in tumour cells, which produce the tumour-
associated inflammatory microenvironment [7].

ST2 is an IL-33 specific receptor encoded by the gene 
IL1RL1, expressed mainly by immune cells [8]. The com-
bination of IL-33 and ST2 activates a variety of ST2+ 
immune cells including the group 2 innate lymphoid 
(ILC2), regulatory T (Tregs), and dendritic cells (DCs), 
thus, inducing the secretion of various chemokines and 
proinflammatory cytokines and regulating local and sys-
temic immunity [9]. The involvement of IL-33 in innate 
and adaptive immunity is bidirectional. When exposed to 
IL-33, DCs could promote the proliferation and differen-
tiation of naive CD4+ T cells [10]. IL-33 could also indi-
rectly regulate Tregs by activating ILC2s, DCs, or mast 
cells [11]. Therefore, IL-33 is the main regulator of Tregs 
and ILC2s, and has multiple activities in type I, type II, 
and immune regulation [12].

Further, IL-33 promotes inflammatory events in 
tumours and activates pro- or anti-tumour responses 
[13]. In pancreatic cancer, IL-33 is responsible for the 
upregulation of proinflammatory cytokines, such IL-6 
and IL-8 [14]. Transgenic IL-33 activates natural killer 
(NK) and T cells, resulting in growth inhibition and 
metastasis of melanoma and lung cancer [15]. The IL-33/
ST2 pathway upregulates CD40L and suppresses the 
growth of murine colon cancer [16]. However, IL-33 
enhances type II immune response accelerating tumour 
progression in tumour-bearing animals [17]. Colon can-
cer transfection with IL-33 promotes tumour metasta-
sis by accumulating myeloid-derived suppressor cells 
(MDSCs) to regulate the tumour microenvironment 
(TME) [18]. ST2+ tumour-associated macrophages 
are recruited into the TME by CXCR3 to suppress host 
immunity and ST2 knockout mice inhibit colorectal 
cancer growth in combination with anti-PD-1 antibody 
[19]. Tumour-derived IL-33 activates mast cells and mac-
rophages, promoting the development of gastric cancer 
[20]. Therefore, the role of IL-33 in cancer remains con-
troversial. In a previous study on hepatocellular carci-
noma (HCC), the RS3821204 genotype of plasma ST2 
was positively correlated with HCC risk in Chinese indi-
viduals [21]. Interestingly, IL-33 in stromal cells regulated 
by the pDGF-BB-SOX7 axis promoted HCC metastasis 
through tumour-associated macrophages [22]. However, 

tumour-infiltrating effector-memory CD8+ T cells in 
surgically resected tissues producing IL-33 could pro-
long the survival of HCC patients [23]. In addition, IL-33 
released by the liver inhibits HCC growth by promot-
ing T cell response [24]. Therefore, the effect of IL-33 on 
HCC by the regulation of the immune system should be 
further studied.

Here, we examined the effect of exogenous IL-33 on 
the biological characteristics of HCC in human tissues 
and in mice, and predicted the most relevant pathways 
of IL-33-associated genes. Our study explored the cor-
relation between IL-33 expression and the prognosis of 
patients, suggesting that IL-33 may be a marker of poor 
HCC prognosis. Moreover, the mechanism of IL-33 was 
explained in terms of tumour microenvironment remod-
elling, secretion of factors promoting tumour prolifera-
tion, and microvascular density. Finally, we proposed the 
scope for future development direction and research 
regarding the mechanisms and roles of IL-33.

Methods
Samples
The HCC tissue array was purchased from Shang-
hai Outdo Biotech (Shanghai, China). The cases were 
enrolled based on their clinical follow-up data and the 
absence of preoperative history of chemoradiotherapy. 
The Edmondson and Steiner classification was used 
to grade the tumour [25]. The TNM staging was used 
in accordance with the American Joint Committee on 
Cancer guidelines. The age of the 69 HCC patients in 
the HCC tissue array ranged from 16 to 75 years (mean 
age, 49  years). The follow-up time ranged from 0.36 to 
155  months (mean time, 32.8  months). Sixty-nine para-
cancer tissues pathologically diagnosed as normal were 
obtained from tissues ≥ 5  cm away from the tumour of 
HCC patients. Five para-cancer tissue samples were 
damaged during the heat-induced antigen retrieval pro-
cess. Finally, a total of 69 HCC patients and 64 paired 
para-carcinoma controls were included in the analysis. 
Information on the relationship between IL-33 and clin-
icopathological features of the HCC patients is presented 
in Tables 1 and 2. The study protocol was approved by the 
ethics committee of the Third Affiliated Hospital of Soo-
chow University and conducted in accordance with the 
Declaration of Helsinki. All patients provided informed 
consent for participation.

Cell culture
Hepa1-6, an HCC cell line in mice, was purchased from 
the National Platform for Experimental Cell Resources 
(Beijing, China). Hepa1-6 cells were maintained in 
DMEM (Hyclone Laboratories, Logan, UT, USA), and 
10% (v/v) foetal bovine serum (ExCell Bio, Clearwater, 
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FL, USA) was added. Cell lines were routinely examined 
for cell morphology and mycoplasma.

Experimental animals
Several female C57BL/6 mice (age, 6–8  weeks) were 
obtained from Shanghai Laboratory Animal Centre 
(Shanghai, China). These mice were placed in spe-
cific pathogen-free facilities. All animal treatment 

procedures, such as mouse care and experimental pro-
cedures, were reviewed by the Animal Ethics Com-
mittee of The Third Affiliated Hospital of Soochow 
University. The animals were fed in strict accordance 
with operating procedures and provided a clean and 
comfortable living environment; the animals were han-
dled at appropriate intervals, and measures were taken 
to minimise animal suffering.

Table 1  Correlation between IL-33 expression and clinicopathological characteristics of HCC

Italic font indicates significant differences (P < 0.05)

Clinicopathological 
characteristics

Cases IL-33 expression level χ2 P value

Low (H-score < 68) High (H-score ≥ 68)

Age (years)

 60 55 28 27 0.289 0.591

 ≥ 60 14 6 8

Sex

 Male 59 28 31 0.538 0.463

 Female 10 6 4

Number of tumours

 Single 40 18 22 0.696 0.404

 Multiple 29 16 13

Tumour size (cm)

 ≤ 5 18 11 7 1.365 0.243

 > 5 51 23 28

Capsule integrity

 No 39 20 19 0.145 0.704

 Yes 30 14 16

HBV positivity

 Negative 8 1 7 4.896 0.027

 Positive 61 33 28

TNM stage

 I + II 30 13 17 0.75 0.387

 III + IV 39 21 18

Edmondson type

 I + II 45 24 21 0.852 0.356

 III 24 10 14

Cirrhosis background

 Absent 11 3 8 2.535 0.111

 Present 58 31 27

Venous invasion

 No 61 32 29 2.133 0.144

 Yes 8 2 6

Recurrence

 No 46 24 22 0.464 0.496

 Yes 23 10 13

Metastasis

 No 65 33 32 1.001 0.317

 Yes 4 1 3
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HCC model
A murine HCC model was established in the current 
study. A suspension of Hepa1-6 cells was prepared using 
phosphate-buffered saline (PBS), before implantation. 
Then, the syngeneic female mice (age, 6–8  weeks) were 
anesthetised with chloral hydrate. A total of 8 × 106 
Hepa1-6 cells resuspended into 80 µL PBS were injected 
subcutaneously on day 0 into the back of the mice. Then, 
the mice were injected with the murine recombinant 
IL-33 protein (0.4  µg/mouse; PeproTech, Cranbury, NJ, 
USA) or PBS intraperitoneally five times every other 
day starting from day 3. Finally, the mice were sacrificed, 
and tumour volumes were calculated using the following 
formula:

Immunohistochemistry
Tissue sections were incubated with primary antibod-
ies for anti-human IL-33 (R&D Systems, Minneapolis, 
MN, USA), anti-mouse Ki67, CD31, SA1009, vascu-
lar endothelial growth factor (VEGF; all obtained from 
Abcam, Cambridge, UK), or matching IgG isotypes 
overnight. Then, the sections were conjugated with sec-
ondary antibody. For the tissue array, Pannoramic MIDI 
(3DHISTECH, Budapest, Hungary) was used to scan 
the tissue points. All the immunohistochemical reac-
tions were evaluated by three experienced pathologists 
who were blinded to clinical information according to 

Tumour volume =
(

length× width2
)

/2.

the H-score method [26]. The H-score was calculated as 
follows:

The maximum H-score was defined as 300, based on 
100% cells exhibiting strong intensity. The experiment 
was independently repeated three times.

Cell proliferation assay
The cell proliferation potential was performed with the 
cell counting kit-8 assay (CCK8; Invitrogen, Waltham, 
MA, USA) in  vitro. Hepa1-6 cells (5000 cells per well 
plate) were plated to 96-well plates with IL-33 concen-
trations of 10, 20, 50, and 100 ng/ml for 48 h and, then, 
detected by CCK-8 (Dojindo Laboratories, Kumamoto, 
Japan) with a microplate reader. The experiment was 
independently repeated three times.

Quantitative reverse‑transcription polymerase chain 
reaction (qPCR)
RNA from murine HCC was extracted with Trizol rea-
gent (Invitrogen). Especially, 1 μg RNA was reverse tran-
scribed into cDNA with RevertAid First Strand cDNA 
Synthesis Kit (Servicebio, Wuhan, China) and, then, 
qPCR was performed using FastStart Universal SYBR 
Green Master (Servicebio) with the Prism 7900H system 
(Thermo Fisher Scientific, Waltham, MA, USA). We cal-
culated the relative quantification of mRNA expression 

H-score =
(

percentage of cells of weak intensity× 1
)

+
(

percentage of cells of moderate intensity× 2
)

+
(

percentage of cells of stringe intensity× 3
)

Table 2  Cox-regression analysis of the correlation between IL-33 expression and prognostic parameters in HCC patients

Italic font indicates significant differences (P < 0.05)

HR hazard ratio, CI confidence interval

Parameter Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age (year)

 (≥ 60 vs. < 60) 0.873 (0.452–1.684) 0.685 1.681 (0.797–3.543) 0.172

Number of tumours

 (Multiplies vs. Single) 1.579 (0.937–2.659) 0.086 1.863 (1.053–3.297) 0.033

Sex

 (Female vs. male) 0.341 (0.135–0.861) 0.023 0.351 (0.131–0.939) 0.037

Tumour size (cm)

 (> 5 vs. ≤ 5) 1.576 (0.862–2.883) 0.14 1.333 (0.680–2.616) 0.403

Capsule integrity

 (Yes vs. no) 0.513 (0.300–0.879) 0.015 0.637 (0.358–1.131) 0.124

Venous invasion

 (Yes vs. no) 2.54 (1.217–5.302) 0.013 2.596 (1.140–5.910) 0.023

IL-33 expression

 (High vs. low) 1.890 (1.111–3.216) 0.019 1.906 (1.099–3.305) 0.022
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using the delta-delta Ct method [27] and normalised the 
PCRs utilising GAPDH as the reference gene. The prim-
ers are listed in Additional file  1: Table  S1. The experi-
ment was independently repeated three times.

Flow cytometric analyses
Single cell suspensions of splenocytes and fresh tumour 
tissues from mice were incubated with fluorochrome-
labelled anti-mouse antibodies specific for CD45, CD3, 
CD4, CD8, NK1.1, Ly6G, CD69, CD44, CD62L, CD11b, 
CD11c, Gr1, Ly6C, major histocompatibility complex 
(MHC) class II, B220, or isotype-matched controls (eBio-
science, Thermo Fisher Scientific). For the foxp3 nuclear 
protein, cells were permeabilised using Transcription 
Factor Staining Buffer Set (Invitrogen) for 30 min. Then, 
they were analysed using FACSCalibur Flow Cytometer 
(BD Pharmingen, San Jose, CA, USA). The experiment 
was independently repeated three times.

Statistical analysis
The chi-square, two-tailed unpaired Student’s t-, and 
multiple t-tests were performed using SPSS (version 23.0; 
IBM Corp., Armonk, NY, USA) and GraphPad Prism 8.0 
(San Diego, CA, USA) software. Overall survival (OS) and 
disease-free survival (DFS) curves were conducted with 
the log-rank test according to the Kaplan–Meier method. 
Data (means ± standard deviations) were repeated at 
least three independent times. The statistical significance 
level was set at P < 0.05. Gene Ontology (GO), Kyoto 
Encyclopaedia of Genes and Genomes (KEGG), and 
Gene Set Enrichment Analysis (GSEA) were performed 
with R package clusterProfiler, R package DOSE, and R 
package org. Hs.eg.db (R Foundation for Statistical Com-
puting, Vienna, Austria). For GSEA plots, false discovery 
rate q-value (P. adjust) ≤ 0.25, nominal P-value < 0.01, 
and |normalised enrichment score|≥ 1 were regarded as 
significant.

Results
IL‑33 is upregulated in HCC
To determine the role of IL-33 in HCC patients, we ini-
tially explored IL-33 expression in a tissue array contain-
ing 69 HCC and 64 paired adjacent normal tissue samples 
(five para-cancer tissue samples were damaged during the 
heat-induced antigen retrieval process). Immunostain-
ing with different intensities of IL-33 was shown in the 
cytoplasm in HCC tissues (Fig.  1a; Left-strong, moder-
ate, weak). Weak or negative staining (Fig.  1a; right) of 
IL-33 was found in the adjacent normal tissues. Through 
the quantitative analysis of IL-33 expression, we found 
that it was upregulated in the HCC tissue compared with 
that in the adjacent tissue (Fig. 1b). To exclude the influ-
ence of individual differences, we further analysed IL-33 

expression in 64 paired HCC and adjacent para-cancer 
tissues in this dataset and found that it was significantly 
upregulated in the 44 paired HCC tissues compared with 
the adjacent tissues (Fig. 1c).

High IL‑33 expression in HCC correlates with poor patient 
survival and advanced clinicopathological features
To understand the clinical implications of upregulat-
ing IL-33, we analysed the correlation between IL-33 
expression and clinicopathological characteristics in 
HCC patients. Higher IL-33 expression was significantly 
correlated with Hepatitis B virus positivity (χ2 = 4.896; 
P = 0.027) but not with sex, tumour size, TNM stage, or 
differentiation (Table 1).

We further analysed the clinical follow-up time of 69 
HCC patients. Compared with patients with low IL-33 
expression, those with high IL-33 expression had signifi-
cantly shorter OS (P = 0.0145; hazard ratio [HR], 1.853; 
95% confidence interval [CI] 1.096–3.134) (Fig.  1d). 
Moreover, the differences were even more significant 
in the DFS of HCC patients (P = 0.0145; HR, 2.428; 95% 
CI 1.107–5.326) (Fig. 1e). We also analysed the effect of 
IL-33 expression on the prognosis of HCC. In univari-
ate Cox regression analyses, high expression of IL-33 
was associated with increased death risk in HCC patients 
(P = 0.019; Table  2). Furthermore, IL-33 expression in 
HCC patients (P = 0.022) could be identified as an inde-
pendent prognostic predictor in multivariate Cox regres-
sion analysis (Table 2).

Exogenous IL‑33 leads to accelerated HCC growth
To examine the effect of IL-33 on tumour progression, 
the murine HCC model was established in Hepa1-6 
cells. HCC developed aggressively in the IL-33-treated 
experimental group, as reflected by the gross view of the 
mice (Fig. 2a) and tumour (Fig. 2b, Additional file 2: Fig-
ure S1a). The tumour weight was significantly higher in 
the IL-33-treated than in the PBS-treated mice (Fig. 2c, 
Additional file  2: Figure S1b). In addition, the tumour 
volume increased rapidly after IL-33 treatment, with sig-
nificant difference at multiple time points compared with 
that in untreated mice (Fig. 2d, Additional file 3: Figure 
S2c). Therefore, IL-33 treatment was found to dramati-
cally promote Hepa1-6 growth in vivo.

Although no significant difference was observed in 
haematoxylin and eosin (H&E) staining between mice 
treated with IL-33 or those that were not, it was clear that 
Hepa1-6 cells were loosely arranged with large nuclear 
malformation and imbalance of nuclear plasma in these 
mice (Fig.  2e, Additional file  2: Figure S1d). The stain-
ing intensity of the proliferative marker Ki67 in the IL-
33-treated experimental group was stronger and more 
significant compared with that in the control group 
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(Fig. 2f, Additional file 2: Figure S1e). This suggested that 
IL-33 augmented the proliferation of Hepa1-6 HCC tis-
sues in mice. However, IL-33 had no direct effect on 
the proliferation of Hepa1-6 cells in  vitro (Fig.  2g). The 

efficacy of IL-33 may be partly attributable to tumour 
immunogenicity rather than to the changing intrinsic 
characteristics of tumour cells, as reported in literature 
[28].
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IL‑33 may remodel the tumour microenvironment (TME)
To investigate whether exogenous IL-33 affects HCC 
occurrence by regulating the immune system, we exam-
ined immune cell phenotypes in the spleen and tumours 
of Hepa1-6-bearing mice treated with IL-33 and those 
who were not (Fig.  3). IL-33 administration markedly 
increased CD45+ leukocyte immune cell infiltration on 
day 11 after the tumour challenge (Fig.  3a). Moreover, 
we observed a decrease in frequencies of intratumoural 
NK cells in tumour-bearing mice with IL-33 treatment 
(Fig.  3a). The percentage of activated CD69+CD8+ T 
cells was remarkably downregulated in the IL-33-treated 
group (Fig.  3b). However, effector (CD44+CD62L−) or 
naive (CD44−CD62L+) CD4+ T and CD8+ T cells were 
not affected by IL-33 administration (Additional file  3: 
Figure S2a, b). In addition, no significant difference was 
observed in the mRNA levels of IFN-γ between the two 
groups (Additional file 3: Figure S2c). These results dem-
onstrated that IL-33 may promote tumour progression by 
reducing the proportion of CD8+ T and NK cells in vivo.

Meanwhile, IL-33 increased the splenic infiltration of 
immunosuppressive cells in tumour-bearing mice. Tregs, 
which play critical roles in immunosuppression, were sig-
nificantly increased in spleens when compared with the 
corresponding in PBS-treated mice (Fig.  3c), but not in 
the tumour tissue (Fig. 3a). Moreover, IL-33-treated mice 
exhibited a pronounced increase in CD11c−CD11b+Gr1+ 
MDSCs, which led to tumour immune escape and 
tumourigenesis (Fig.  3d). Monocytic MDSCs increased 
and granulocytic MDSCs decreased after IL-33 treatment 
in tumour-bearing mice compared with that in the con-
trol group, albeit not significantly (Fig. 3e). Furthermore, 
IL-33 administration influenced the incidence of splenic 
DC subpopulations. Significant increases in the percent-
age of CD11c+ and CD11c+CD11B+ DCs were found in 
tumour-bearing mice treated with IL-33 (Fig. 3f, g).

Moreover, the MHC II expressed on DCs had an effect 
on evoking efficient anti-tumour immune responses. 
MHC II expression in splenic DCs decreased in response 
to IL-33 administration, thus, blocking DC matura-
tion and their cross-presentation ability (Fig.  3h). In 
addition, IL-33 treatment reduced the percentage of 
CD11c+CD11b+B220−MHCII+ conventional DCs 
(Fig. 3i).

IL‑33 induces tumour‑promoting cytokine 
and neomicrovessel formation
To investigate the influence of exogenous IL-33 on pro-
inflammatory factors, such as IL-6, IL-1β, and tumour 
necrosis factor (TNF)-α, we measured their mRNA 
expressions, which are known to stimulate tumour pro-
liferation and angiogenesis [29]. Although there was a 
slight difference in the IL-6 and TNF-α mRNA levels, the 

IL-1β cytokine levels were elevated in tumours injected 
with IL-33 (Fig.  4a). Then, we detected the chemokines 
that recruited myeloid cells into the TME and mediated 
angiogenesis [30]. The results showed that the mRNA 
levels of Csf2, Ccl2, Ccl5, and Cxcl1 chemokines signifi-
cantly increased after IL-33 treatment (Fig. 4b). In addi-
tion, exogenous IL-33 enhanced the immunostaining 
intensity and mRNA levels of S100A9 (Fig. 4c, d), which 
induced epithelial-mesenchymal transition and led to 
tumour occurrence [31]. Therefore, IL-33 may induce 
chemokines (e.g. Cxcl1), which enhanced the recruit-
ment of myeloid cells secreting S100A9 to promote 
tumour progression.

Moreover, the microvascular density was approxi-
mately higher in experimental than in untreated mice 
(Fig. 4g), indicating significant microvascular generation. 
A past study showed that IL-33 could initiate vascular 
remodelling through upregulating VEGF expression in 
hypoxic pulmonary hypertension [32]. As a key signal 
to stimulate angiogenesis, VEGF was highly expressed 
after IL-33 treatment, supporting our previous conclu-
sion (Fig.  4e, f ). In addition, IL-33 elevated the immu-
nohistochemistry (IHC) staining intensity of endothelial 
cell marker like CD31, an indicator of neomicrovessels 
(i.e. blood and lymphatic vessels), which suggested that 
active angiogenesis and lymphangiogenesis occurred in 
IL-33-treated tumours (Fig. 4h).

Predictions of the functions and pathways of IL‑33 
and the genes significantly associated with IL‑33 
alterations
To explore the functions of IL-33 and the genes that 
were significantly associated with IL-33 alterations, 
GO and KEGG pathway enrichment analyses were per-
formed. As presented in Fig.  5a–c, biological processes, 
such as GO: 0030198 (extracellular matrix organiza-
tion), GO: 0043062 (extracellular structure organization), 
GO: 0043542 (endothelial cell migration), GO: 0001667 
(ameboid-type cell migration), and GO: 0090130 (tis-
sue migration), were remarkably regulated by the IL-33 
alterations in HCC patients (Fig.  5a). Cellular compo-
nents and molecular functions including GO: 0062023 
(collagen-containing extracellular matrix), GO: 0005911 
(cell–cell junction), GO: 0005201 (extracellular matrix 
structural constituent), and GO: 0005539 (glycosamino-
glycan binding) were significantly associated with these 
IL-33 alterations (Fig. 5b, c). The KEGG pathway analy-
sis showed that the most enriched pathways were 04151 
(PI3K-Akt signalling pathway), 04022 (cGMP-PKG sig-
nalling pathway), 04020 (Calcium signalling pathway), 
04611 (Platelet activation), and 04371 (Apelin signalling 
pathway), which were associated with tumourigenesis 
and HCC progression (Fig. 5d).
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In addition, GSEA was conducted to search GO terms, 
KEGG pathways, and Reactome using the HCC TCGA 
database. In these ridge plots, many pathways involved 

in tumourigenesis and cell cycle were related to IL-33 
alterations (Fig. 6a–c). Among these pathways, we listed 
the two most common functional gene sets enriched in 
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HCC with high IL-33 expression. GSEA-based KEGG-
enrichment plots showed that the gene signatures of 
the PI3K-Akt (Fig.  6d) and MAPK signalling pathways 

(Fig.  6e) were highly correlated with IL-33 expression, 
which contributed to the tumourigenesis and progres-
sion of HCC.
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Discussion
Our study examined the effects of exogenous IL-33 on 
the biological characteristics of HCC in human tissues 
and in mice. We observed a higher IL-33 expression 
in liver cancer than in para-cancer tissues (Fig.  1a–c). 
Meanwhile, we verified that increased IL-33 expression 
was closely related to short OS and DFS in HCC patients 
(Fig. 1d, e). Studies have shown that the serum IL-33 [33] 
and ST2 [34] levels were associated with a worsened clin-
ical prognosis of various diseases. Our study suggested 
that IL-33 may be a marker of poor prognosis in HCC 
patients. Repeated injection of IL-33 accelerated liver 
cancer growth in mice, as shown by the increased tumour 
size, weight, and Ki67 expression in the HCC tissue sec-
tions (Fig.  2a–f). However, IL-33 did not demonstrate 
Hepa1-6 cell proliferation in  vitro, excluding its direct 
effect on tumour cells (Fig.  2g). Therefore, we hypothe-
sized that IL-33 could play a role in tumour occurrence 
by influencing the TME [12], similar to its role in breast 
cancer [17].

Exogenous IL-33 increased CD45+ leukocyte immune 
cells and decreased NK cell infiltration in tumours 
(Fig.  3a). The percentage of activated CD69+CD8+ T 
cells in the spleen was significantly downregulated in 
IL-33-treated mice (Fig. 3b). This reflects the important 
pathophysiological role of exogenous IL-33 in immune 
effector cells. Contrary to our findings, several studies 
have shown that IL-33 promotes type I immune response. 
Indeed, the antiviral immune response requires IL-33 
signalling in CD8+ T cells [35]. IL-33 enhances NK and 
CD8+ T cell function, thereby, inhibiting tumour growth 
in transgenic mice [36]. High levels of IL-33 promote 
invasion of the TME by CD8+ T cells, NK, and NKT 
where they mediate their antitumour response [37]. The 
underlying cause of the difference between our findings 
and the corresponding of these studies remains unclear. 
We speculated that the immune effect of IL-33 may be 
influenced by its dose and microenvironment.

Several studies have supported the pro-tumour effect 
of IL-33, in line with our findings. Low levels or systemic 
IL-33 administration might induce immune tolerance in 
mice [38]. IL-33 administration promotes stemness in 
colon cancer cells by recruiting macrophages [39]. This 
may be because systemic injection of IL-33 elicits a broad 
immune response that promotes tumour growth in mice. 
MDSCs, Tregs, and immature DCS were treated as inhib-
iting antitumour immunity and promoting tumour angio-
genesis [40]. IL-33 promoted the accumulation of MDSCs 
in the spleen of mice (Fig. 3d) and affected the frequency 
of monocytic and granulocytic MDSCs (Fig.  3e). How-
ever, the immunosuppressive ability of different subsets is 
not clear [41]. MDSCs are recruited from peripheral lym-
phoid organs to tumour sites, promoting the production 

of CD4+Foxp3+Tregs [42]. Our results showed increased 
DCs (Fig. 3f, g), whereas CD11c+CD11b+B220−MHCII+ 
conventional DCs decreased in response to IL-33 (Fig. 3i). 
Therefore, we speculated that IL-33 might increase plas-
macytoid DCs in the TME, showing a powerful immu-
nosuppressive property by inhibiting T cell activation or 
promoting Tregs development [43], which is consistent 
with the increase in Tregs frequency in our data (Fig. 3c). 
In addition, IL-33 induces immature DCs, which have 
poor stimulation and lower MHC II expression (Fig. 3h). 
IL-33 accelerated HCC progression by increasing the 
accumulation of immunosuppressive cells and inhibiting 
immune effector cells.

IL-33 enhanced the mRNA levels of pro-inflammatory 
factor TNFα, which might stimulate tumour proliferation 
and angiogenesis (Fig.  4a). Further exploration revealed 
that chemokines (e.g. Cxcl1), which might favour the 
recruitment of myeloid cells into the TME, were signifi-
cantly increased after IL-33 treatment (Fig. 4b). Once mye-
loid cells were recruited into the TME, pro-inflammatory 
cytokines that promote tumour proliferation were secreted 
[44]. Thus, increased S100A9 was found at the RNA and 
protein levels after IL-33 treatment (Fig. 4c, d), which may 
provide a pre-metastatic niche that could lead to tumour 
occurrence. In addition, IL-33 induced angiogenesis and 
vascular permeability, as demonstrated in a study of a 
murine asthma surrogate [45]. In our IHC staining data, 
CD31 and VEGF expression was significantly increased in 
HCC tissues after treatment with IL-33 (Fig.  4e, h). This 
was consistent with the higher VEGF levels, as observed in 
the PCR test (Fig. 4f), and the higher microvascular den-
sity (Fig. 4g) observed in the experimental group.

IL-33 is considered to be a reactive inducer of the 
immune system to inflammation and malignancy. Stud-
ies have shown that the presence of some inflammatory 
factors could also affect the biological function of IL-33. 
IL-2 and IL-33 synergistically induce IFN-γ and enhance 
IL-33-driven immune response. High levels of IL-33 
in the presence of pathogen-associated molecular pat-
tern–induced IL-12 promote type I anti-tumour immune 
response [46]. In the presence of immunosuppressive fac-
tors (e.g. tumour growth factor-β), tumour stromal IL-33 
plays an immunosuppressive role through Tregs and 
MDSCs.

IL-33, as an effective vaccine adjuvant combined with 
human papilloma virus vaccine enhances anti-tumour 
immunity of CD8+ T cells in  vivo [47]. In addition, the 
combination of IL-33 blockers with programmed death-1 
monoclonal antibodies could successfully inhibit acute 
myeloid leukaemia, and its combination with imatinib 
could also prevent chronic myeloid leukaemia resistance 
[48]. The effect of antibody drugs against IL-33 could be 
examined through clinical trials for asthma and other 
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diseases. IL-33 mediates the invasion of tumour-associ-
ated fibroblasts promoting the development of head and 
neck squamous carcinoma in the TME [49], suggesting 
that IL-33 may be a key mediator between the stromal 
cells and tumour. However, the manner in which IL-33 
expression regulates tumour epithelial and stromal cells 
remains unclear. Considering the dual role of IL-33 in 
cancer, it might be considered carefully in drug develop-
ment as a target. In particular, IL-33 has the potential to 
cause inflammation and cancer.

Conclusions
In this study, we examined the effect of exogenous IL-33 
on the biological characteristics of hepatocellular carci-
noma in humans and in mice. We found that the overall 
survival of patients with high IL-33 expression was signif-
icantly shortened, suggesting that IL-33 may be a marker 
of poor prognosis in HCC patients. IL-33 favoured lym-
phocyte invasion of the tumour microenvironment, thus, 
promoting tumour growth and angiogenesis. The mecha-
nism of IL-33 was explained in terms of tumour micro-
environment remodelling, secretion of factors promoting 
tumour proliferation, and microvascular density. IL-33 
may be a key tumour promoter that promotes the pro-
liferation and tumourigenicity of HCC. Considering that 
IL-33 could play a dual role in cancer, it might be consid-
ered carefully in drug development as a target.
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