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Abstract 

Background:  Alternative splicing (AS) plays critical roles in generating protein diversity and complexity. Dysregula-
tion of AS underlies the initiation and progression of tumors. Machine learning approaches have emerged as efficient 
tools to identify promising biomarkers. It is meaningful to explore pivotal AS events (ASEs) to deepen understanding 
and improve prognostic assessments of lung adenocarcinoma (LUAD) via machine learning algorithms.

Method:  RNA sequencing data and AS data were extracted from The Cancer Genome Atlas (TCGA) database and 
TCGA SpliceSeq database. Using several machine learning methods, we identified 24 pairs of LUAD-related ASEs impli-
cated in splicing switches and a random forest-based classifiers for identifying lymph node metastasis (LNM) consist-
ing of 12 ASEs. Furthermore, we identified key prognosis-related ASEs and established a 16-ASE-based prognostic 
model to predict overall survival for LUAD patients using Cox regression model, random survival forest analysis, and 
forward selection model. Bioinformatics analyses were also applied to identify underlying mechanisms and associated 
upstream splicing factors (SFs).

Results:  Each pair of ASEs was spliced from the same parent gene, and exhibited perfect inverse intrapair correla-
tion (correlation coefficient = − 1). The 12-ASE-based classifier showed robust ability to evaluate LNM status of LUAD 
patients with the area under the receiver operating characteristic (ROC) curve (AUC) more than 0.7 in fivefold cross-
validation. The prognostic model performed well at 1, 3, 5, and 10 years in both the training cohort and internal test 
cohort. Univariate and multivariate Cox regression indicated the prognostic model could be used as an independent 
prognostic factor for patients with LUAD. Further analysis revealed correlations between the prognostic model and 
American Joint Committee on Cancer stage, T stage, N stage, and living status. The splicing network constructed of 
survival-related SFs and ASEs depicts regulatory relationships between them.

Conclusion:  In summary, our study provides insight into LUAD researches and managements based on these AS 
biomarkers.
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Background
Lung cancer is the most common and deadliest cancer 
worldwide, in which non-small cell lung cancer (NSCLC) 
accounts for 85% of all cases [1, 2]. NSCLC can be mainly 
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classified into lung adenocarcinoma (LUAD), squamous 
cell carcinoma, and large cell carcinoma, among which 
LUAD is the major histological subtype. Although scien-
tists and clinicians around the world have been making 
great efforts in the fight against LUAD, the survival out-
come of LUAD is still poor because of the complexity of 
tumor initiation and progression, with an average 5-year 
survival rate of 15% [3]. Therefore, intensive study to pro-
vide more effective diagnostic and treatment strategies 
for patients with LUAD is of particular importance.

Findings of The Human Genome Project indicated a 
truth that the number of human protein-coding genes 
(less than 25,000) is far less than the previous estima-
tion from the diversity of human proteome (includ-
ing approximately 100,000 proteins). Further studies 
revealed this proteomic diversity may be attributed to 
post-transcriptional processing in the RNA level. Recent 
estimates indicated that nearly 95% of human genes are 
involved in alternative splicing (AS), where a pre-mRNA 
can be spliced into several mRNA isoforms with different 
functions [4]. Apart from increasing protein complexity, 
translation of mRNA isoforms can also be inhibited by 
AS through the introduction of a premature stop codon 
causing degradation [5]. The dysregulation of AS is impli-
cated with multiple diseases. A growing amount of evi-
dence showed that cancer cells exhibit massive aberrant 
splicings [6–8]. Many studies also demonstrated that the 
switching from oncogenic splicing isoforms to protec-
tive ones for certain genes represents crucial events in 
cancer [9]. These abnormal AS events (ASEs) consist of 
various tumorigenesis processes including cell prolifera-
tion, cell death inhibition, immune escape, and inducing 
angiogenesis [10, 11]. In addition, uncontrolled expres-
sion of splicing factors (SFs) promotes the emerging of 
numerous AS variants that drive carcinogenesis [12]. 
Recent studies targeting transcriptome and epigenetic 
alterations identified many molecules as promising diag-
nostic and therapeutic tumor biomarkers. Likewise, it 
is meaningful to integratively investigate the expression 
alterations of ASEs and identify tumor-specific ASEs for 
LUAD.

Machine learning is a discipline in computer science 
based on algorithms that parse data, learn from data, 
and make predictions or decisions on a wide variety of 
complex issues. The development of machine learn-
ing technology and its wide application in biomedi-
cal studies provide researchers with powerful tools to 
find the most informative detection markers from large, 
highly complex datasets [13]. In this study, we explored 
LUAD-related ASEs implicated in splicing switches, opti-
mal AS signatures identifying lymph node metastasis 
(LNM) statuses of patients with LUAD, and a model to 
predict overall survival (OS) of patients with LUAD by 

applying machine learning algorithms to genome-wide 
AS data. Perfect inverse correlations (correlation coeffi-
cients = − 1) between the identified oncogenic isoforms 
and protective isoforms derived from the same genes 
were exhibited. Results also indicated the two signatures 
have robust predictive capacities. Random-forest based 
algorithm Boruta was used to evaluate the importance of 
ASEs for LUAD. Spearman correlation analysis was used 
to evaluate correlations among important ASEs which 
were originated from the same gene. Then a nested five-
fold cross-validation algorithm was applied to decide the 
proper number of predictors in random forest classifiers. 
Cox regression model and random survival forest (RSF) 
algorithm were used to identify survival-related seed 
genes and the forward selection model was developed to 
identify prognosis-related key genes for model construc-
tion. Bioinformatical analyses were also performed to 
explore correlated pathways, identify upstream SFs, and 
analyze the correlations between the prognostic model 
and clinical variables.

Methods
Data collection and preprocessing
The mRNA data in fragments per kilobase per million 
mapped reads format and patients’ clinical information 
of LUAD were retrieved from The Cancer Genome Atlas 
(TCGA) database (https​://porta​l.gdc.cance​r.gov/). AS 
data of LUAD were downloaded from TCGA SpliceSeq 
(https​://bioin​forma​tics.mdand​erson​.org/TCGAS​plice​
Seq) [14]. The percent-spliced-in (PSI) value, represent-
ing the ratio between reads including or excluding exons, 
was calculated to describe detected ASEs. According to 
splicing patterns, all of these ASEs were classified into 
seven types: exon skip (ES), retained intron (RI), alternate 
donor site (AD), alternate acceptor site (AA), alternate 
promoter (AP), alternate terminator (AT), and mutu-
ally exclusive exons (ME) (Fig.  1a). Only ASEs available 
in more than 70% of samples were included in this study. 
Missing values were imputed using R package impute.

The name of each ASE consists of three parts: gene 
symbol, ID number designated in TCGA SpliceSeq data-
base, and splicing type. For example, the name “CHEK-
19309-AP” indicates the parent gene of this event is 
CHEK, its ID number in TCGA SpliceSeq database is 
19309, and its splicing type is AP.

Machine learning algorithms
Random forests
Random forests is an ensemble learning technique that 
makes a prediction based on constructing multiple 
unpruned decision trees, each of which is constructed on 
several bootstrap samples of the training set data using a 
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subset of randomly picked variables [15]. The tree struc-
ture of random forests can be denoted as:

In the formula, X is an input vector and ψ(t) repre-
sents the independent trees in random forests and each 
tree elects the most popular class for X via a unit vote. 
Then the decisions made by all the trees were aggregated 
and the class of X is determined based on the princi-
ple of majority voting. This supervised non-parametric 
machine learning method can help researchers acquire 
key information from massive complicated data and 
resist both overfitting and underfitting [16].

Boruta
Boruta algorithm is a random-forest based feature selec-
tion method. This algorithm estimates the importance 
of features and captures important features in the data-
set [17]. Through the following workflow, the algorithm 
finds all features that have either strong or weak corre-
lations with the outcome variable: (1) Boruta duplicates 
the given dataset and shuffles these added attributes to 
increase randomness. The new features are called shadow 
features. (2) It develops a random forest classifier on the 
extended dataset and gathers the importance of each 
feature, which was measured by Z-scores. Z-score is 
computed by dividing the average loss of mean decrease 

{h(X ,ψ(t)); t = 1, . . . ,T }.

accuracy by its standard deviation (SD). The higher the 
Z-score, the more important the feature. (3) Then, the 
algorithm checks whether a real feature has a higher 
Z-score than the maximum Z-score among shadow 
attributes. If not, the real feature would be deemed as 
unimportant and removed. Afterward, another itera-
tion would begin. (4) These procedures repeat until the 
importance of all the features is assigned or the algorithm 
reaches the preset limit of runs.

Random survival forests (RSF)
RSF is an extension of the original random forest tech-
nique which can be used for survival data [18]. Based on 
random forests, RSF splits decision trees on a predictor 
using the splitting criterion. A node of the decision tree 
is split on the predictor which makes differences across 
daughter nodes reaching the maximal. In this study, the 
differences were determined by a log-rank splitting rule. 
When the tree grows to its terminal node, the cumula-
tive hazard function (CHF) for each node was calculated, 
which is calculated by the Nelson–Aalen estimator:

In this formula, h, b, and t refer to the terminal node, 
survival tree, and time, respectively. dl,h represents the 

Nb,h(t) =
∑

tl,h≤t

dl,h

Il,h
.

a b

c

Fig. 1  Illustrations of the seven AS types and UpSet plots. a Illustration of the seven types of AS. b Upset plot displaying the number of ASEs 
included in the current study in different types of splicing patterns. c Upset plot displaying selected ASEs after preliminary screening. AS alternative 
splicing, SD standard deviation, ASE alternative splicing event
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number of death, Il,h represents patients at risk, and 
tl,h represents distinct time events. The same CHF is 
assigned to all cases in h. Then an ensemble CHF is 
computed for the survival forest with B trees for a given 
d-dimensional case xi:

H
s

b,h(t, xi) in the above formula is calculated as [19]:

Through the above methods, RSF adapts traditional 
random forest algorithm and can handle problems asso-
ciated with survival. And these procedures in the present 
study are carried by randomForestSRC R package. Using 
Surv and var.select functions in this package we prelimi-
nary screened out survival-related ASEs.

Selection models
Cox regression model
Cox regression model is a model simultaneously ana-
lyzing the effects of several variables on survival. Based 
on the condition of the proportional hazard, this model 
assumes the hazard functions for different individuals 
are proportional and covariates’ effects on individuals are 
constant. Cox regression model can be formulated as:

In this formula, h0(t) is the baseline hazard function, t 
is a time variable, and βi is a coefficient vector weighing 
the contribution of feature Xi.

Forward selection model
We used a forward selection model to select prognosis-
related genes from survival-related genes. This selection 
was achieved by rbsurv R package in the following pro-
cedures [20]: (1) The dataset was randomly divided into 
the training set (3/4 of all samples) and the validation set 
(1/4 of all samples). A gene was then fitted to the train-
ing set and the parameter estimate β̂0

i
 for this gene was 

obtained. Next, β̂0
i
 and the validation set were used to 

evaluate the log-likelihood. This process was repeated for 
each ASE. (2) The above procedures were repeated 100 
times and we obtained 100 log-likelihoods for each ASE. 
Then the ASE with the largest mean log-likelihood was 
selected as the best ASE which is the most survival-asso-
ciated one. Simultaneously, we selected the next best ASE 
by repeating previous procedures and found the optimal 

H
s
e (t, xi) =

1

B

B
∑

b=1

∑

h∈T (b)

H
s

b,h(t, xi)

H
s

b,h(t, xi) =

{

Nb,h(t) xi ∈ h

0 otherwise.

h(t,X) = h0(t)exp

(

m
∑

i=1

βiXi

)

.

two-ASE model with the largest mean log-likelihood. (3) 
These forward selection methods continued until the fit-
ting is impossible, resulting in a series of models. Then 
the Akaike Information Criterion (AIC) was calculated 
to evaluate these models to avoid overfitting. Finally, the 
model with the minimal AIC was selected as the final 
model.

Workflow of the current study
Preliminary filtering
SD reflects the information entropy of a feature. The 
greater the SD, the more informative the feature. To filter 
out less informative ASE and to decrease the computa-
tion of subsequent analyses, we analyzed SDs of all the 
ASEs in the dataset and excluded ASEs with SD < 0.1. 
Besides, ASEs whose mean PSI ≤ 0.05 were also excluded.

Identification of LUAD‑related ASEs implicated in splicing 
switch
First, to circumvent the problem caused by severely 
imbalanced data (10.3% normal, 89.7% LUAD) in the 
learning process, we balanced the proportions of nor-
mal and LUAD samples by oversampling normal sam-
ples using the ovun.sample function of ROSE R package. 
Thus, we generated augmented data with a balanced 
class distribution. Second, we applied Boruta algorithm 
to select ASEs which were important for distinguishing 
between normal and LUAD samples. Third, to further 
explore ASEs implicated in splicing switch, we separately 
analyzed the correlations of LUAD-related ASEs derived 
from the same gene.

Construction of classifier for recognizing LNM
Applying Boruta algorithm, we selected ASEs correlated 
with outcome variables (LNM or not). Using these ASEs, 
we performed nested five-fold cross-validation based on 
the random forest model. The cross-validation sequen-
tially reduced the number of ASEs (ranked by vari-
able importances from Boruta analysis) and this process 
repeated five rounds. The mean cross-validation error 
was calculated and the classifier with the minimum error 
rate was chosen. The classifier’s classification capacity 
was evaluated by cross-validation.

Model construction and functional enrichment analysis
Cox regression is the traditional method for survival 
analyses with an understandable output, while RSF pro-
vides more insight into the relative importance of model 
covariates [21]. Based on previous results, the com-
bination of these two methods could produce results 
with higher confidence than a single one [21]. There-
fore, RSF and Cox regression were performed for each 
ASE, and only ASEs which were survival-related in both 
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methods were selected. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways analysis and Reactome 
pathways analysis were performed to analyze the func-
tional categories of parent genes of survival-related ASEs 
using Cytoscape (version 3.7.2) plug-in ClueGO (version 
2.5.5) [22, 23]. The dataset was further divided into the 
training set (3/4 of all samples) and the test set (1/4 of all 
samples). We used the forward selection model to iden-
tify prognosis-related ASEs and multivariate Cox regres-
sion to construct the prognosis model. The final model 
was tested in the internal test set. Relationships between 
the prognostic model and clinical-pathological variables 
were analyzed in the entire set using the Wilcoxon test. 
P < 0.05 was considered statistically significant.

Splicing network analysis
A total of 390 SFs were retrieved from SpliceAid 2 data-
base (http://193.206.120.249/splic​ing_tissu​e.html) [24]. 
Univariate Cox analysis was used to identify survival-
related SFs. P < 0.01 was considered to be significant. 
Spearman correlation analysis was conducted to evaluate 
the correlations between survival-related SFs and ASEs. 
The criterion of selecting correlated variables was P < 0.01 
and |coefficient| > 0.2. Finally, their correlations were vis-
ualized via Cytoscape.

Software
All statistical analyses were conducted using R software 
(version 3.6.3). R package Boruta, randomForest, Ran-
domforestSRC, caret, survival, rbsurv, pROC, timeROC, 
pheatmap, and ggplot2 were used in this study for ana-
lyzing data or drawing purposes. All codes are available 
on GitHub (GitHub, Inc., San Francisco, California) at 
https​://githu​b.com/cqd13​08/JTM-Rscri​pt-ASsig​natur​es. 
Cytoscape software was applied to conduct functional 
and pathway enrichment analysis and plot the network 
graph.

Results
Preparation of datasets
The flow chart presenting the overall analysis process of 
the current study is shown in Fig. 2. After data preproc-
essing, 572 samples (59 normal, 513 LUAD) of LUAD-
AS dataset were included in analyses for distinguishing 
between normal and LUAD samples. 502 samples (330 
LNM negative, 172 LNM positive) of LUAD-AS dataset 
had available N stage data and were included for rec-
ognition of LNM. We removed samples with unavail-
able survival data and follow-up days less than 30, after 
which 408 samples were left for the prediction of OS. 
The 408 samples were randomly split into the training 
set and the test set consisting of 306 and 102 samples for 

Fig. 2  Flow chart of this study
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model construction and evaluation, respectively. Besides, 
380 overlapping samples in LUAD-mRNA dataset and 
LUAD-AS dataset were used in further regulatory SFs 
analysis. Detailed clinical information is shown in Addi-
tional file 1: Table S1 to Additional file 4: Table S4.

Preliminary screening
A total of 43,948 ASEs corresponding to 10,367 genes 
were included in this study, of which ES had the highest 
proportion, which was 27.2%, and the lowest was contrib-
uted by ME, which had only 0.9%. One single gene could 
have seven splicing types at most (Fig.  1b). To exclude 
less discriminative features, we filtered out ASEs accord-
ing to the criteria described in Methods section and got 
10,951 ASEs (Fig. 1c) spliced from 4915 parent genes.

LUAD‑related ASEs implicated in splicing switch
Using the oversampled dataset consisting of 513 normal 
and 513 LUAD samples, 506 ASEs from 360 parent genes 
were confirmed as important features for differentiating 
between LUAD and normal samples using Boruta feature 
selection (Fig.  3a), whose detailed data are summarized 
in Additional file 5: Table S5. Subsequently, we picked out 
and analyzed the correlations of ASEs derived from the 
same genes. Interestingly, as shown in Fig.  3b, intrapair 
correlation coefficients in 24 pairs of ASEs spliced from 
the same parent genes were − 1, indicating perfect nega-
tive correlations. This also suggests the splicing pattern 
shifts of these genes significantly contributed to the pro-
oncogenic or anti-oncogenic transition.

Classifier for LNM
Using Boruta feature selection, 19 ASEs spliced from 19 
different genes were confirmed as important features 
for LNM (Additional file 6: Table S6). The Z-score of the 
top 30 ASEs with the highest Z-score and the other 20 
randomly selected ASEs was shown in Fig.  4a. The 502 
samples were randomly assigned to the training set or 
the test set by fivefold cross-validation. The 19 ASEs were 
removed from the random forest-classifier one by one 
from a lower Z-score to a higher Z-score, and each time 
a new ASE was removed, the classification performance 
was updated with the fivefold cross-validation. The cross-
validation procedures were repeated five rounds and the 
average cross-validation error was calculated. The num-
ber of kept ASEs concerning the average error rate was 
shown in Fig. 4b and the best classification performance 
was achieved when the number of ASEs was 12. The 12 
ASEs were: THUMPD2-53337-ES, LMBR1L-21525-ES, 
BEAN1-36708-AT, TRMT10B-86427-AA, VWA5A-
19215-RI, ELMO2-59676-AP, SH3BP2-68592-AP, 
FAM222B-39979-AP, AIFM1-90068-AP, DNASE1L1-
90573-AP, ZNF695-10502-AT, and OBFC1-13029-AP. 

The PSI value of kept features is shown in Fig. 4c. Results 
of ROC analysis (Fig. 4d) revealed the AUC values of the 
12-ASE-based classifier were all more than 0.7 in fivefold 
cross-validation, indicating the robust sensitivity and 
specificity of this classifier for the recognition of LNM.

Identification of survival‑related ASEs and functional 
annotation
Cox regression and RSF methods identified 1439 and 544 
ASEs (Additional file  7: Table  S7 and Additional file  8: 
Table S8), respectively. 99 ASEs were survival-related in 
both results (Fig. 5a). To explore underlying mechanisms 
of survival-related ASEs, 85 parent genes (Fig.  5b) of 
these ASEs were used for KEGG and Reactome pathway 
analyses. Enrichment results indicated pathways includ-
ing “Transcriptional Regulation by TP53”, “Cell Cycle 
Checkpoints”, “Generic Transcription Pathway”, “Deg-
radation of the extracellular matrix”, and “Extracellular 
matrix organization” were significantly enriched (Fig. 5c).

Prognostic model for LUAD
Baseline characteristics of the training set and the inter-
nal test set were shown in Table  1, and no statistically 
significant difference in clinical features existed between 
the two sets. Then the 99 survival-associated ASEs were 
introduced to the forward selection model using R pack-
age rbsurv. Afterward, 16 key prognosis-related ASEs 
were selected and a prognostic risk score model for 
LUAD was established using multivariate Cox regres-
sion (Additional file  9: Table  S9). Choosing the median 
risk score of the training set as the cut-off, samples were 
divided into the high-risk group and the low-risk group 
(Fig.  6a). As shown in Fig.  6b, the patients in the high-
risk group had higher mortality than those in the low-
risk group. The heat map showed the PSI levels of the 16 
ASEs involved in the prognostic model (Fig. 6c), and the 
Kaplan–Meier curves showed a clear distinction between 
two risk groups (P < 0.001) (Fig.  6d). The AUC of this 
model in 1, 3, 5, and 10 years in the training set was 0.753, 
0.775, 0.832, and 0.867, respectively (Fig. 6e). Samples in 
the internal test set were also divided into the high-risk 
group and the low-risk group according to the median 
risk score of the training set. The risk plot, the scatter 
diagram showing OS, and the heat map reflecting PSIs 
of key ASEs of the test set were shown in Fig. 6f–h. The 
Kaplan–Meier plot also showed a very significant differ-
ence (P < 0.001) between the high-risk group and low-risk 
group in the test set (Fig. 6i). ROC analysis revealed the 
robust predictive capacity of the 16-ASE-based model, 
where AUC in 1, 3, 5, and 10  years were 0.766, 0.812, 
0.800, and 0.800, respectively (Fig. 6j).

Further analysis of the risk score model indicated 
correlations between the 16-ASE prognostic model and 
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clinical variables including American Joint Committee 
on Cancer (AJCC) stage (P < 0.01), T stage (P < 0.05), 
N stage (P < 0.05), and vital status (P < 0.001). The cor-
relations between risk score and AJCC stage, T stage, 

N stage, M stage, vital status, smoking history, gender, 
and age were shown in Fig. 7a–h.

The prognostic model and clinical variables includ-
ing age, gender, smoking history, AJCC stage, T stage, N 

a

b

Fig. 3  Identification of ASEs associated with splicing switches between normal and LUAD samples. a Heat map showing the PSI levels of important 
ASEs for differentiating between normal and LUAD samples after Boruta selection. b Heat map demonstrating PSI levels of the 24 pairs of ASEs 
implicated in splicing switches of LUAD development. Each pair of ASEs were perfectly contrarily expressed, and the expressions of these ASEs were 
distinct in normal and LUAD tissues
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stage and M stage were sent to univariate and multivari-
ate Cox regression analyses. In the univariate analysis, 
AJCC stage, T stage, N stage and the risk score model 
were associated with adverse clinical outcomes (Fig. 8a). 
Distant metastasis, the widely recognized predictor 
for bad OS, was not correlated with OS in this analysis, 
which may be caused by too few samples with M1 stage 
(N = 20) in this dataset. In multivariate analysis, only 
AJCC stage and the risk score model were associated 
with bad clinical outcomes for LUAD patients, indicating 
their roles as independent prognostic factors (Fig.  8b). 
A nomogram was then plotted for clinical application 
(Fig. 8c).

Construction of splicing network
We conducted univariate Cox analysis for the 390 SFs 
and found 18 SFs to have significant effects (P < 0.01) on 
OS of LUAD patients. Spearman test was used to identify 
correlations between survival-related SFs and ASEs, and 

a correlation network was established using Cytoscape 
software (Fig.  9a). The network contains 18 SFs (trian-
gle), 35 protective ASEs (green circle), and 25 risk ASEs 
(red circle). Proportions of positive regulation (red line) 
effects and negative regulation (green line) effects were 
similar in the splicing network. Among these SFs, CIRBP 
and LUC7L regulated the most ASEs (38 and 29 ASEs, 
respectively). And CHEK1-19309-AP had correlations 
with the most SFs (15 SFs). Figure 9b, c shows the corre-
lations between these most representative ASEs and SFs.

Discussion
Due to the heterogeneity and complexity of cancers, 
detecting, monitoring, and managing cancers are dif-
ficult for clinicians. With the deepening of scientific 
researches, scientists have unraveled more and more 
molecular characteristics of cancer initiation and pro-
gression. In recent years, many promising biomarkers for 
the diagnosis and prognosis of LUAD were identified. For 

a

c d

b

Fig. 4  LNM classifier construction and the efficiency of the 12-ASE-based classifier. a Z-score of the top 30 important ASEs and 20 randomly 
picked ASEs using Boruta algorithm. b The mean cross-validation error of the five-round fivefold cross-validation about different numbers of ASEs. 
c The heat map showing PSI levels of ASEs in the LNM classifier. The data were normalized using R function scale. d ROC curves for the fivefold 
cross-validation of the classifier to identify LNM statuses of LUAD patients. LNM lymph node metastasis. Important ASEs, the ASEs confirmed as 
important features for the identification of LNM for LUAD patients by Boruta algorithm. Top 30 ASEs (rejected), the ASEs had the top 30 Z-score but 
rejected as unimportant features by Boruta algorithm for the identification of LNM for LUAD patients
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example, CAV1 and DCN play critical roles in LUAD cell 
proliferation inhibition and progression regulation [25], 
and long noncoding RNA DGCR5 is an anti-apoptosis 
marker for LUAD and can promote LUAD progression 
[26]. Restricted by the sophisticated mechanisms behind 
LUAD, one single biomarker may only be effective on a 
proportion of patients. Therefore, many diagnostic or 
prognostic panels were come up based on various types 
of biomarkers to make the prediction more applica-
ble and more effective [27–29]. However, most of these 
studies were restricted to exploration in transcriptome 
aspect, utilizing mRNAs, long non-coding RNAs, or 
microRNAs for the construction of a predictive model.

In the last decades, abnormal ASs and presences of 
specific ASEs have been identified as driven factors 
for cancers by many studies [30, 31]. For example, the 

splicing of BCL2L1 pre-mRNA generates two isoforms: 
the anti-apoptotic isoform Bcl-XL and the pro-apop-
totic isoform Bcl-XS. Shifts of BCL2L1’s splicing pat-
terns between those two isoforms can influence the 
apoptosis of LUAD cells, resulting in the progression 
or suppression of LUAD [32]. Based on this mecha-
nism, researchers utilized antisense oligonucleotides 
to push the splicing of BCL2L1 pre-mRNA towards 
its pro-apoptotic isoform Bcl-XS, which prompted the 
apoptosis of LUAD A549 cells in  vitro [32]. Besides, a 
previous study reported that the mRNA ratio of Lamin 
C and Lamin A was increased in all clinical stages of 
breast cancer and the splicing switch of Lamin A/C 
alternative splice variants may be of diagnostic use [33]. 
Apart from participating in chemoresistance pathways, 
AS can also influence the efficacy of chemotherapeutic 

a

c

b

Fig. 5  Identification of survival-related ASEs and pathway enrichment analyses. a Venn diagram summarizing survival-related ASEs identified 
by Cox regression and random survival forests. b Upset plot displaying overlapping ASEs between two methods. c Pathway analyses of genes 
associated with OS-related splicing events
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agents by the aberrant splicing of molecular targets 
[34]. In addition to a single AS biomarker, Li et al. and 
Zhao et  al. identified prognostic models for NSCLC 
using data mining techniques [12, 35]. These studies 
indicated specific ASEs could be useful tools for the 
prediction and treatment of LUAD.

However, ASEs implicated in splicing pattern shifts of 
LUAD or splicing model determining LNM status were 
rarely explored. The main methods we used in this study 
for feature selections and classifier constructions are 
based on random forests. Random forests take advantage 
of two machine learning methods: bagging and random 
feature selection. One of the most significant advantages 
of random forest approaches is their accuracy benefited 
from the random split of the whole dataset into a train-
ing set and a validation set, which contributes to the 
removal of outliers and noise, resulting in its superior 
performance over other methods [36]. Based on random 
forests, Boruta can reduce the influence of random fluc-
tuations and correlations by adding randomness to the 
dataset and identify features that are really important 
to the outcome [17]. Besides, another adaption of ran-
dom forests, RSF model, provides researchers a method 
to deal with right-censored survival data using decision 
trees [37]. For these reasons, there is a growing interest 
in the application of random forest algorithms in bioin-
formatics fields. To our knowledge, no previous study 
has used random forest methods or machine learning 

methods to identify AS signatures in LUAD. Here, by 
initiatively using several machine learning methods, we 
integratively analyzed the AS data of LUAD patients and 
identified a series of AS biomarkers.

In this study, we identified 24 pairs of contrarily 
expressed ASEs participating in the transitions between 
risky and protective isoforms for LUAD. Being identical 
to the splicing of BCL2L1 and Lamin A/C as mentioned 
above, these biomarkers may have similar therapeutic 
or diagnostic values for LUAD. Besides, our results also 
indicate shifts in splicing patterns of QKI, a well-known 
AS regulator are also strongly correlated with the devel-
opment of LUAD [38]. The skewed distribution of classes 
may compromise the result of data mining, so we uti-
lized a data resampling technique to get data with bal-
anced class distribution [39]. While further analysis was 
focused on the correlations between ASEs, which were 
not concerned with the distributions of normal and 
LUAD samples, we used the original imbalanced data for 
the correlation analysis.

The prognosis of LUAD is significantly correlated with 
LNM statuses. Previous data displayed 5-year OS of 
LUAD patients with LNM was 26–35%, while the 5-year 
OS of LUAD patients without LNM was more than 95% 
[40]. The 12-ASE-based classifier for LNM showed high 
sensitivity and specificity in five-fold cross-validation 
with over 0.7 AUC values in all folds.

We also constructed a prognostic model using 16 
ASEs. We first selected survival-related ASEs by the 
combination of Cox regression and RSF, whose results 
could be more reliable than utilizing a single method 
[21]. Then the final list of genes for the prognosis model 
was selected by forward selection model using R pack-
age rbsurv. Based on robust likelihood, this algorithm 
is widely used for survival model construction [41–43] 
by utilizing the classical forward selection method to 
generate a series of models and select an optimal one. 
Compared with other survival analyses such as arti-
ficial neural network-based or deep learning-based 
survival models, this algorithm is straight-forward 
and user-friendly in the R programming environment. 
Although least absolute shrinkage and selection oper-
ator (LASSO) Cox regression model is also a popular 
and automated method for constructing a survival 
model, the robust partial likelihood-based Cox regres-
sion model employed in this study could not only help 
establish a robust predictive model but also provide 
the relative importance for survival of each ASE intui-
tively by calculating mean log-likelihood. This prognos-
tic model was further validated in the internal test set 
and AUC in 1, 3, 5, and 10 years was 0.766, 0.812, 0.800, 
and 0.800, respectively, showing the robust predictive 
capacity. Further study revealed correlations between 

Table 1  Baseline characteristics of  the  training set 
and the internal test

IQR interquartile range, OS overall survival

Training set Test set P value

n 306 102

Gender (%) 0.529

 Female 166 (54.2) 51 (50.0)

 Male 140 (45.8) 51 (50.0)

Age (median [IQR]) 66.00 [59.00, 73.00] 68.00 [57.25, 72.75] 0.744

Vital status (%) 0.13

 Alive 211 (69) 79 (77.5)

 Dead 95 (31) 23 (22.5)

Smoking history (%) 0.287

 Non-smoker 42 (14.1) 9 (9.3)

 Smoker 255 (85.9) 88 (90.7)

Stage (%) 0.145

 Stage I 161 (53.8) 54 (53.5)

 Stage II 68 (22.7) 25 (24.8)

 Stage III 58 (19.4) 13 (12.9)

 Stage IV 12 (4.0) 9 (8.9)

OS_time (median 
[IQR])

367.50 [141.25, 
937.25]

250 [108.00, 646.25] 0.054
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a f

b g

c h

d i

e j

Fig. 6  Prognostic model construction and efficiency assessment. a, b Visualization of the risk score and survival for each patient in the training set. 
c The heat map comparing the PSI levels of the 16-ASE signature in the high-risk and the low-risk group of the training set. d Kaplan–Meier survival 
curve for patients in the high-risk and the low-risk group of the training set. e Time-dependent ROC curves for LUAD patients in the training set. f, 
g Visualization of the risk score and survival for each patient in the test set. h The heat map comparing the PSI levels of the 16-ASE signature in the 
high-risk and the low-risk group of the test set. i Kaplan–Meier survival curve for patients in the high-risk and the low-risk group of the test set. g 
Time-dependent ROC curves for LUAD patients in the test set
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a b c d

e f g h

Fig. 7  Relationships between clinical features and the risk model. The distribution of risk scores of LUAD patients in different clinical groups. LUAD 
patients were assigned to different groups according to clinical risk factors. a AJCC stage, b T stage, c N stage, d M stage, e vital status, f smoking 
history, g gender, h age

a b

c

Fig. 8  Forest plots and the nomogram for the prognosis of LUAD patients. a The forest plot of univariate Cox regression analysis evaluating 
prognostic effects of clinical features and the risk model for LUAD patients. b The forest plot of multivariate Cox regression analysis evaluating 
prognostic effects of clinical features and the risk model for LUAD patients. c The nomogram predicting the overall survival probability of patients 
with LUAD
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the risk score model and AJCC stage, T stage, N stage 
and vital status. These clinical parameters are all OS-
relevant and the prognostic model was an independ-
ent risk factor. TNM stage is widely used to evaluate 
the prognosis of LUAD patients. However, the limita-
tion of risk factors of this system makes it impossible 
to predict OS of LUAD patients precisely. Therefore, we 
built the nomogram as shown in Fig. 8c to help clinical 
prediction.

The splicing network built in this study showed the 
importance of CIRBP and LUC7L as AS regulators. As 
a stabilizing RNA-binding protein, CIRBP regulates 
multiple cancers through stabilizing specific mRNAs 
translating into cancer-associated proteins and modu-
lating inflammation [44]. A recent study also proved 
its anticancer role in NSCLC [45]. LUC7L is rarely 
studied and encodes a putative RNA-binding protein, 
contributing to the metastasis of breast cancer [46, 
47]. The ASE of CHEK1 showed the most correlations 
with SFs. Besides, CHEK1 encodes the cell cycle check-
point kinase 1, which is a key kinase for DNA damage 
response and participates in the cell cycle regulation 

[48]. Evidence indicated CHEK1 may implicate with 
multiple cancers, including NSCLC, breast cancer, and 
ovarian cancer [49–51]. Our finding suggests its func-
tion in cancer progression could be strongly influenced 
by ASs. In addition, the splicing patterns of most of the 
biomarkers in the current study are AP, AT, and ES, 
suggesting the main splicing patterns in LUAD initia-
tion and development.

The limitations of our study should be mentioned too. 
First, there was a lack of another AS dataset for exter-
nal validation. Second, the concrete molecular mecha-
nisms of these biomarkers are still unknown because of 
lacking in vitro or in vivo experiments. In future stud-
ies, we will perform in-depth studies to validate our 
current findings.

Conclusion
In conclusion, we identified 24 pairs of splicing isoforms 
strongly correlated with the splicing shifts of LUAD and 
established two useful AS models to identify LNM and 
predict OS for LUAD patients. Our findings highlight the 
importance of AS for LUAD. Biomarkers identified in the 

a b

c

Fig. 9  Correlation analysis between splicing factors and ASEs in the LUAD cohort. a The splicing network for splicing factors and ASEs. Yellow nodes 
indicate splicing factors, red nodes indicate poor survival associated ASEs, and green nodes represent good survival associated ASEs; Red lines 
represent positive correlations, and green lines represent negative correlations. b The correlation between PSI values of CHEK1-19309-AP and the 
expression of CIRBP. c The correlation between PSI values of CHEK1-19309-AP and the expression of LUC7L 
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present study may provide a new strategy for the diagno-
sis and treatment of LUAD.
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