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Abstract 

Background:  Molecular classification has laid the framework for exploring glioma biology and treatment strategies. 
Pro-neural to mesenchymal transition (PMT) of glioma is known to be associated with aggressive phenotypes, 
unfavorable prognosis, and treatment resistance. Recent studies have highlighted that long non-coding RNAs 
(lncRNAs) are key mediators in cancer mesenchymal transition. However, the relationship between lncRNAs and PMT 
in glioma has not been systematically investigated.

Methods:  Gene expression profiles from The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas 
(CGGA), GSE16011, and Rembrandt with available clinical and genomic information were used for analyses. 
Bioinformatics methods such as weighted gene co-expression network analysis (WGCNA), gene set enrichment 
analysis (GSEA), Cox analysis, and least absolute shrinkage and selection operator (LASSO) analysis were performed.

Results:  According to PMT scores, we confirmed that PMT status was positively associated with risky behaviors 
and poor prognosis in glioma. The 149 PMT-related lncRNAs were identified by WGCNA analysis, among which 
10 (LINC01057, TP73-AS1, AP000695.4, LINC01503, CRNDE, OSMR-AS1, SNHG18, AC145343.2, RP11-25K21.6, RP11-
38L15.2) with significant prognostic value were further screened to construct a PMT-related lncRNA risk signature, 
which could divide cases into two groups with distinct prognoses. Multivariate Cox regression analyses indicated 
that the signature was an independent prognostic factor for high-grade glioma. High-risk cases were more likely 
to be classified as the mesenchymal subtype, which confers enhanced immunosuppressive status by recruiting 
macrophages, neutrophils, and regulatory T cells. Moreover, six lncRNAs of the signature could act as competing 
endogenous RNAs to promote PMT in glioblastoma.

Conclusions:  We profiled PMT status in glioma and established a PMT-related 10-lncRNA signature for glioma that 
could independently predict glioma survival and trigger PMT, which enhanced immunosuppression.
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Background
Glioma is the most common primary brain tumor, 
and despite great improvements in the treatment 
modalities for glioma, including surgery, radiotherapy 
and chemotherapy, patients with glioma, especially 
glioblastoma multiforme (GBM), still have unfavorable 
outcomes [1, 2]. To explore more effective treatments, 
molecular subtypes related to GBM prognosis have 
been identified based on large genomic data. Recently, 
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GBM was classified into four molecular subtypes: 
pro-neural (PN), neural (NL), classical (CL), and 
mesenchymal (MES) [3]. Transition among the 
subtypes often occurs during gliomagenesis, which 
induces biological heterogeneity, poor prognosis, and 
therapeutic resistance [4, 5]. Among the four molecular 
subtypes, glioma cells cultured in  vitro are mostly 
classified into PN or MES and show distinct biological 
features [4]. Compared with the PN subtype, the MES 
subtype is associated with aggressive phenotypes and 
poor prognosis [6]. Additionally, remnant gliomas 
after radiotherapy and/or chemotherapy can undergo 
pro-neural to mesenchymal transition (PMT), which 
is associated with treatment resistance [7]. Therefore, 
uncovering the mechanisms that underlie PMT is 
urgently needed to improve glioma treatments.

Long non-coding (lnc)RNAs are non-coding RNAs 
of greater than 200  bp in length. Previous studies 
have highlighted the important roles of lncRNAs in 
tumorigenesis and risky progression. Various lncRNAs 
have been found to be abnormally expressed in tumors, 
and thus are considered potential molecular targets [8]. 
Recently, several lncRNAs were noted to promote PMT 
in GBM. For example, blocking the lncRNA MIR155HG 
axis with the small molecule inhibitor NSC141562 
suppressed mesenchymal transition [9]. Liu et  al. [10] 
found that high LINC00152 expression might trigger 
PMT through the NF-κB pathway in GBM. However, a 
systematic understanding of how lncRNAs contribute to 
PMT is lacking for glioma. Hence, there is an urgent need 
to screen out PMT-related lncRNAs and clarify their 
potential mechanisms.

In this study, public glioma transcriptomic data from 
The Cancer Genome Atlas (TCGA), the Chinese Glioma 
Genome Atlas (CGGA), Rembrandt, and GSE16011 
were collected for systemic analyses. We first calculated 
PMT scores with the single-sample gene set enrichment 
analysis (ssGSEA) algorithm, which reflects the PMT 
balance in glioma. Through this analysis, we found 
that PMT scores were positively associated with risky 
behaviors in glioma. We further identified PMT-related 
lncRNAs by weighted gene co-expression network 
analysis (WGCNA), and established a PMT-related 
10-lncRNA risk signature by univariate Cox and least 
absolute shrinkage and selection operator (LASSO) 
analyses. The PMT-related lncRNA signature could 
independently predict the prognosis in high-grade 
glioma, and stimulate PMT processes to reprogram 
the immune microenvironment through a competing 
endogenous (ce)RNA network in GBM. Therefore, these 
findings will contribute to a deeper understanding of 
the mechanism of PMT, and highlight the potential 

application of the 10 PMT-related lncRNAs in glioma 
treatment strategies.

Materials and methods
Patient datasets and clinical information
LncRNA expression data from glioma patients was 
acquired from The Atlas of Noncoding RNAs in Cancer 
(TANRIC) [11], which was retrieved from TCGA glioma 
RNA-seq database (https​://cance​rgeno​me.nih.gov/) and 
RNA-seq files from other independent studies in the 
CGGA database [12]. Coding mRNA expression profiles 
of RNAseq or microarray were collected from TCGA, 
CGGA, GSE16011, and Rembrandt. After acquiring the 
data, we annotated all samples according to their barcode 
ID based on available clinical information from the 
UCSC Xena (https​://xenab​rowse​r.net/datap​ages/) and 
CGGA (https​://www.cgga.org.cn) databases. The glioma 
patients with detailed clinical and molecular information 
are described in Additional file  1: Table  S1. We also 
downloaded matched miRNA microarray data from 
TCGA database.

Establishing the PMT‑related lncRNA signature
To establish the PMT-related lncRNA signature, we 
first collected PN (M2115) and MES (M2122) gene sets 
from the GSEA database (https​://www.gsea-msigd​b.org/
gsea/index​.jsp), and then calculated PN and MES scores 
using the ssGSEA algorithm of the GSVA package. 
PMT scores were generated by subtracting the PN 
score from the MES score. LncRNA expression profiles 
from TCGA RNAseq were selected as the training set. 
We first screened out differentially expressed lncRNAs 
(DELs; |logFC| > 1, P < 0.05) in GBM compared with 
non-GBM (oligodendroglioma, oligoastrocytoma, and 
astrocytoma) by the Limma package. Then the DELs 
were used for WGCNA analysis to identify lncRNA 
co-expressed modules, and to further determine PMT-
related lncRNAs with both a gene significance (GS) > 0.5 
and a module membership (MM) > 0.7, as previously 
described [13]. PMT-related lncRNAs were used for 
further univariate Cox regression analyses in all glioma, 
non-GBM, and GBM cohorts. We identified 17 lncRNAs 
that significantly predicted survival in all three cohorts, 
and these were then used to conduct further LASSO 
and Cox regression analyses. The selected criteria and 
PMT-related lncRNA risk scores were calculated using 
a formula described by Chai et  al. [14]. The coefficient 
was also used to calculate a risk score for each case in the 
validation dataset (CGGA).

https://cancergenome.nih.gov/
https://xenabrowser.net/datapages/
https://www.cgga.org.cn
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Screening out signature‑related genes (SRGs) in GBM 
from TCGA and CGGA​
Pearson’s correlation analysis was performed to assess the 
relationship between coding mRNA expression and risk 
score in GBM. The SRGs (R > 0.3, P < 0.05) were selected 
for Gene Ontology (GO) analysis with the ClueGO 
plug-in in Cytoscape [15].

Constructing the PMT‑related lncRNA/miRNA/mRNA 
network
First, predicted binding of micro (mi)RNAs with the 
10 lncRNAs were collected using the DIANA tools and 
LncBase Predicted v.2 (https​://www.micro​rna.gr/LncBa​
se/). LncRNA/miRNA pairs and potential target genes of 
overlapping miRNAs were generated as described in our 
previous study [16]. Then, we identified miRNA-mRNA 
pairs by intersecting target genes with SRGs. Finally, we 
constructed the lncRNA/miRNA/mRNA networks with 
Cytoscape.

Cell transfection, qRT‑PCR, protein isolation and western 
blotting
siRNAs for LINC01503 suppression were synthesized 
by GenePharma (Suzhou, China) and had the following 
sequences: si-LINC01503-1 sense, 5′-GGA​GAC​AAA​
UGA​CGG​CCU​UTT-3′; si-LINC01503-2 sense, 5′-GGA​
GAA​AGU​UCU​UUC​CCU​GTT-3′; and si-LINC01503-3 
sense, 5′-GGA​CGA​AUG​CAG​AGC​CCU​ATT-3′. The 
effect of LINC01503 suppression was validated by 
qRT-PCR described in previous study [16]. The primer 
sequences were as the follows: LINC01503 (forward 
primer: GGG​GAC​GGA​GAC​AAA​TGA​C, reverse primer: 
CAC​ACT​TGT​CAG​AGG​CGT​TC); CD44 (forward 
primer: CTG​CCG​CTT​TGC​AGG​TGT​A, reverse primer: 
CAT​TGT​GGG​CAA​GGT​GCT​ATT); OLIG2 (forward 
primer: TGG​CTT​CAA​GTC​ATC​CTC​GTC, reverse 
primer: ATG​GCG​ATG​TTG​AGG​TCG​TG); 18S (forward 
primer: GCA​GAA​TCC​ACG​CCA​GTA​CAA​GAT​, reverse 
primer: TCT​TCT​TCA​GTC​GCT​CCA​GGT​CTT​). The 
RNA expressions of LINC01503, CD44, and OLIG2 were 
calculated by the 2−ΔΔCt method and normalized to 18S 
mRNA expression. The procedure of protein isolation 
and western blotting was similar as that described 
in previous study [16]. The primary antibodies were 
as follows: CD44 (1:1000; Cell Signaling Technology, 
Boston, USA), OLIG2 (1:1000; Abcam, Cambridge, UK), 
β-actin (1:1000; Proteintech, Rosemont, IL, USA).

Statistical analysis
Further enrichment analysis of the biological functions 
between two groups was performed by GSEA (https​://
softw​are.broad​insti​tute.org/gsea/index​.jsp). Scores of 

related gene sets were calculated by ssGSEA. A protein–
protein interaction (PPI) network was constructed in 
Cytoscape. Hub genes were generated as previously 
described [16]. Based on the median score, glioma cases 
were divided into low- and high-score groups. Differences 
between the two groups were estimated with the Welch 
t-test, Wilcoxon rank sum test, or χ2 test. Kaplan–Meier 
survival curves were evaluated with the log-rank test. 
Univariate and multivariate Cox regression analyses were 
performed to identify independent prognostic factors. 
A two-sided P value < 0.05 was considered statistically 
significant.

Results
PMT scores were positively associated with the risky 
behaviors of gliomas
To explore the general pattern of PMT status in glioma, 
we compared the distribution of PMT scores according to 
WHO grade, histology, and molecular subtype. We found 
that PMT scores were increased with increased risky 
progression of gliomas. Cases with higher grades from 
TCGA RNAseq dataset exhibited higher PMT scores 
(Fig.  1a). According to histopathologic classification, 
cases with higher PMT scores were enriched in 
order of GBM, astrocytoma, oligoastrocytoma, and 
oligodendroglioma. Regarding the five molecular 
subtypes described in our previous study [17], PMT 
scores were higher in the early-GBM (LGG-IDH-wt) 
and GBM with wild-type IDH (GBM-IDHwt, Fig.  1a). 
Similar PMT score distributions were verified in TCGA 
microarray, CGGA RNAseq, and microarray, Rembrandt, 
and GSE16011 datasets (Fig. 1b, c, Additional file 2: Fig. 
S1A–D).

According to TCGA microarray gene expression 
profiles, the gliomas were classified into four subtypes 
[3]. The MES subtype had the riskiest progression and 
most unfavorable survival prognosis. Here, we found that 
PMT score was significantly higher in the MES subtype 
than in the PN subtype in multiple public glioma datasets 
(Fig.  1a–c, Additional file  2: Fig. S1B–D). Meanwhile, 
glioma cases, even GBM, with higher PMT scores had 
poorer survival prognoses (Fig.  1d, e, Additional file  2: 
Fig. S1E–M). Furthermore, there was no difference 
in survival between the cases with low and high PMT 
scores without radiotherapy or chemotherapy. However, 
cases with higher PMT scores that received radiotherapy 
or chemotherapy still suffered reduced survival time 
(Fig.  1f–i, Additional file  2: Fig. S2). These results 
suggested that the PMT balance plays a critical role in the 
risky progression of glioma.

https://www.microrna.gr/LncBase/
https://www.microrna.gr/LncBase/
https://software.broadinstitute.org/gsea/index.jsp
https://software.broadinstitute.org/gsea/index.jsp
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Identification of PMT related lncRNAs by WGCNA analysis
To determine the PMT-related lncRNAs with potential 
biological functions, we conducted WGCNA analysis to 
generate lncRNA co-expression modules. After removing 
outlier cases (Additional file  2: Fig. S3A and B), 3308 
DELs were divided into different modules by WGCNA 
cluster analysis in the training set (TCGA RNAseq set, 
Fig.  2a). Here, we chose β = 4 as the soft threshold to 
build a scale-free network (Additional file  2: Fig. S3C), 
and then obtained 12 lncRNA co-expression modules for 

further analyses (Fig. 2a). All non-co-expression lncRNAs 
were gathered into the grey module (Fig. 2a).

To assess correlations between each module and 
PMT score, overall lncRNA expression in the respective 
modules was estimated by module signature (MS). 
Then correlation analysis between MS and clinical 
characteristics was performed. Co-expression modules 
with an absolute R value of > 0.6 were selected for further 
study (Fig.  2b). We found that the turquoise module 
was best correlated with PMT score, with an R value 
close to 0.9. Additionally, we found that the brown, 

Fig. 1  Distribution and prognostic value of PMT scores in glioma. a–c Distribution of PMT scores according to WHO grade, histopathological type, 
TCGA subtype, and molecular subtype in TCGA datasets and the CGGA RNAseq set. ****P < 0.0001. d, e Prognostic value of PMT scores in all glioma 
cases and GBM. f–i Prognostic value of PMT scores in different cohorts of GBM stratified by chemotherapy or radiotherapy in TCGA RNAseq set
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yellow, and black modules were highly negatively related 
to PMT scores. All four above-mentioned modules 
were tightly associated with high-risk clinical and 
molecular features, such as WHO grade, Histopathology, 
molecular classification, TCGA subtype, Chr 7 gain/

Chr 10 loss status, IDH status, and 1p/19q status. Thus, 
the turquoise, brown, yellow, and black modules were 
identified as modules of interest for further analyses.

Next, we screened core lncRNAs associated with 
PMT by setting the GS threshold to > 0.5 and the MM 
threshold to > 0.7 (Fig.  2c). This analysis identified 149 
lncRNAs that were closely related to PMT (Fig.  2d 

Fig. 2  Identification of PMT-related lncRNAs by WGCNA. a Construction of co-expression lncRNA modules in the training set (TCGA). The branches 
of the cluster dendrogram refer to the 12 co-expression modules. b Pearson’s analysis between lncRNA modules and clinical and molecular features 
was performed. The color of each cell was varied according to the correlation coefficient. Relative P-values and R values were also annotated. c 
Correlation between gene significance (GS) and module membership (MM) in the turquoise, brown, yellow, and black modules was performed by 
scatter plot analysis. d In total, 149 PMT-related lncRNA expression profiles were shown by heatmap according to increasing PMT score
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and Additional file  1: Table  S2). As expected, a strong 
relationship between several of these lncRNAs and 
mesenchymal transition in solid tumors had been 
reported in the literature. For example, mesenchymal 
transition was reinforced by CRNDE via the Wnt/β-
catenin pathway in osteosarcoma [18], and lncRNA 
PVT1 sponged miR-195 to enhance EMT and 
induce therapeutic resistance in cervical cancer [19]. 
Therefore, we identified 149 lncRNAs that might play 
important roles in regulating mesenchymal transition.

Establishing a PMT‑related 10‑lncRNA risk signature
To further explore the prognostic value of these PMT-
related core lncRNAs in glioma, we performed univariate 
Cox analyses on these lncRNAs in all glioma, non-GBM, 
and GBM cohorts in TCGA RNAseq set. This yielded 
17 lncRNAs with significant prognostic value (P < 0.05) 
in the three cohorts that were selected to generate the 
lncRNA risk signature (Fig.  3a, b). The lncRNAs were 
of two types: i.e., protective and risky; 14 lncRNAs with 

HR > 1 were defined as risky, whereas three lncRNAs with 
HR < 1 were defined as protective.

To predict the prognosis of glioma cases by PMT-
related lncRNAs, we used TCGA RNAseq set as the 
training dataset to perform LASSO regression analysis 
on these 17 lncRNAs. Finally, 10 of the lncRNAs 
were selected to construct a risk signature (Fig.  3c). 
Meanwhile, we used coefficients obtained from LASSO 
analysis to calculate risk scores for each of the TCGA and 
CGGA glioma cases (Fig. 3d). To analyze the prognostic 
value of the PMT-related 10-lncRNA risk signature, 
glioma cases in TCGA and CGGA RNAseq sets were 
dichotomized based on the median risk score. There was 
a significant difference in survival between the low- and 
high-risk groups (Fig. 3e, j). Stratified analyses of TCGA 
and CGGA datasets showed that higher risk scores were 
associated with unfavorable prognosis in all WHO grades 
(Fig.  3f–i, k–n). In summary, we established a PMT-
related lncRNA signature with robust prognostic value in 
glioma.

Fig. 3  Construction of the PMT-related lncRNA risk signature. a The Venn diagram showed the PMT-related lncRNAs among prognosis-related 
lncRNAs in the all glioma, non-GBM, and GBM cohorts of TCGA RNAseq set. b Results of 17 prognosis-related lncRNAs from univariate Cox regression 
analysis in all cases from TCGA RNAseq set were shown in a forest plot. c, d LASSO analysis identified 10 lncRNAs that were used to construct a risk 
signature, and the corresponding coefficients were calculated. e–n The PMT-related 10-lncRNA risk signature exhibited powerful prognostic value in 
all, each grade or HHG from TCGA and CGGA datasets. HHG high-grade glioma
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The risk signature was closely related to clinical 
and molecular features in glioma
The heatmaps in Fig.  4a and Additional file  2: Fig. S4A 
showed the distribution of clinical and molecular features 
according to risk score. There was a significantly different 
distribution in age, Karnofsky performance score 

(KPS), WHO grade, histopathology, molecular subtype, 
TCGA subtype, Chr 7 gain/Chr 10 loss status, 1p/19q 
status, and related key molecular events (IDH, MGMT 
promoter, TERT promoter, PTEN, ATRX, TP53, and 
EGFR) between the high- and low-risk groups (Fig.  4a, 
Additional file  1: Table  S3, Additional file  2: Fig. S4A). 

Fig. 4  Correlation between the PMT-related risk signature and clinical and molecular features in TCGA. a The distribution of clinicopathological 
and molecular characteristics associated with the PMT-related 10-lncRNA signature in ascending order of risk score. b Distinct distributions of risk 
scores were seen among crucial factors, including WHO grade, histopathological type, molecular classification, and TCGA subtype. ****P < 0.0001; ns, 
non-significant. c Predictive value of the risk signature for the mesenchymal (MES) subtype was perform by ROC curve analysis in TCGA dataset. d 
Enrichment of the MES subtype in cases with high risk scores was verified by GSEA analysis in TCGA dataset
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We also analyzed the correlation between risk score 
and clinical, pathological, and molecular characteristics. 
Cases with risky clinical factors and genomic events 
(MGMT promoter unmethylated, wild-type IDH, and 
1p/19q non-codeletion) had higher risk scores (Fig.  4b, 
Additional file  2: Fig. S4B–G). Receiver operating 
characteristic curve (ROC) analyses indicated that risk 
signature might effectively predict the MES subtype in 
glioma. The areas under the corresponding ROC curves in 
TCGA and CGGA were 96.67% and 94.32%, respectively, 
which were both more than the areas of LINC00152 and 
LOXL1-AS1, and which were previously reported to be 
associated with PMT in glioma (Fig. 4c, Additional file 2: 
Fig. S4H). Furthermore, GSEA confirmed that glioma 
cases with high risk scores were more likely to be the 
MES subtype, whereas cases with low risk scores were 
more often the PN subtype (Fig.  4d, Additional file  2: 
Fig. S4I and J), indicating that the lncRNA risk score 
could discriminate PMT status. Additionally, we found 
that three (TP73-AS1, LINC01503, and CRNDE) of ten 
PMT-related lncRNAs highly expressed both in TCGA 
(Additional file  2: Fig. S9A) and CGGA (Additional 
file  2: Fig. S9B). TP73-AS1 and CRNDE were reported 
to promote malignant progression of glioma [20–23]. 
However, researches about the impact of LINC01503 on 
glioma were rare. Here, we selected LINC01503 as an 
example to validate the impact of lncRNAs on regulating 
PMT in glioma cell. In TCGA and CGGA, we found the 
expression level of LINC01503 was positively correlated 
to the mesenchymal marker (CD44; Additional file  2: 
Fig. S9C), but negatively associated with the pro-neural 
marker (OLIG2; Additional file  2: Fig. S9C). In U87 
glioma cell, suppression of LICN01503 could significantly 
inhibit the expression of CD44, but increase OLIG2 
expression, suggestive of mesenchymal-to-proneural 
transition (Additional file 2: Fig. S9D–F). Together, these 
findings showed the lncRNA risk signature was positively 
correlated with risky behaviors in glioma.

Prognostic value of the risk signature in different stratified 
cohorts of high‑grade glioma cases
The prognosis of high-grade (Grade III/IV) glioma cases 
is poor. To accurately evaluate the prognosis of these 
cases, we analyzed the prognostic value of the PMT-
related 10-lncRNA risk signature in different stratified 
cohorts of high-grade glioma cases. In TCGA, we found 
that the risk score had significant predictive value in 
cohorts stratified by age and KPS (Fig. 5a–d). There was 
also a significant difference in survival time between 
the high- and low-risk groups regardless of whether 
the patients received radiotherapy or chemotherapy 
(Fig. 5e–h).

Next, the prognostic value of the risk score in different 
molecular stratified cohorts was assessed. Under 
different statuses, such as IDH, MGMT promoter, ATRX, 
and TP53, cases with high risk scores had decreased 
survival time compared with cases with low risk scores 
(Fig.  5i–p). High scores indicated reduced OS in cases 
with wild-type EGFR and PTEN, but not in cases with 
mutant EGFR and PTEN (Fig. 5q–t). Similar results were 
validated in the CGGA dataset (Additional file 2: Fig. S5). 
Additionally, multivariate Cox analysis suggested that the 
risk signature was an independent prognostic factor in 
high-grade glioma (Fig. 6). In summary, the risk signature 
could significantly predict the prognosis of high-grade 
glioma.

Biological functions of lncRNA in the risk signature
To explore the different functional features of GBM cases 
between the high- and low-risk groups, we first screened 
the coding genes that were positively correlated with the 
risk score (R > 0.3, p < 0.05) in GBM cases in the training 
dataset (TCGA, Additional file  1: Table  S4). We then 
used the ClueGO plugin of Cytoscape to functionally 
annotate these coding genes. Then, we found that the 
most relevant biological processes in high-risk group 
were cell activation involved in immune response, cell 
adhesion and collagen-containing extracellular matrix, 
aminoglycan metabolic process, and positive regulation 
of tyrosine phosphorylation of STAT protein (Fig.  7a, 
b). These functional enrichments in the high-risk group 
were further verified by GSEA analyses (Fig. 7c). Analyses 
of the CGGA dataset revealed similar results (Additional 
file  1: Table  S4; Additional file  2: Fig. S6). Additionally, 
previous studies have shown that STAT3 activation was 
positively associated with irradiation-induced PMT 
[24]. Taken together, we inferred that the 10 lncRNAs 
of the signature might facilitate biological processes that 
regulated PMT in GBM.

GBM cases with high risk scores exhibited enhanced 
immunosuppression
Recently, the MES subtype was reported to recruit 
more immunosuppressive cells than the PN and CL 
subtypes [25]. LncRNAs are important regulators of 
PMT, as described above; however, the correlation 
between PMT-related lncRNAs and immune responses 
in glioma are unknown. Therefore, we further analyzed 
immune responses related to the PMT-related lncRNA 
risk signature in GBM by calculating the scores of 
different immune cell subsets [26] by ssGSEA in the 
GSVA package, and immune score, stromal score, and 
tumor purity by the ESIMATE package [27] in GBM. 
Pearson’s correlation analysis was performed to evaluate 
the relationship between these tumor microenvironment 
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Fig. 5  The prognostic value of the PMT-related 10-lncRNA risk signature in stratified groups of high-grade cases. a–h The risk signature showed 
significant prognostic value in different cohorts stratified by clinical features in TCGA dataset. i–t Prognostic value of the risk signature was most 
significant in subgroups stratified by key molecular events in TCGA dataset. The p-values were computed using the log-rank test for trend
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indicators and risk score. We found that risk score was 
positively correlated with immune score and stromal 
score, but negatively correlated with tumor purity 
(Fig.  8a). Meanwhile, enrichment of eosinophils, 
macrophages, neutrophils, and regulatory T cells was 
positively associated with risk score, while central 
memory T cells and helper T cells were inversely related 
to risk score (Fig. 8b, c, Additional file 2: Fig. S7A and B). 
Further analyses showed that the PMT-related lncRNA 
risk score was positively related to the expression levels 
of the immunosuppressive genes described previously 
[28] (markers of Tregs, immunosuppressive signaling 
pathways, tumor-supportive macrophage chemotactic 
and skewing molecules, and immune suppressors; Fig. 8d, 
Additional file  2: Fig. S7C and D). Next, we intersected 
RSGs from TCGA and CGGA with immunosuppressive 
genes (Additional file 2: Fig. S7E). Finally, eight effectors 
were identified to be significantly positively correlated 
with the risk signature (Fig.  8e, Additional file  2: Fig. 
S7F). Together, these findings indicated that the ten 
lncRNAs could reinforce PMT to enrich certain immune 
cell subsets in the tumor microenvironment.

Constructing the PMT‑related lncRNA/miRNA/mRNA 
network
Previous studies have shown that lncRNAs can act as 
ceRNAs to sponge miRNAs and release the coding 
mRNA to enhance its biological function. To explore 
whether any of the 10 PMT-related lncRNAs acted as 
ceRNAs, we predicted the potential miRNAs that could 
bind these lncRNAs using the DIANA website and 
intersected them with the downregulated miRNAs in 
GBM. Then, 15 miRNAs were selected for subsequent 
analyses. The potential target genes of these miRNAs 
were predicted by the starBase v3.0 database. Next, 
these target genes were intersected with the coding 
genes positively related to risk score in both TCGA and 

CGGA. In total, 82 potential target genes were identified 
(Additional file 2: Fig. S8A).

Subsequently, we used Cytoscape to build an initial 
ceRNA network based on the filtered lncRNAs, miRNAs, 
and mRNAs (Additional file 2: Fig. S8B). Meanwhile, we 
constructed a protein interaction network to analyze 
relationships among the 82 target genes. Then, nine core 
genes were screened by the MCODE method, with k = 2 
and degree = 3 (Additional file  2: Fig. S8C). We further 
generated a core lncRNA/miRNA/hub gene network that 
included six lncRNAs, 10 miRNAs, and nine core coding 
mRNAs (Additional file 2: Fig. S8D). Further GO analyses 
by ClueGO showed that the functions of these nine core 
genes were involved in regulating leukocyte aggregation, 
and positive regulation of adhesion organization and 
regulation of apoptosis (Additional file  2: Fig. S8D). 
Moreover, some of the ceRNAs in the network had 
previously been reported to affect risky behaviors and 
immune responses. For example, miR-512-3p binded 
to CD44, resulting in suppression of invasion and cell 
adhesion in breast carcinoma [29]. Additionally, the 
mesenchymal marker CD44 was identified to significantly 
positively regulate PD-L1 expression in breast cancer 
and non-small cell lung cancer [30]. Overall, these 
results suggested that several PMT-related lncRNAs 
could promote mesenchymal transition and elicit 
immunosuppression via this ceRNA network in GBM.

Discussion
Verhaak et  al. [3] used TCGA core gene expression 
profiles to classify GBM into four subtypes: PN, NL, CL, 
and MES. This classification system is also applicable for 
non-GBM. PN primarily exists in grade II/III gliomas, 
while CL and MES are mainly found in GBM [31]. In the 
study by Verhaak et al. there was no significant difference 
in survival time among the different subtypes [3]. 
However, recent studies have shown that PN cases have 

Fig. 6  Multivariate Cox regression analysis of the risk signature. Forest plot showed the independent prognostic value of the risk signature 
compared with histopathologic classification, chemotherapy, IDH status, and age in TCGA and CGGA datasets. HGG high-grade glioma
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Fig. 7  Functional exploration of the risk signature in GBM. a Gene ontology (GO) analysis using the ClueGO plugin in Cytoscape software was 
performed for coding genes positively correlated with risk score in TCGA. **P < 0.01. b Expression profiles of genes enriched in related GO terms 
were shown in the heat map. c Relative biological functions of these genes were verified by GSEA analyses
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a good prognosis, NL cases have intermediate prognosis, 
whereas CL and MES cases display unfavorable outcomes 
[6]. Recently, individualized therapeutic strategies in 
gliomas were significantly improved by the molecular 
classification of glioma patients; however, the transition 
from PN to MES, which is induced by radiotherapy or 
chemotherapy, is a major trigger for treatment resistance 
[32]. Therefore, PMT status should be taken into account 

when developing an individualized treatment course. To 
date, there are no comprehensive methods of evaluating 
PMT status, meanwhile, indicators that drive PMT in 
glioma remain obscure. In this study, we used ssGSEA to 
calculate PMT scores, which could successfully estimate 
the PMT status in glioma. We found that PMT score was 
closely related to clinical and molecular characteristics 
in glioma. PMT scores were higher in cases with risky 

Fig. 8  GBM cases with high risk scores exhibited enhanced immunosuppression. a Risk scores were positively associated with stromal scores 
and immune scores, whereas they were negatively correlated with tumor purity in TCGA and CGGA datasets. b, c Effect of the risk signature on 
the enrichment of immune cells. Risk scores were positively correlated with eosinophils, macrophages, neutrophils, and regulatory T cells, but 
negatively correlated with central memory T cells (Tcm) and helper T cells (Th) in the CGGA. d Risk scores were significantly positively correlated 
with immunosuppressive gene set scores in the CGGA. ****P < 0.0001. e The circle plot showed the relation between risk score and eight 
immunosuppressive effectors in CGGA​
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phenotypes, specifically up-regulated in IDH wild-type 
and MES subtype, which were recognized as subgroups 
with strong invasiveness and enhanced immune response 
[33, 34]. Meanwhile, we also found that PMT score could 
predict the prognosis of glioma cases, even in GBM. 
Additionally, chemotherapy was more effective in cases 
with low PMT scores, whereas cases with high PMT 
scores showed less therapeutic efficacy, confirming the 
importance of PMT on clinical outcomes.

PMT scores were calculated from PN and MES gene 
sets. Although PMT score had significant prognostic 
value, too many effectors were included, limiting its 
ability for clinical translation. Recent studies have 
shown that lncRNAs promote mesenchymal transition 
in glioma. For example, H19 enhances Sox4 expression 
by sponging miR-130a-3p, which promotes EMT in 
glioma [35]. Additionally, LINC00152 regulates PMT in 
glioma via the miR-612/AKT2/NF-kB axis [10]. In this 
study, we used the WGCNA algorithm [36], which is a 
powerful method of identifying candidate biomarkers 
or therapeutic targets, to screen lncRNA co-expression 
modules closely related to PMT score, and identified 
10 core lncRNAs associated with prognosis. The PMT-
related 10-lncRNA risk signature also had powerful 
predictive value. Similar to PMT scores, risk scores 
were positively correlated with risky behaviors and had 
significant predictive value for PMT status in glioma. 
Furthermore, a signature consisting of only 10 lncRNAs 
is more suitable for clinical application.

Among these 10 lncRNAs, nine (LINC01057, 
TP73-AS1, AP000695.4, LINC01503, CRNDE, 
OSMR-AS1, SNHG18, AC145343.2, and RP11-25K21.6) 
were high-risk lncRNAs, while only one (RP11-38L15.2) 
was a protective lncRNA. Several previous studies 
have revealed that some of these lncRNAs participate 
in solid tumor risky progression. For example, high 
TP73-AS1 expression is associated with poor prognosis, 
and inhibiting TP73-AS1 expression suppresses 
EMT in gastric cancer and bladder cancer [37, 38]. 
Overexpressing CRNDE promotes EMT in oral epithelial 
cell carcinoma and osteosarcoma [39, 40]. In glioma, high 
SNHG18 expression enhances radiation resistance, and 
triggers EMT by increasing ENO1 expression [41]. To 
the best of our knowledge, no studies have investigated 
the effects of these lncRNAs on PMT in glioma. Here, 
we further explored the biological functions of the 
PMT-related lncRNA signature. Most of the biological 
functions of the high-risk group were enriched in 
activation of immune response, regulation of cell 
adhesion, enhanced amino acid and glucose metabolism, 
and activation of STAT family genes, which are biological 
characteristics of the MES subtype. Moreover, previous 
studies have shown that inhibiting STAT3 activation 

suppresses radiation-induced PMT in glioma [24]. 
Additionally, we proved that LINC01503, one of these 
ten lncRNAs, could promote PMT in glioma through 
biological experiments. Together, these results suggest 
that this 10-lncRNA signature could contain potential 
molecular targets for glioma treatment.

The immune cells enriched in glioma play a crucial role 
in malignant progression and recurrence. Compared with 
PN, MES exhibited enhanced immunosuppression by 
being enriched for more tumor-associated macrophages 
(TAMs), CD3+, and FOXP3+ T cells [25]. Thus, the 
shift from PN to MES in glioma might reprogram the 
immunological microenvironment, resulting in enhanced 
tumor immunosuppression. These findings indicate that 
reversing PMT could improve the clinical outcomes 
from immunotherapy in glioma. Here, we found that the 
PMT-related lncRNA signature significantly reflected 
immune status in GBM. Risk scores were positively 
correlated with enrichment of eosinophils, macrophages, 
neutrophils, and Tregs in the glioma microenvironment. 
TAMs are the most abundant immune cells in glioma 
and create favorable conditions for growth and tumor 
cell invasion, resulting in unfavorable prognosis. 
Furthermore, we found that risk scores were positively 
correlated with immunosuppressive effectors, including 
CHI3L1, SWAP70, ANXA1, TNFRSF1A, ICAM1, 
LGALS1, BCL3, and SOCS3. Recent studies have 
shown that these immunosuppressive effectors enhance 
tumor immunosuppression. For example, CHI3L1 is 
secreted by fibroblasts and reshapes the breast cancer 
microenvironment by promoting the enrichment 
of M2 macrophages [42]. Mesenchymal stem cells 
can acquire immunosuppressive capacity by gaining 
ICAM1 expression [43]. TNFRSF1A mediates STAT3 
phosphorylation and promotes the accumulation of 
myeloid suppressor cells in the tumor microenvironment 
[44]. SWAP70 restricts the maturation of dendritic cells 
[45]. However, very little is known about correlations 
between the 10 lncRNAs and eight immunosuppressive 
genes. Therefore, further experiments are needed to verify 
the mechanisms of these lncRNAs on reprogramming 
the immunosuppressive microenvironment in glioma.

Prior studies have noted that lncRNAs carry abundant 
miRNA binding sites, which could sponge miRNAs 
to indirectly enhance the expression of downstream 
target genes [46–48]. In this study, we explored whether 
the 10 lncRNAs in the PMT signature affected risky 
behaviors and immune responses via such indirect 
mechanisms. Finally, a core lncRNA/miRNA/mRNA 
network was established, which included six lncRNAs 
(AC145343.2, SNHG18, OSMR-AS1, AP000695.4, 
TP73-AS1, and LINC01057), ten miRNAs (hsa-miR-
103a-3p, hsa-miR-107, hsa-miR-128-3p, hsa-miR-129-5p, 
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hsa-miR-338-3p, hsa-miR-381-3p, hsa-miR-410-3p, hsa-
miR-491-5p, hsa-miR-495-3p, and hsa-miR-512-3p), 
and nine core coding mRNAs (IQGAP1, CASP8, 
BIRC3, RAC1, MSN, ANXA5, ICAM1, CD44, and 
TNFRSF1A). In reviewing the literature, TP73-AS1 was 
found to combine with miR-124 and miR-142, resulting 
in enhanced proliferation of glioma cells [22, 49]. 
Additionally, BIRC3, ICAM1, and TNFRSF1A belong 
to the group of immunosuppressive factors described 
above, and CD44 is a core MES marker [4]. Furthermore, 
a previous study showed that CD44 expression was 
significantly inhibited by miR-512-3p in breast cancer 
[29]. Additionally, OPN, a physiological ligand of CD44, 
can bind to CD44 and activate T cells [50]. Most recently, 
CD44 was identified to significantly increase PD-L1 
expression, enhancing immunosuppression by alleviating 
T cell enrichment in breast cancer and lung cancer [30]. 
According to these findings, we inferred that several 
PMT-related lncRNAs could indirectly promote PMT 
and reinforce the immunosuppressive status of GBM 
through a ceRNA network.

Conclusions
In summary, we explored the PMT status of glioma and 
identified 10 PMT-related lncRNAs in a large sample size 
of glioma cases. Our newly developed risk signature was 
constructed on the basis of these lncRNAs and could 
successfully evaluate PMT status. Thus, we believe that 
it could serve as a clinical prognostic indicator for high-
grade glioma. Meanwhile, several of the identified PMT-
related lncRNAs could act as ceRNAs to trigger PMT, 
resulting in enhanced immunosuppression in GBM. 
However, the main weakness of this study was that major 
conclusions came from retrospective analyses of large 
public datasets. Further research should be undertaken 
to verify the biological functions and mechanism of these 
lncRNAs in PMT, which will provide new insights into 
individualized therapeutic strategies.
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