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Abstract 

Background:  The incidence of stage I and stage II lung adenocarcinoma (LUAD) is likely to increase with the intro-
duction of annual screening programs for high-risk individuals. We aimed to identify a reliable prognostic signature 
with immune-related genes that can predict prognosis and help making individualized management for patients 
with early-stage LUAD.

Methods:  The public LUAD cohorts were obtained from the large-scale databases including 4 microarray data sets 
from the Gene Expression Omnibus (GEO) and 1 RNA-seq data set from The Cancer Genome Atlas (TCGA) LUAD 
cohort. Only early-stage patients with clinical information were included. Cox proportional hazards regression model 
was performed to identify the candidate prognostic genes in GSE30219, GSE31210 and GSE50081 (training set). The 
prognostic signature was developed using the overlapped prognostic genes based on a risk score method. Kaplan–
Meier curve with log-rank test and time-dependent receiver operating characteristic (ROC) curve were used to evalu-
ate the prognostic value and performance of this signature, respectively. Furthermore, the robustness of this prognos-
tic signature was further validated in TCGA-LUAD and GSE72094 cohorts.

Results:  A prognostic immune signature consisting of 21 immune-related genes was constructed using the training 
set. The prognostic signature significantly stratified patients into high- and low-risk groups in terms of overall survival 
(OS) in training data set, including GSE30219 (HR = 4.31, 95% CI 2.29–8.11; P = 6.16E−06), GSE31210 (HR = 11.91, 
95% CI 4.15–34.19; P = 4.10E−06), GSE50081 (HR = 3.63, 95% CI 1.90–6.95; P = 9.95E−05), the combined data set 
(HR = 3.15, 95% CI 1.98–5.02; P = 1.26E−06) and the validation data set, including TCGA-LUAD (HR = 2.16, 95% CI 1.49–
3.13; P = 4.54E−05) and GSE72094 (HR = 2.95, 95% CI 1.86–4.70; P = 4.79E−06). Multivariate cox regression analysis 
demonstrated that the 21-gene signature could serve as an independent prognostic factor for OS after adjusting for 
other clinical factors. ROC curves revealed that the immune signature achieved good performance in predicting OS 
for early-stage LUAD. Several biological processes, including regulation of immune effector process, were enriched in 
the immune signature. Moreover, the combination of the signature with tumor stage showed more precise classifica-
tion for prognosis prediction and treatment design.

Conclusions:  Our study proposed a robust immune-related prognostic signature for estimating overall survival in 
early-stage LUAD, which may be contributed to make more accurate survival risk stratification and individualized clini-
cal management for patients with early-stage LUAD.
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Background
Lung cancer is the leading cause of death from can-
cer. In the United States, there will be approximately 
228,820 newly diagnosed cases and 135,720 deaths in 
2020 [1]. Lung adenocarcinoma (LUAD) is the most 
common histological type and accounts for nearly 60% 
of non-small cell lung cancer (NSCLC), which com-
prises approximately 85% of lung cancer [2–4]. Surgical 
lobectomy remains the preferred treatment strategy for 
patients with operable early-stage LUAD [5]. Although 
patients with early-stage LUAD have a relatively supe-
rior prognosis, nearly 10–44% of these patients still 
die within 5  years after surgical intervention [6, 7]. 
Recently, several studies revealed that adjuvant chemo-
therapy brought a clear 5-year survival benefit ranged 
from 4 to 10% for patients with resected stage II LUAD 
and can be considered for stage IB LUAD with primary 
tumor more than 4 cm [8–11], but not for patients with 
stage IA because of the potential detrimental effect 
[12]. Thus, besides the traditional clinical factors, it is 
imperative to develop a novel prognostic signature to 
perform personalized survival risk stratification and 
identify the high-risk early-stage patients who might 
benefit from additional systemic therapy.

In recent years, numerous studies have reported 
prognostic signatures to make survival stratification 
and predict prognosis for patients with LUAD using 
genomics and transcriptomics data [13–15]. Unfortu-
nately, the signatures proposed by these studies have 
not been incorporated into clinical practice owing to 
the problems such as small sample size and insufficient 
independent validation [16, 17]. Nowadays, the avail-
able public, large-scale databases containing enough 
gene expression data, such as TCGA (The Cancer 
Genome Atlas) and GEO (Gene Expression Omnibus) 
database, bring the opportunity to make more reliable 
prognostic signatures for lung cancer [18]. Immune 
system has been shown to play a crucial role in cancer 
initiation and progression [19, 20]. In addition, avoid-
ing immune destruction has been accepted as a novel 
hallmark of cancer [21]. Recently, immunotherapies 
have achieved a notably and durable response in LUAD 
by targeting specific immune checkpoints like PD-1 or 
PD-L1 [22, 23]. Several studies have reported immune-
related gene signatures which could predict prognosis 
and provide potential targets for immunotherapy in 
patients with LUAD [24–26]. However, few prognostic 
models have focused on immune-related genes in early-
stage LUAD.

In this study, we used the gene expression data sets 
from GEO and TCGA to develop and validate a prog-
nostic prediction model for early-stage LUAD based on 
immune-related genes. A novel 21-gene based prognos-
tic immune signature with robust prediction power for 
early-stage LUAD was developed, which allows clinicians 
to evaluate the prognosis of patients with early-stage 
LUAD and might provide promise for individualized 
therapeutic interventions.

Methods
Data preprocessing
We downloaded four independent NSCLC microarray 
data sets from GEO database (https​://www.ncbi.nlm.
nih.gov/geo/) using the GEOquery package [27]. Only 
early-stage LUAD patients were included. Patients with-
out survival status or whose overall survival time shorter 
than 30 days were removed from the study. Among these 
data sets, the gene expression data of GSE30219 [28], 
GSE31210 [29, 30] and GES50081 [31] were generated by 
the same platform GPL570 (Affymetrix Human Genome 
U133 Plus 2.0 Array). These data sets were defined as 
training set and selected to screen for the candidate prog-
nostic genes, while GSE72094 [32], another microarray 
data set, was chose for independent validation. Besides, 
The gene expression data and corresponding clinical 
information of TCGA-LUAD cohort, a RNA-seq data set, 
were downloaded by the UCSC Xena platform [33, 34], 
which was used for another independent validation. The 
general information of these datasets was summarized in 
Additional file  1: Table  S1. The gene expression data of 
GEO and TCGA-LUAD data sets were normalized by the 
limma and DESeq2 package, respectively [35, 36]. Over-
all, a total of 1091 patients were enrolled in our study, 
including 82 patients from GSE30219, 204 patients from 
GSE31210, 127 patients from GSE50081, 311 patients 
from GSE72094 and 367 patients from TCGA-LUAD. 
The baseline characteristics of the patients enrolled in the 
study were described in Additional file 2: Table S2.

Development of the prognostic gene signature
We constructed the prognostic gene signature by focus-
ing on the immune-related genes, which were down-
loaded from the InnateDB database (https​://innat​edb.
com/) [37]. The list of the immune-related genes was 
summarized in Additional file  3: Table  S3. The flow 
chart of this study was presented in Fig.  1. Firstly, uni-
variate cox proportional hazards regression model was 
performed to screen for the candidate prognostic genes 
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Fig. 1  Flow chart of this study
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(p < 0.05) associated with OS in GSE30219, GSE31210 
and GSE50081 cohort, respectively. Candidate genes with 
Hazard ratio (HR) > 1 were considered as risky prognos-
tic genes, while HR < 1 as protective prognostic genes. 
The overlapped candidate prognostic genes were selected 
to develop the prognostic signature based on risk score 
model. In addition, the three microarray data sets were 
merged into 1 combined data set for further analysis.

Then a risk score for each patient was established 
based on a linear combination of the overlapped candi-
date prognostic genes expression levels weighted by the 
regression coefficient (β) derived from the univariate cox 
regression analysis [38, 39]. The risk score formula was 
defined as the following:

The n, expi and βi in the above formula represent the 
number of prognostic genes, the expression value and 
the coefficient of gene i, respectively [40]. Optimal cutoff 
value of the risk score in each data set was determined by 
the survminer package in R [41]. According to the cut-
off value, patients were classified into high- and low-risk 
groups.

Evaluation of the immune‑related prognostic signature
To assess the prognostic value of this prognostic signa-
ture, we firstly estimated the survival curves between the 
high- and low-risk groups by the Kaplan–Meier method 
using the survival and survminer package in GSE30219, 
GSE31210, GSE50081 and the combined data set, respec-
tively [41, 42], with log-rank test to determine the statisti-
cal significances in OS between two groups. Meanwhile, 
time-dependent receiver operating characteristic (ROC) 
curve was conducted to evaluate the performance of this 
signature by calculating the area under the ROC curves 
(AUC) using timeROC package [43]. Furthermore, the 
same risk score formula was employed on GSE72094 and 
TCGA-LUAD cohort, which were served as independent 
validation data sets, to further evaluate and validate the 
efficiency of this signature.

Functional annotation and enrichment analysis
To acquire the potential biological processes of the over-
lapped prognostic genes, Gene Ontology (GO) enrich-
ment and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis were performed using cluster-
Profiler package [44].

Statistical analysis
All statistical analyses were performed using R (version 
3.6.2; R Foundation for Statistical Computing) [45] and 

Risk score =

n∑

i=1

expi ∗ βi

RStudio (version 1.2.1335) (https​://rstud​io.com/). To 
investigate whether the gene signature was an independ-
ent prognostic factor for early-stage LUAD, univariate 
analysis was performed to evaluate the association of the 
gene signature and other clinical parameters with over-
all survival. Risk factors (p < 0.2) derived from univariate 
analysis were selected for further analysis in multivariate 
cox regression model [46, 47]. Heatmap was generated 
using the pheatmap package [48]. The detailed informa-
tion of the system, software and packages using in the 
study were summarized in Additional file  4: Table  S4. 
p < 0.05 deemed statistically significant.

Results
Identification of 21 immune‑related prognostic genes 
in the training set
A total of 1091 patients with early-stage LUAD (533 
men [49%], 558 women [51%]; median age [range], 66 
[30–89] years), including 413 patients in the training set 
and 678 patients in the validation set, were enrolled in 
the analysis. Among 1051 immune-related genes from 
the innateDB database, 920 genes were measured in the 
training set. Under the cutoff value of p < 0.05, 173 genes 
in GSE30219, 300 genes in GSE31210 and 146 genes in 
GSE50081 were identified as candidate prognostic genes 
which were significantly associated with OS. After over-
lapping these prognostic genes among these data sets, 
21 overlapped genes were finally screened, including 14 
risky genes and 7 protective genes. The general informa-
tion of the overlapped genes and corresponding coeffi-
cients were summarized in Additional file 5: Table S5.

Development of the 21‑gene based immune‑related 
prognostic signature
We calculated the 21-gene based risk score for each 
patient in the training set using the risk score formula 
(Additional file 6: Table S6). Patients were classified into 
high- and low-risk groups using the optimal cutoff ana-
lyzed by the survminer package. The cutoff value in each 
cohort was summarized in Additional file  7: Table  S7. 
The distribution of the risk scores, survival status and the 
expression levels of the 21 genes in the training set were 
shown in Additional file 8: Figure. S1.

Kaplan–Meier survival curves revealed that patients in 
the high-risk group shown significantly poorer OS than 
patients in the low-risk group (Fig.  2a). Moreover, the 
AUCs for 1-year, 3-year and 5-year were 0.75, 0.80 and 
0.82 in GSE30219, 0.78, 0.75 and 0.81 in GSE31210 and 
0.73, 0.75 and 0.74 in GSE50081, respectively (Fig.  2b), 
suggesting that this 21-gene signature achieved a rela-
tively high performance for early-stage LUAD survival 
prediction. Furthermore, we conducted survival analy-
sis in the combined data set to assess the reliability of 

https://rstudio.com/
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this signature. Consistent with the results of single data 
set in the training set, Kaplan–Meier curve showed that 
patients in the high-risk group exhibited shorter OS than 
those in the low-risk group (p < 0.0001) (Fig.  2a). The 
AUCs for 1-year, 3-year and 5-year were 0.66, 0.66 and 
0.70, respectively (Fig. 2b), implying that this gene signa-
ture also had a good performance for prognosis predic-
tion in the combined data set.

External validation of the 21‑gene prognostic signature
To further validate the robustness of the 21-gene sig-
nature, the risk score for each patient was calculated 
using the same risk score formula in two independ-
ent data sets, including TCGA-LUAD and GSE72094 
cohort. We divided the patients into high- and low-risk 
group according to the optimal cutoff. Consistent with 
the results in the training set, patients of high-risk group 
shown conspicuously poorer OS than those of low-
risk group in both TCGA-LUAD and GSE72094 cohort 
(p < 0.0001, Fig.  3a). The AUCs for 1-year, 3-year and 
5-year were 0.61, 0.66 and 0.62 in TCGA-LUAD, and 
0.70, 0.64 and 0.94 in GSE72094 (Fig. 3b), which implies 
that the prognostic signature has a valid performance 
for OS prediction in validation data sets. The distribu-
tion of the risk scores, survival status and the expression 
levels of the 21 genes in the validation set were shown in 
Additional file 8: Figure. S1. The data for Kaplan–Meier 
survival analysis and ROC analysis were summarized in 
Additional file 9: Table S8. Taken together, these results 
suggest that this 21-gene based prognostic signature is 
robust in prognosis prediction for early-stage LUAD and 

can be used in both microarray and RNA-sequencing 
data sets.

The 21‑gene prognostic signature is an independent 
prognostic factor
Univariate and multivariate cox analysis were performed 
in both training and validation sets to investigate whether 
this 21-gene prognostic signature could be served as an 
independent prognostic factor for patients with early-
stage LUAD. The prognostic signature and other available 
clinicopathological factors were included for analysis. 
Univariate regression analysis indicated that the prog-
nostic signature was significantly associated with OS for 
early-stage LUAD in GSE30219 (HR = 4.31, 95% CI 2.29–
8.11, P = 6.16E−06), GSE31210 (HR = 11.91, 95% CI 
4.15–34.19; P = 4.10E−06), GSE50081 (HR = 3.63, 95% CI 
1.90–6.95; P = 9.95E−05), combined data set (HR = 3.15, 
95% CI 1.98–5.02; P = 1.26E−06) (Table  1), TCGA-
LUAD (HR = 2.16, 95% CI 1.49–3.13; P = 4.54E−05) and 
GSE72094 (HR = 2.95, 95% CI 1.86–4.70; P = 4.79E−06) 
(Table  2). Then, risk factors (P < 0.2) derived from the 
univariate analysis were selected for further multivari-
ate analysis. The results shown that there was a signifi-
cantly association between the prognostic signature 
and OS in GSE30219 (HR = 5.01, 95% CI 2.50–10.06; 
P = 5.75E−06), GSE31210 (HR = 8.82, 95% CI 2.86–
27.14; P = 1.48E−04), GSE50081 (HR = 2.74, 95% CI 
1.37–5.46; P = 4.24E−03), combined data set (HR = 3.01, 
95% CI 1.86–4.85; P = 6.44E−06) (Table  1), TCGA-
LUAD (HR = 1.91, 95% CI 1.28–2.85; P = 1.55E−03) 
and GSE72094 (HR = 2.94, 95% CI 1.81–4.79; 1.47E−05) 

Fig. 2  Correlation between the 21-gene signature and Overall survival in the training set (early-stage LUAD). a Kaplan–Meier survival curves 
between high- and low-risk groups, b ROC curves for 1-year, 3-year and 5-year survival prediction by the 21-gene signature
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(Table  2). These results demonstrated that the 21-gene 
based prognostic signature was an independent prog-
nostic factor for patients with early-stage LUAD in both 
training set and validation set after adjusting for other 
clinical and pathologic factors.

Prognosis prediction by combining the 21‑gene prognostic 
signature with stage
Multivariate analysis revealed that the prognostic signa-
ture and stage were both independent prognostic factors 
in the combined data set, suggesting a complementary 
value. Therefore, we attempted to develop an integrated 
prognostic model for survival prediction by combining 
the prognostic signature with tumor stage in the com-
bined data set. Based on the risk and stage, patients were 
classified into six groups: group 1 (stage IA with low-
risk), group 2 (stage IA with high-risk), group 3 (stage IB 
with low-risk), group 4 (stage IB with high-risk), group 5 
(stage II with low-risk) and group 6 (stage II with high-
risk) (Fig.  4). Kaplan–Meier survival analysis were per-
formed between different groups. The results revealed 
that patients in group 2, group3, group 4, group5 and 

group 6 had worse prognosis compared with patients in 
group 1, with group 1 exhibited the best prognosis and 
group 6 showed the worst (Fig.  4). Nevertheless, there 
was no significant difference between patients in group 
2 and group 3/4/5 (Fig.  4). These results display that 
patients of stage IA with high-risk have similar prognosis 
to those of stage IB and stage II with low-risk, suggest-
ing adjuvant chemotherapy might be beneficial for stage 
IA LUAD with high-risk. Additionally, patients of early-
stage LUAD could be divided into six different groups 
based on the stage and prognostic signature, which 
might be a more precise scheme to predict prognosis for 
patients with early-stage LUAD in the future practice.

Functional annotation and enrichment analysis of 
the 21‑gene prognostic signature
To identify the underlying biological processes and path-
ways within this 21-gene signature, we performed GO 
enrichment and KEGG pathway analysis. The results 
indicated these genes were mainly enriched in  biologi-
cal processes such as positive regulation of cytokine pro-
duction (GO:0001819), regulation of immune effector 

Fig. 3  Correlation between the 21-gene signature and Overall survival in the validation set (early-stage LUAD). a Kaplan–Meier survival curves 
between high- and low-risk groups in TCGA-LUAD and GSE72094 cohort, respectively. b ROC curves for 1-year, 3-year and 5-year survival prediction 
by the 21-gene signature in TCGA-LUAD and GSE72094 cohort, respectively
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process (GO:0002697) and intrinsic apoptotic signaling 
pathway (GO:0097193) (Fig. 5). In addition, KEGG analy-
sis revealed that several pathways like viral carcinogen-
esis, proteoglycans in cancer and Fc-gamma R-mediated 
phagocytosis (Fig. 5) were enriched among these genes.

Discussion
Previous studies have reported different prognostic bio-
markers for patients with early-stage LUAD [28, 49–51]. 
However, none of these studies focused on the immune-
related genes in prognosis prediction. Recently, sev-
eral studies have proposed prognostic signatures using 
immune-related genes for LUAD [24–26]. Nevertheless, 
some concerns hamper the prediction power of these 
prognostic signatures, such as insufficient sample size, 
lack of external independent validation or effective vali-
dation. In the present study, we developed a novel prog-
nostic signature based on 21 immune-related genes for 

early-stage LUAD and validated it in two independent 
cohorts. Our prognostic signature was significantly asso-
ciated with OS for early-stage LUAD and could further 
identify the high- and low-risk early-stage LUAD patients 
with significant differences in OS. Besides, the 21-gene 
prognostic signature showed a good prediction perfor-
mance in all enrolled studies including GEO and TCGA-
LUAD data sets, suggesting that our signature had a 
cross-platform compatibility. Multivariate regression 
analysis revealed that the 21-gene prognostic signature 
was an independent prognostic factor for all enrolled 
studies. These results suggest that the 21-gene prognostic 
signature could effectively predict the overall survival for 
early-stage LUAD.

In the aera of immunotherapy, it may hold great prom-
ise to discover prognostic and predictive biomarkers that 
are related to tumor immune microenvironment, which 
can be used for identifying novel molecular targets for 

Table 1  Univariate and multivariate Cox regression analyses of the 21-gene signature and OS in the training set (early-
stage LUAD)

Variables Patients (N) Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

GSE30219

 Age  > 65/ ≤ 65 23/59 1.765 0.946–3.295 7.42E−02 2.36 1.179–4.724 1.53E−02

 Gender Male/female 64/18 1.148 0.532–2.478 7.24E−01

 T stage T2/T1 12/69 2.046 1.019–4.107 4.40E−02 0.982 0.352–1.94 9.63E−01

 Risk score High/low 34/48 4.308 2.287–8.114 6.16E−06 5.012 2.498–10.058 5.75E−06

GSE31210

 Age  > 65/ ≤ 65 47/157 2.779 1.349–5.724 5.59E−03 3.172 1.445–6.964 4.01E−03

 Gender Male/female 95/109 1.686 0.818–3.476 1.57E−01 1.033 0.347–3.078 9.54E−01

 Stage II/I 42/462 4.297 2.092–8.828 7.21E−05 2.444 1.152–5.186 1.99E−02

 Smoking Yes/no 99/105 1.908 0.918–3.966 8.35E−02 1.726 0.565–5.271 3.38E−01

 ALK fusion  ±  7/197 1.057 0.144–7.777 9.56E−01

 EGFR mutation  ±  116/88 0.46 0.222–0.956 3.76E−02 1.658 0.512–5.375 3.99E−01

 KRAS mutation  ±  19/185 0.992 0.3–3.282 9.89E−01

 Triple negative Yes/no 62/142 0.436 0.212–0.894 2.34E−02 0.543 0.174–1.698 2.94E−01

 MYC copy High/low 16/187 0.767 0.183–3.22 0.716942752

 Risk score High/low 81/123 11.914 4.151–34.193 4.10E−06 8.817 2.864–27.14 1.48E−04

GSE50081

 Age  > 65/ ≤ 65 87/40 1.455 0.774–2.735 2.44E−01

 Gender Male/female 65/62 1.41 0.807–2.463 2.28E−01

 Stage II/I 35/92 2.443 1.383–4.316 2.10E−03 1.905 1.068–3.399 2.90E−02

 T stage T2/T1 82/30 2.435 1.214–4.883 1.22E−02 1.625 0.785–3.365 1.91E−01

 Smoking Yes/no 92/23 1.682 0.75–3.776 2.07E−01

 Risk score High/low 72/55 3.632 1.897–6.953 9.95E−05 2.736 1.373–5.455 4.24E−03

Combined data set

 Age  > 65/ ≤ 65 157/256 2.314 1.621–3.304 3.82E−06 2.414 1.686–3.456 1.49E−06

 Gender Male/female 224/189 1.574 1.081–2.291 1.80E−02 1.582 1.084–2.307 1.73E−02

 Stage II/I 90/323 2.79 1.934–4.026 4.08E−08 2.065 1.42–3.004 1.49E−04

 Risk score High/low 270/143 3.153 1.981–5.016 1.26E−06 3.005 1.863–4.846 6.44E−06
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Table 2  Univariate and multivariate Cox regression analyses of the 21-gene signature and OS in the validation set (early-
stage LUAD)

Variables Patients (N) Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

GSE72094

Age  > 65/ ≤ 65 219/92 1.638 0.952–2.817 7.47E−02 1.807 1.042–3.135 3.52E−02

 Gender Male/female 141/170 1.449 0.917–2.289 1.12E−01 1.386 0.871–2.207 1.69E−01

 Stage II/I 65/246 2.137 1.313–3.479 2.24E−03 2.258 1.38–3.695 1.20E−03

 Smoking Yes/no 237/26 1.334 0.482–3.696 5.79E−01

 EGFR mutation Yes/no 35/276 0.092 0.013–0.659 1.76E−02 0.137 0.019–1.004 5.05E−02

 KRAS mutation Yes/no 105/206 1.701 1.075–2.691 2.33E−02 1.554 0.976–2.475 6.33E−02

 TP53 mutation Yes/no 77/234 1.461 0.893–2.392 1.31E−01 1.154 0.69–1.932 5.86E−01

 STK11 mutation Yes/no 48/263 0.799 0.41–1.559 5.11E−01

 Risk score High/low 89/222 2.952 1.857–4.695 4.79E−06 2.942 1.806–4.793 1.47E−05

TCGA-LUAD

 Age  > 65/ ≤ 65 190/168 1.308 0.897–1.907 1.62E−01 1.513 1.018–2.249 4.05E−02

 Gender Male/female 168/199 1.069 0.739–1.546 7.25E−01

 Stage II/I 113/254 2.607 1.795–3.785 4.84E−07 2.186 1.444–3.309 2.19E−04

 T stage T2/T1 201/141 1.423 0.942–2.147 9.35E−02 1.131 0.775–1.813 4.34E−01

 Smoking Yes/no 273/49 0.923 0.54–1.579 7.70E−01

 Risk score High/low 141/226 2.16 1.492–3.128 4.54E−05 1.909 1.279–2.849 1.55E−03

Fig. 4  Kaplan–Meier curves of overall survival for patients grouped by stage and 21-gene signature combination (early-stage LUAD)
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patients [52]. Our functional enrichment analysis sug-
gests that the genes in our prognostic signature are 
widely involved in the immune process. Among all the 
21 prognostic genes, 14 (e.g., AQP3, BIRC5, C5AR1, 
HMOX1, IL32, IL6ST, MIF, MMP12, PLAUR​, PMAIP1, 
RAC1, SMAD6, SPHK1, USP7) have been reported to 
be served as a prognostic biomarker or suggested to be a 
novel therapeutic targets for lung adenocarcinoma [53–
67]. The remaining 7 genes, including ARF6, C7, ELF4, 
ITPR1, MOV10, PTCH1 and RIPK2, have not been pre-
viously reported to be associated with LUAD prognosis 
and might act as potential biomarker. We were particu-
larly interested in studying ARF6, which was a member 
of small GTPases ADP-ribosylation factor family, and its 
downstream effector AMAP1 have been reported over-
expressed in several types of cancer and could promote 
cancer cell proliferation, invasion and migration [68–71]. 
For example, KRAS and TP53 oncogenes could promote 
PD-L1 recycling and cell surface expression through 
ARF6-AMAP1 pathway, which is significantly involved 
in the immune evasion of pancreatic ductal adenocarci-
noma cells [72].

Currently, tumor staging system has been widely used 
for prognosis prediction and treatment design for LUAD. 
However, prognosis might vary in patients with same 
stage owing to the variabilities in clinical behavior caused 
by genomic changes [73, 74]. Thus, it is critically needed 
to develop reliable prognostic biomarkers to predict 
prognosis and help clinical oncologists optimally select 
early-stage patients who might obtain survival benefit 
from additional system therapy. In the integrated pre-
diction model analysis, early-stage LUAD patients could 
be stratified into six different groups by combining our 
21-gene prognostic signature with tumor stage. Besides, 

no statistical significance exists in prognosis between 
stage IA patients with high-risk and stage II patients 
with low-risk. These findings may help clinicians iden-
tify high-risk patients and make individualized treatment 
design for these patients.

The limitations in our study need to be noted. First, 
although different cohorts from GEO and TCGA data-
bases have been included in our study to develop and 
validate the immune-related prognostic signature, the 
study presents a retrospective design. Future large-scale 
prospective clinical studies needed to confirm our find-
ings. Second, the data of specific mutations such as 
EGFR, KRAS and TP53 were only available in GSE31210 
and GSE72094 cohort, thus it might be insufficient to 
assess the 21-gene prognostic signature with the specific 
mutations. Finally, the biological mechanisms of these 
prognostic genes in early-stage LUAD and the associa-
tion of the prognostic signature with several prognostic 
biomarker such as PD-L1, IL-7R [75], CD8+ [76], are 
still unknown, Future studies are required to explore 
and clarify molecular functions of these immune-related 
prognostic genes during early-stage LUAD progression 
and the association between these genes with above 
prognostic biomarkers.

Conclusions
In summary, we developed and validated a promising 
immune-related prognostic signature comprising of 21 
immune-related genes, which could serve as an inde-
pendent prognostic biomarker for OS prediction in 
early-stage LUAD. Furthermore, a prediction model by 
combining our prognostic signature with tumor stage 
could more accurately evaluate patient’s prognosis. These 
findings might provide novel therapeutic targets and be 

Fig. 5  Functional enrichment analysis of the 21 prognostic genes. a Gene Ontology analysis, b Kyoto Encyclopedia of Genes and Genomes 
pathway analysis
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used for making individualized management and hold 
promise for improving survival for patients with early-
stage LUAD.
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