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Abstract 

Background:  Kidney transplantation is the optimal treatment to cure the patients with end-stage renal disease 
(ESRD). However, the infectious complication, especially pneumonia, is the main cause of mortality in the early stage. 
Immune monitoring by relevant biomarkers provides direct evidence of immune status. We aimed to study the 
association between immune monitoring and pneumonia in kidney transplant patients through machine learning 
models.

Methods:  A total of 146 patients receiving the immune monitoring panel in our center, including 46 pneumonia 
recipients and 100 stable recipients, were retrospectively reviewed to develop the models. All the models were vali-
dated by external data containing 10 pneumonia recipients and 32 stable recipients. The immune monitoring panel 
consisted of the percentages and absolute cell counts of CD3+CD4+ T cells, CD3+CD8+ T cells, CD19+ B cells and 
natural killer (NK) cells, and median fluorescence intensity (MFI) of human leukocyte antigen (HLA)-DR on monocytes 
and CD64 on neutrophils. The machine learning models including support vector machine (SVM), logistic regression 
(LR), multi-layer perceptron (MLP) and random forest (RF) were applied for analysis.

Results:  The pneumonia and stable groups showed significant difference in cell counts of each subpopulation and 
MFI of monocyte HLA-DR and neutrophil CD64. The SVM model by monocyte HLA-DR (MFI), neutrophil CD64 (MFI), 
CD8+ T cells (cells/μl), NK cells (cell/μl) and TBNK (T cells, B cells and NK cells, cells/μl) had the best performance with 
the average area under the curve (AUC) of 0.940. The RF model best predicted the patients who would progress into 
severe pneumonia, with the average AUC of 0.760. All the models had good performance validated by external data.

Conclusions:  The immune monitoring panel was tightly associated with pneumonia in kidney transplant recipients. 
The models developed by machine learning techniques identified patients at risk and predicted the prognosis. Based 
on the results of immune monitoring, better individualized therapy might be achieved.
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Background
Kidney transplantation is the optimal treatment to 
cure the patients with end-stage renal disease (ESRD) 
[1]. Novel immunosuppressive drugs improve the 
prognosis of kidney transplantation and minimize 
the side effects, but infection, especially pneumonia, 
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remains one of the main challenges in the early stage 
after kidney transplantation [2–4]. Over immunosup-
pression significantly impairs host immunity, leading 
to increased risk of infection. Currently, the routine 
surveillance in clinic is therapeutic drug monitoring 
[5, 6]. However, this strategy is quite restrictive and 
only provides indirect evidence of patient immune 
response. The high inter- and intra-patient variability 
and the deficiency of limited sampling strategies used 
in therapeutic drug monitoring increase the risk of 
graft failure [5, 7]. In contrast, the immune monitoring 
could provide direct information on patient response 
to immunosuppressive drugs or pathogens, thus con-
tributing to better individualized therapy and long-
term prognosis [8–10].

In recent years, a quantity of immune biomark-
ers have been found to diagnose or predict infection 
in solid organ transplant recipients, making them as 
parameters for immune monitoring. These include cell 
counts of lymphocytes, CD4+ T cells, CD8+ T cells 
and natural killer (NK) cells, CD4/CD8 ratio, molecule 
expression on specific cells such as human leukocyte 
antigen (HLA)-DR on monocytes, CD64 on neutro-
phils and programmed cell death protein 1 (PD-1) on 
lymphocytes, immunoglobulins, complements, soluble 
CD30 and immune cell response to stimuli [11–13]. 
However, in majority of these studies, parameters are 
usually analysed separately, or patients are simply clas-
sified by scoring according to the parameters. Single 
parameter without exact weight could not reflect the 
immune status accurately. Without comprehensive 
analysis by appropriate statistical methods, the effi-
cacy of these parameters may not be ideal.

Compared with traditional methods, the machine 
learning techniques have advantages in big data pro-
cessing. They have high power and accuracy, and 
can deal with numerous parameters simultaneously. 
Recently, these techniques have been used in thera-
peutic drug monitoring [14], and to predict the prog-
nosis of chronic kidney disease [15]. Our group also 
reported the application of machine learning models 
to predict tacrolimus stable dose in kidney transplant 
recipients [16]. The application of machine learn-
ing techniques in immune monitoring is promising, 
which may help us better understand the complexity of 
immune system [17].

In this study, we retrospectively analysed the kid-
ney transplant recipients who underwent the immune 
monitoring panel in our center, and developed 
machine learning models to study the association 
between the immune monitoring results and pneumo-
nia in kidney transplant recipients.

Methods
Study design
This was a retrospective, case–control study to evaluate 
the association between the immune monitoring panel 
and pneumonia in kidney transplant recipients. Both 
inpatients and outpatients who underwent the test of the 
immune monitoring panel from November 1st, 2017 to 
December 31st, 2019 in the Transplantation Center, The 
Third Xiangya Hospital, Central South University were 
enrolled to develop the machine learning models. Subse-
quently, the models were validated by the external data 
containing patients who received the test from January 
1st, 2020 to March 31st, 2020 in our center. The exclusion 
criteria included (1) age less than 18  years old or more 
than 65 years old; (2) non-solid organ transplant patients 
or other transplant recipients; (3) multiple transplants; 
(4) less than or equal to 3 months post kidney transplant; 
(5) rejection, tumor or other infection; (6) rituximab 
administration. All patients who were not excluded were 
enrolled. The study was approved by the Institutional 
Review Board of Third Xiangya Hospital, Central South 
University (No. 2019-S448).

Patients
All the kidney transplant recipients received the allo-
grafts from donation after citizen’s death (DCD) or from 
close family members after 2012. All the transplants per-
formed in our center were approved by the DCD Ethics 
Committee of the Third Xiangya Hospital, Central South 
University. The allograft was attributed by the China 
Organ Transplant Response System. Anti-thymocyte 
globulin (ATG) (1.00  mg/kg daily for 3  days) or basi-
liximab (20  mg at day 0 and 4) was used for induction 
treatment, and the standard triple immunosuppressive 
regimen including calcineurin inhibitor (CNI), mycophe-
nolate mofetil (MMF) and corticosteroid was given as 
maintenance regimen. Pneumonia was diagnosed based 
on clinical symptoms, positive laboratory test results 
and significant imaging findings. Severe pneumonia was 
defined according to the previous publication (Addi-
tional file  1: Table  S1) [18]. Because kidney transplant 
recipients had worse renal function compared with gen-
eral population, one minor criterion of which blood urea 
nitrogen (BUN) was more than or equal to 20 mg/dL was 
increased to 40  mg/dL instead. Patients who met more 
than or equal to one major criterion, or more than or 
equal to three minor criteria were classified into severe 
pneumonia.

Timing for receiving the immune monitoring test
All the patients received the immune monitoring test 
after kidney transplantation. For stable patients, they 
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received the test at regular follow-up. Usually, they had 
the test every 3 to 6  months during the first year after 
transplantation, and then might extend to once a year.

For pneumonia patients, they received the immune 
monitoring test when diagnosed with pneumonia. The 
test was performed as a clinical routine when the pneu-
monia patient was admitted to hospital. Some patients 
received several tests, and only the result of the first test 
was recorded.

Immune monitoring panel
The immune monitoring test consisted of two panels. 
One panel was BD Multitest 6-color TBNK reagent with 
BD Trucount tubes, which identified the percentages 
and absolute counts of CD3+CD4+ T cells, CD3+CD8+ 
T cells, CD19+ B cells and NK cells. This panel was per-
formed according to the manufacture’s instruction and 
analysed by BD FACSCanto clinical software (BD Bio-
sciences, San Jose, CA, USA). Another panel detected 
the median fluorescence intensity (MFI) of HLA-DR on 
monocytes and CD64 on neutrophils. It consisted of the 
following fluorochrome-conjugated monoclonal antibod-
ies: anti-CD45-PerCP (peridinin-chlorophyll-protein, 
clone HI30, Biolend), anti-CD14-APC-Cy7 (allophy-
cocyanin and cyanine dye 7, clone HCD14, Biolend), 
anti-HLA-DR-APC (allophycocyanin, clone L243, BD 
Biosciences) and anti-CD64-PE (phycoerythrin, clone 
10.1, BD Biosciences). Briefly, 50 μl whole blood from the 
identical EDTA anticoagulation tube was used for detec-
tion. After erythrolysis, cells and monoclonal antibodies 
were incubated in dark for 15  min. After washing and 
resuspending, samples were detected using BD FACS-
Diva software. Both panels were performed using BD 
FACSCanto II.

Model building
Four machine learning models including support vec-
tor machine (SVM), logistic regression (LR), multi-layer 
perceptron (MLP) and random forest (RF) were applied 
in this research. SVM, LR, MLP and RF were applied 
to study the association between immune monitoring 
panel and pneumonia in kidney transplant recipients. 
We adopted k-fold cross validation (k = 5) to find the 
optimal hyperparameters, and to estimate and compare 
the performance of different machine learning models. 
Generally, eligible patients were randomly and averagely 
divided into five subgroups. Four subgroups were used as 
the “derivation cohort” to develop the algorithm, and the 
remaining subgroup was used as the “validation cohort” 
to test the performance. After five rounds of training/
validation rotation, the average sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV) and area under the curve (AUC) were calculated. 

The final algorithms were derived from the whole data of 
patients for developing models. Subsequently, the algo-
rithms were validated by the external data.

The function of SVM model was f (x) = SIGN 
(β0 + βmxm). When the result was 1, it was classified into 
the pneumonia group; when the result was -1, it was clas-
sified into the stable group. The function of LR model 
was f (x) = SIGMOID (β0 + βmxm). When the result 
was more than 0.5, it was classified into the pneumonia 
group; when the result was less than or equal to 0.5, it 
was classified into the stable group. As one of most com-
mon artificial neural networks widely used in machine 
learning tasks, the MLP model could be regarded as a 
logistic regression classifier with transformed features 
through several non-linear neural network layers. The 
RF model adopted ensemble learning technique by using 
multiple decision tree classifiers together to predict the 
result. A total of ten trees were developed. Each tree was 
presented with a different part of the dataset for training. 
The final prediction result was obtained through majority 
voting.

These machine learning models were also applied to 
predict the prognosis of pneumonia. Pneumonia patients 
were classified into mild group and severe group. Simi-
lar strategy was adopted as described above. After five 
rounds of training/validation rotation, the average sensi-
tivity, specificity, PPV, NPV and AUC were calculated.

All the machine learning models were built using the 
programming language Python 3.6 and its machine 
learning library scikit-learn.

Statistical analysis
Continuous data were presented as the mean ± stand-
ard deviation (SD), and were compared using Student’s 
t-test, Welch’s t-test or the Mann–Whitney U test, where 
appropriate. Categorical data were compared using Pear-
son’s chi-squared (χ2) test or Fisher’s exact test, where 
appropriate. The performance of the models was assessed 
by calculating the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve. Statistical 
analysis was performed using SPSS version 22.0 (SPSS, 
Inc., Chicago, IL, USA). A P-value of < 0.05 was consid-
ered to be statistically significant.

Results
Basic characteristics
A total of 328 kidney transplant recipients underwent 
955 tests of the immune monitoring panel from Novem-
ber 1st, 2017 to December 31st, 2019 in our center. A 
sizable part of the them were perioperative patients. 
Because the induction treatment had a significant impact 
on lymphocytes, only the patients more than or equal to 
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Fig. 1  The study flowchart and exclusion criteria. 46 pneumonia and 100 stable kidney transplant recipients were finally enrolled for analysis. KT 
kidney transplant, BR blood routine, PCT procalcitonin, CT computed tomography
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three months post kidney transplantation were enrolled. 
The study flow was shown in Fig. 1.

46 eligible pneumonia patients underwent the immune 
monitoring test during the first week after admission to 
hospital. The average time from admission to test was 
2.20 ± 2.08 days (2 patients received the test 7 days after 
admission and most cases received the first test within 
3  days). Because they received the test when diagnosed 
with pneumonia, the average time from transplanta-
tion to receiving the test was the same as the time from 
transplantation to developing pneumonia, namely 
14.67 ± 15.24  months. Among them, 29 cases (63.0%) 
were between 3 and 12 months post transplantation, and 
17 (37.0%) cases developed into severe pneumonia. As 
control, 100 eligible stable kidney transplant recipients 
with the data of 100 tests were randomly selected. The 
average time from transplantation to receiving the test 
was 10.33 ± 8.47 months.

The clinical characteristics of the pneumonia group 
and the stable group showed no significant difference in 
age, gender, donor source, time since transplant and CNI 
regimen. Obviously, the stable group had a better allo-
graft function than the pneumonia group. Because 16 
patients in the pneumonia group received transplants in 
other hospitals, the induction treatment was not avail-
able. As a result, the induction treatment showed sig-
nificant difference in these two groups. The details were 
shown in Table 1.

Similarly, patients receiving the immune monitoring 
test from January 1st, 2020 to March 31st, 2020 were 

collected as external data for validation. 110 patients 
received 174 tests, but after exclusion, 10 pneumonia 
patients and 32 stable patients were enrolled. The char-
acteristics of these patients were shown in Additional 
file 1: Table S2.

Immune status characterized by the panel
Compared with the stable group, the pneumonia group 
showed poor immune status, which was characterized 
by significantly lower cell counts of total T cells (CD3+ 
T cells), T cell subsets (CD4+ T cells and CD8+ T cells), 
B cells and NK cells (Table  2). Although the percent-
ages of total T cells and NK cells showed statistical 
difference, they were not clinically significant (pneu-
monia vs stable, 76.79 ± 11.71vs 73.35 ± 10.28 for total 
T cells, P = 0.015; 12.78 ± 8.81 vs 17.11 ± 9.68 for NK 
cells, P = 0.003). The percentages of T cell subsets and 
B cells showed no significant difference. Notably, the 
CD4/CD8 ratio, which was reported as an immune bio-
marker, also showed no significant difference (pneumo-
nia vs stable, 1.21 ± 0.61 vs 1.12 ± 0.59, P = 0.320).

The remaining two parameters also provided mean-
ingful information. The expression of HLA-DR on 
monocytes was significantly lower in the pneumonia 
group (931.17 ± 671.15 vs 1392.53 ± 764.37, P < 0.001), 
while the expression of CD64 on neutrophils were 
much higher in the pneumonia group (589.20 ± 605.44 
vs 101.11 ± 54.08, P < 0.001).

Table 1  Clinical characteristics of the patients

Estimated glomerular filtration rate (eGFR) calculated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation

SD standard deviation, DCD donation after citizens’ death, ATG​ anti-thymocyte globulin, NA not available, CNI calcineurin inhibitor, CsA cyclosporine A
*   Tested by Fisher’s exact test; # Tested by Mann–Whitney U test

Characteristics All (n = 146) Pneumonia (n = 46) Stable (n = 100) P value

Age, years ± SD 40.61 ± 10.04 41.52 ± 8.01 40.19 ± 10.57 0.458

Male, n (%) 83 (56.8) 27 (58.7) 56 (56.0) 0.760

Donor, n (%) 0.098*

 DCD 144 (98.6) 44 (95.7) 100 (100)

 Relative 2 (1.4) 2 (4.3) 0 (0)

Time since transplant (months) 11.67 ± 11.15 14.67 ± 15.24 10.33 ± 8.47 0.732#

Induction, n (%)  < 0.001*

 None 17 (11.6) 5 (10.9) 12 (12.0)

 ATG​ 106 (72.6) 22 (47.8) 84 (84.0)

 Basiliximab 7 (4.8) 3 (6.5) 4 (4.0)

 NA 16 (11.0) 16 (34.8) 0 (0)

eGFR (ml/min/1.73 m2) 71.31 ± 23.93 59.11 ± 24.62 76.92 ± 21.50  < 0.001

CNI, n (%) 0.742*

 FK506 135 (92.5) 42 (91.3) 93 (93.0)

 CsA 11 (7.5) 4 (8.7) 7 (7.0)
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Machine learning models based on immune monitoring
To study whether the parameters of the immune moni-
toring panel were associated with pneumonia in kidney 
transplant recipients, univariate LR was performed to 
assess each parameter (Additional file 1: Table S3). Sev-
eral parameters including monocyte HLA-DR, neutro-
phil CD64 and cell counts of T cells, B cells and NK cells 
showed significance, but the performance was not ideal 
(data not shown).

To improve the performance, machine learning mod-
els including SVM, LR, MLP and RF were developed 
as described in the methods. After five rounds of train-
ing/validation rotation, the average sensitivity, speci-
ficity, PPV, NPV and AUC of these modes were shown 
in Table  3. All the models had good results with AUC 
(Fig. 2), of which the SVM model had the highest AUC 
of 0.940. Notably, the SVM model also had good clinical 
practicality, with sensitivity of 81.7%, specificity of 92.0%, 
PPV of 83.6% and NPV of 91.3%. Monocyte HLA-DR 
(MFI), neutrophil CD64 (MFI), CD8+ T cells (cells/μl), 

NK cells (cell/μl) and TBNK (T cells, B cells and NK cells, 
cells/μl) were selected to build the SVM and LR models. 
The parameter coefficients were shown in Table  4. The 
MLP model, as one of the techniques of artificial neu-
ral network (ANN), calculated the probability of each 
category. The average AUC was 0.923, and the sensitiv-
ity, specificity, PPV and NPV were 71.8%, 92.0%, 82.7% 
and 87.9%, respectively. As an example, one tree of the 
RF model was shown in Fig. 3. A total of ten trees were 
developed. The final result was obtained through major-
ity voting from the ten trees. The average AUC was 0.895, 
and the sensitivity, specificity, PPV and NPV were 73.6%, 
95.0%, 88.0% and 89.2%, respectively.

Compared with mild pneumonia, severe pneumonia 
had a worse impact on allograft and patient survival. 
Among the 46 pneumonia patients, 17 cases progressed 
to severe pneumonia. Three patients died with function-
ing allografts, and one patient lost allograft. All of them 
were from the severe pneumonia group. Because all 
pneumonia patients received the immune monitoring 
tests early after admission (2.20 ± 2.08 days from admis-
sion to test), we also studied whether the result of the 
immune monitoring panel could predict the prognosis of 
pneumonia. The comparison between the two groups was 
shown in Table 5. Only the cell count of NK cells showed 
significance (135.60 ± 108.79 vs 59.28 ± 39.50, P = 0.027); 
the mild pneumonia group had higher monocyte HLA-
DR, but not statistically significant (1068.59 ± 758.07 vs 
696.76 ± 410.57, P = 0.127).

The machine learning models were used to pre-
dict the prognosis based on the immune monitoring 
panel, and the results were shown in Additional file 1: 

Table 2  Immune monitoring panel of pneumonia and stable kidney transplant recipients

Tested by Mann–Whitney U test

HLA-DR human leukocyte antigen-DR, MFI median fluorescence intensity, SD standard deviation, TBNK T, B and NK cells, NK cells natural killer cells

Parameters All (n = 146) Pneumonia (n = 46) Stable (n = 100) P value

Monocyte HLA-DR, MFI ± SD 1247.17 ± 764.82 931.17 ± 671.15 1392.53 ± 764.37  < 0.001

Neutrophil CD64, MFI ± SD 254.89 ± 409.29 589.20 ± 605.44 101.11 ± 54.08  < 0.001

CD3+ T cells/TBNK, mean ± SD (%) 74.44 ± 10.83 76.79 ± 11.71 73.35 ± 10.28 0.015

CD3+ T cells, n ± SD (cells/μl) 1024.10 ± 596.64 628.51 ± 365.86 1206.07 ± 595.30  < 0.001

CD8+ T cells/TBNK, mean ± SD (%) 36.56 ± 10.70 36.34 ± 9.97 36.66 ± 11.06 0.903

CD8+ T cells, n ± SD (cells/μl) 506.37 ± 343.93 294.23 ± 173.57 603.95 ± 359.21  < 0.001

CD4+ T cells/TBNK, mean ± SD (%) 37.03 ± 10.46 39.65 ± 12.98 35.82 ± 8.90 0.127

CD4+ T cells, n ± SD (cells/μl) 506.35 ± 295.64 335.48 ± 221.42 584.96 ± 293.13  < 0.001

NK cells/TBNK, mean ± SD (%) 15.74 ± 9.60 12.78 ± 8.81 17.11 ± 9.68 0.003

NK cells, n ± SD (cells/μl) 218.43 ± 179.47 107.39 ± 96.47 269.50 ± 185.96  < 0.001

B cells/TBNK, mean ± SD (%) 8.80 ± 5.10 9.41 ± 6.84 8.52 ± 4.07 0.601

B cells, n ± SD (cells/μl) 117.27 ± 92.39 67.36 ± 45.47 140.23 ± 99.36  < 0.001

TBNK, n ± SD (cells/μl) 1371.39 ± 751.49 809.90 ± 443.86 1629.67 ± 723.69  < 0.001

CD4/CD8 ratio, mean ± SD 1.15 ± 0.60 1.21 ± 0.61 1.12 ± 0.59 0.320

Table 3  The performance of  the  models developed 
by machine learning to evaluate the risk of pneumonia

PPV positive predictive value, NPV negative predictive value, AUC​ area under 
curve, SVM support vector machine, LR logistic regression, MLP multi-layer 
perceptron, RF random forest

Models Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC​

SVM 81.7 92.0 83.6 91.3 0.940

LR 58.7 99.0 97.5 84.3 0.931

MLP 71.8 92.0 82.7 87.9 0.923

RF 73.6 95.0 88.0 89.2 0.895
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Table  S4. The limited data had a negative impact on 
the effectiveness. The AUCs of SVM, LR, MLP and RF 
models were 0.600, 0.672, 0.716 and 0.760, respectively. 
Among them, the RF model had the best performance. 

A ten-tree RF model was developed, and one tree of 
the final algorithm was shown (Fig. 4a). Similarly, after 
five rounds of training/validation rotation, the average 
sensitivity, specificity, PPV and NPV of the RF model 
were 53.3%, 80.0%, 68.0% and 75.3%, respectively (ROC 
curve shown in Fig. 4b).

Validation by external data
To further confirm the association between the immune 
monitoring test and pneumonia in kidney transplant 
recipients, the machine learning models were validated 
by the external data, which contained 10 pneumonia 
patients and 32 stable patients. All the models had good 
performance, with accuracy over 80%. The SVM model 
had the highest AUC of 0.945, and the sensitivity, speci-
ficity, PPV, NPV and accuracy were 90.0%, 81.3%, 60.0%, 
96.3% and 83.3%, respectively. The details of other mod-
els were shown in Additional file 1: Table S5.

a b

c d

Fig. 2  The ROC curves and average AUC of the machine learning models. K-fold cross validation (k = 5) was used to estimate and compare the 
performance of different machine learning models. After five rounds of training/validation rotation, the average AUC was calculated. a The support 
vector machine (SVM) model. b The logistic regression (LR) model. c The multi-layer perceptron (MLP) model. d The random forest (RF) model. ROC 
curve, receiver operating characteristic curve. AUC​ area under the curve

Table 4  The coefficients of SVM and LR models

SVM support vector machine, LR logistic regression, HLA-DR human leukocyte 
antigen-DR, MFI median fluorescence intensity, NK cells natural killer cells, TBNK 
T, B and NK cells

Models

Parameters SVM LR

Monocyte HLA-DR, MFI − 0.000468 − 0.000386

Neutrophil CD64, MFI 0.00128 0.000852

CD8+ T cells, cells/μl − 0.000512 − 0.000572

NK cells, cells/μl − 0.00217 − 0.00201

TBNK, cells/μl − 0.000398 − 0.000447

Constant 0.794 0.665
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Discussion
This study successfully provided a novel strategy to eval-
uate the significance of immune monitoring in kidney 
transplant recipients by machine learning models. Based 
on the results of immune monitoring panel, the SVM 
model best identified the kidney transplant recipients 
at risk of pneumonia, and the RF model best predicted 
the patients who would progress to severe pneumonia. 

All the models were validated by the external data, and 
showed good performance. The results of immune moni-
toring panel might contribute to better individualized 
therapy, including immunosuppressive drug adjustment 
and immunostimulant treatment.

Compared with traditional methods, the machine 
learning techniques could process multidimensional 
parameters simultaneously, and were not limited by data 

Fig. 3  A one-tree example of random forest (RF) model. A total of ten trees were developed and one of them was shown in the figure. The final 
result was obtained through majority voting from ten trees

Table 5  The association of immune monitoring panel and prognosis of pneumonia in kidney transplant recipients

HLA-DR human leukocyte antigen-DR, MFI median fluorescence intensity, SD standard deviation, NK cells natural killer cells, TBNK T, B and NK cells
*  Tested by Student’s t-test. # Tested by Welch’s t-test. § Tested by Fisher’s exact test. Others tested by Mann–Whitney U test. Estimated glomerular filtration rate (eGFR) 
calculated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation

Parameters Mild pneumonia (n = 29) Severe pneumonia (n = 17) P value

Monocyte HLA-DR, MFI ± SD 1068.59 ± 758.07 696.76 ± 410.57 0.127

Neutrophil CD64, MFI ± SD 584.17 ± 683.08 597.76 ± 462.88 0.657

CD3+ T cells/TBNK, mean ± SD (%) 75.42 ± 10.27 79.13 ± 13.85 0.065

CD3+ T cells, n ± SD (cells/μl) 657.84 ± 378.50 578.48 ± 348.62 0.453

CD8+ T cells/TBNK, mean ± SD (%) 34.31 ± 8.15 39.81 ± 11.96 0.070*

CD8+ T cells, n ± SD (cells/μl) 301.85 ± 169.62 281.23 ± 184.66 0.702*

CD4+ T cells/TBNK, mean ± SD (%) 40.42 ± 11.51 38.35 ± 15.46 0.635#

CD4+ T cells, n ± SD (cells/μl) 363.68 ± 231.05 287.37 ± 201.42 0.255

NK cells/TBNK, mean ± SD (%) 14.17 ± 8.55 10.41 ± 9.01 0.056

NK cells, n ± SD (cells/μl) 135.60 ± 108.79 59.28 ± 39.50 0.027

B cells/TBNK, mean ± SD (%) 9.21 ± 6.62 9.75 ± 7.40 0.946

B cells, n ± SD (cells/μl) 73.46 ± 48.64 56.96 ± 38.63 0.255

TBNK, n ± SD (cells/μl) 874.48 ± 470.51 699.75 ± 382.39 0.219

CD4/CD8 ratio, mean ± SD 1.28 ± 0.59 1.10 ± 0.64 0.323*

eGFR when discharge, ml/min/1.73 m2 78.27 ± 31.87 67.32 ± 35.23 0.285*

Death with functioning graft, n (%) 0 (0) 3 (17.65) 0.045§

Allograft loss, n (%) 0 (0) 1 (5.88) 0.370§
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distribution [14]. Feature selection and parameter fitting 
were performed on training set, and evaluation of model 
performance was through validation set. Therefore, it had 
the ability of self-evolution by adjusting their structures 
when encountering errors [17]. The models could have 
better performance if more data obtained, making them 
promising in big data analysis. The immune system was 
exactly a very complicated network, and multiple param-
eters were needed to reflect the full picture of immune 
status. Therefore, the machine learning technique could 
be a powerful tool in analysis of immune monitoring.

The immune monitoring panel in this study consisted 
of the parameters that were relatively convenient and 
practical to obtain clinically. These included the percent-
ages and absolute number of TBNK, HLA-DR on mono-
cytes and CD64 on neutrophils. In our study, patients 
were not analysed by ATG and non-ATG groups due to 
the flaw of data from patients receiving transplantation 
out of our center. Because of the low ATG routine dose 
(1.00  mg/kg for 3  days) used in China, patients usually 
had lymphocyte reconstitution in three months (unpub-
lished data). Therefore, we only enrolled patients more 
than three months post transplantation. Compared with 
the stable group, the pneumonia group had a much 
lower level of TBNK cell counts (including the respec-
tive subpopulations), lower expression of HLA-DR on 
monocytes but higher expression of CD64 on neutro-
phils. Fernández-Ruiz and colleagues reported that low 
TBNK cell counts in kidney transplant recipients pre-
dicted post-transplant opportunistic infection, and found 
that CD8+ T cells less than 100 cells/μl and CD4+ T cells 
less than 50 cells/μl at month 1 were the most valuable 
predictive parameters for non-ATG and ATG groups, 
respectively [2]. Luo and colleagues also reported lower 
cell counts and impaired function of CD4+ T cells, CD8+ 
T cells and NK cells in kidney transplant recipients with 

infection [19]. After analysis of machine learning models 
in our study, the cell counts of CD8+ T cells, NK cells and 
total TBNK were selected as parameters for SVM and LR 
model building, showing their importance in immune 
monitoring. The weight of these parameters was deter-
mined by the coefficients, which should be more accurate 
and reasonable than simple scoring [20, 21]. Notably, the 
percentages of TBNK subpopulations, including CD4/
CD8 ratio, did not show significance. Similar result of 
CD4/CD8 ratio was observed in solid organ transplant 
patients, which showed poor diagnostic performance 
in infectious complications [22]. However, the inverted 
CD4/CD8 ratio (less than 1.0) was regarded as one of the 
parameters that defined immune risk phenotype in ESRD 
patients [21].

Monocyte HLA-DR and neutrophil CD64 were also 
important parameters in the models. Decreased expres-
sion of HLA-DR on monocytes was regarded as an 
unquestionable marker of monocyte anergy, which cor-
related with low cytokine release in response to bacterial 
challenges and reduced antigen presenting ability [11]. 
The clinical significance of monocyte HLA-DR has been 
verified in sepsis, and low monocyte HLA-DR expres-
sion was suggested as an indication for immunostimu-
lant therapy [23]. In kidney transplant recipients, the 
expression of monocyte HLA-DR showed a significant 
decrease two weeks after transplantation compared with 
that before transplantation [24]. Monocyte HLA-DR also 
showed great difference between septic and non-septic 
groups after lung transplantation without modulating T 
cell reconstitution [25]. All these evidences proved that 
over immunosuppression not only impaired adaptive 
immunity, but also innate immunity.

The neutrophil CD64, on the contrary, remained 
low expression in the stable group. Once stimulated by 
inflammatory cytokines like interferon-γ (IFN-γ), a rapid 

a b

Fig. 4  The random forest (RF) model to predict the prognosis of pneumonia in kidney transplant recipients. a A one-tree example of the ten trees. 
b The average AUC of RF model. AUC​ area under the curve
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and significant increase of expression of CD64 could be 
detected on neutrophils in 4 to 6 h, making it a sensitive 
indicator of systematic inflammation [26]. Importantly, 
immunosuppression treatment did not alter this char-
acteristic. CD64 index even showed a better diagnostic 
performance of infectious complications than C reactive 
protein (CRP) or white blood cells in solid organ trans-
plant patients [22]. Our study provided further evidence 
of clinical significance of neutrophil CD64 in kidney 
transplant recipients with pneumonia.

It must be noted that the algorithms derived from our 
study could not be utilized directly in other centers. It 
was because that the MFI of HLA-DR and CD64 in the 
models was relative value, which was determined not 
only by the expression intensity, but also by the setting 
of flow cytometer and the antibodies chosen. Only the 
MFI of fluorochrome PE, which had a fixed fluorochrome 
to antibody ratio, could be converted into absolute value 
of antibodies bound per cell (AB/C), making it possible 
for lab-to-lab standardization [11]. Another choice was 
using the internal reference microspheres, just like the 
commercial kit of Leuko64 (Trillium Diagnostics LCC, 
Meine, USA) to determine the CD64 index [22, 27]. 
Because this was not available in our center, MFI was 
directly used in the models. Nevertheless, the methodol-
ogy to develop the models by machine learning could be 
adopted. Moreover, other valuable parameters, such as 
the concentration of immunoglobulins [28, 29] or com-
plements [30, 31], could also be added to further improve 
the models [17].

Because this was a retrospective study, there were 
some limitations. The time point for the test of immune 
monitoring panel was not fixed, and the kinetic follow-
up of immune monitoring was not available. The flaw of 
clinical data, including the definite etiological evidence, 
limited further stratification analysis. For machine learn-
ing techniques, the number of cases was relatively small. 
Further big data analysis or prospective cohort study was 
needed.

Conclusions
This study established machine learning models to con-
firm the association between immune monitoring and 
pneumonia in kidney transplant patients. The SVM 
model consisting of monocyte HLA-DR (MFI), neutro-
phil CD64 (MFI), CD8+ T cells (cells/μl), NK cells (cell/
μl) and TBNK (cells/μl) best identified patients at risk 
of pneumonia. The RF model predicted the progno-
sis of pneumonia. In the era of big data, comprehensive 
analysis based on multi-dimensional parameters was an 
effective method to deeply understand the complexity 
of diseases. The machine learning technique provided a 

good choice, which was promising in data analysis and 
contributed to better individualized therapy.
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