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Abstract 

Background:  To introduce the Hemorrhage Intensive Severity and Survivability (HISS) score, based on the fusion of 
multi-biomarker data; glucose, lactate, pH, potassium, and oxygen tension, to serve as a patient-specific attribute in 
hemorrhagic trauma.

Materials and methods:  One hundred instances of Sensible Fictitious Rationalized Patient (SFRP) data were synthet‑
ically generated and the HISS score assigned by five clinically active physician experts (100 [5]). The HISS score strati‑
fies the criticality of the trauma patient as; low(0), guarded(1), elevated(2), high(3) and severe(4). Standard classifier 
algorithms; linear support vector machine (SVM-L), multi-class ensemble bagged decision tree (EBDT), artificial neural 
network with bayesian regularization (ANN:BR) and possibility rule-based using function approximation (PRBF) were 
evaluated for their potential to similarly classify and predict a HISS score.

Results:  SVM-L, EBDT, ANN:BR and PRBF generated score predictions with testing accuracies (majority vote) corre‑
sponding to 0.91 ± 0.06, 0.93 ± 0.04, 0.92 ± 0.07, and 0.92 ± 0.03, respectively, with no statistically significant difference 
(p > 0.05). Targeted accuracies of 0.99 and 0.999 could be achieved with SFRP data size and clinical expert scores of 
147[7](0.99) and 154[9](0.999), respectively.

Conclusions:  The predictions of the data-driven model in conjunction with an adjunct multi-analyte biosen‑
sor intended for point-of-care continual monitoring of trauma patients, can aid in patient stratification and triage 
decision-making.
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Background
Trauma accounts for 47% of mortalities in individuals 
1–46  years of age in the United States [1, 2]. Trauma-
induced hemorrhage with its attendant peripheral vaso-
constriction [3, 4] insulin resistance [5], hyperlactatemia, 
[6–8] acidosis [9], hyperkalemia [10, 11] and hypoxia 
can rapidly lead to death or may be followed by Multiple 
Organ Dysfunction Syndrome (MODS), a consequence 

of a “cytokine storm”, which can also be fatal [9, 12]. The 
field triage decision scheme for the national trauma tri-
age protocol provides guidelines to identify the status of 
the patient [13]. The physiological criteria includes iden-
tification of vital signs such as; systolic blood pressure 
(Hypotension < 90  mmHg), [14–16], abnormal respira-
tory rate (< 10 or > 29 breaths per minute) [13], abnor-
mal heart rate (Tachycardia > 100 beats per minute) [17], 
and the Glasgow coma scale (≤ 13) [18, 19]. The Glas-
gow coma scale categorizes the patients according to the 
severity of brain injury. Simple Triage and Rapid Treat-
ment (START) is the commonly used algorithm for mass 
casualty triage in the USA [20–23], which is used in con-
junction with secondary triage for Secondary Assessment 
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of Victim Endpoint (SAVE) when the resource supply is 
restricted [20]. START and SAVE employ criteria such as 
respiratory rate, cognitive function (ability to listen and 
respond to commands), and radial pulse to identify the 
category for triage. Another example is the Injury Sever-
ity Score (ISS) [24] based on the Abbreviated Injury Scale 
(AIS) system which aggregates the assessed injury to six 
regions of the body and establishes correlations with 
mortality and morbidity. American College of Surgeons 
Committee on Trauma (ACS COT) aims to improve care 
by supporting programs for injury prevention [25]. An 
additional data source is the MIMIC-III data set, a freely 
accessible critical care database attributable to Johnson 
et  al. [26]. MIMIC-III represents global vital signs and 
physiological waveforms; it does not contain data for 
hemorrhaging patients consisting of molecular biomark-
ers such as glucose, lactate, potassium, pH and oxygen 
tension. A MODS severity score was developed by Mar-
shall et al. [27], wherein a score (0–4) is applied following 
physiologic measurement of dysfunction in 6 organ sys-
tems (i) respiratory function (pO2/FIO2 ratio), (ii) renal 
function (serum creatinine), (iii) liver function (serum 
bilirubin), (iv) cardiovascular function (PAR), (v) Hema-
tologic (Platelet count) and (vi) Neurologic (Glasgow 
Coma Score). The total number of input points were then 
added to achieve a score corresponding to the patient’s 
ICU mortality %, hospital mortality %, and ICU stay.

Since the introduction of the MODS score, new rap-
idly deployable micro-analytical technologies have ena-
bled measurement of key physiological indicators and 
the opportunity for the emergence of scores based on 
molecular biomarkers of physiological stress. A Hemor-
rhage Severity and Survivability Score (HISS) is herein 
introduced to allow for patient stratification. This strati-
fication is made possible by the fusion of micro-analyt-
ical measurements of multiple physiological biomarkers 
[28]. HISS is a severity index intended as an adjunct to 
inform healthcare providers about the criticality of trau-
matic hemorrhage. This information would assist them in 
the delivery of timely and appropriate attention and care. 
HISS, therefore, is proposed to help in timely triage and 
in the stabilization of the most critically ill patients, and 
as a consequence, reduce patient mortality.

An adjunct device in the form of an indwelling biosen-
sor system, the Physiologic Status Monitoring (PSM) Bio-
chip, has been proposed and is under active development 
to help healthcare providers of trauma care in mass mili-
tary and civilian triage situations [29, 30]. A dual-respon-
sive biosensor for glucose and lactate has been proposed, 
designed, fabricated and successfully tested in rodent 
and piglet animal models of hemorrhaging trauma [31]. 
The PSM Biochip is a bio-SONDE; an indwelling device 
which measures, monitors and wirelessly transmits 

physicochemical information from within a victim of 
hemorrhaging trauma [29]. The bio-SONDE capable of 
acquiring the relevant physiological data pertinent to 
hemorrhagic shock states is the potential source of the 
data for subsequent fusion. When implanted intramus-
cularly, the PSM- Biochip enables the continuous, real-
time monitoring of the patient’s physiological status via 
the key biomarkers; glucose, lactate, pH, potassium and 
oxygen tension. Such a system has the potential to go 
beyond single immediate datum (stat) capability to reveal 
evolving and predicted temporal trend status. This bio-
SONDE is combined with a wireless processing hardware 
and a software algorithm to enable data fusion from the 
five identified biomarker analytes. This system would 
potentially guide evidence-based decision-making [32] 
derived from the real-time pathophysiological profile of 
the patient.

The present work evaluates multiple data fusion algo-
rithms and seeks to identify the minimum patient and 
expert data sets needed to arrive at accurate predictions. 
The goal is to arrive at reliable and confident patient 
stratification decisions using the HISS Score. The pre-
sent focus is on molecular biomarkers of pathophysiol-
ogy as supplements to the traditional gross indicators 
for the development of biomarker monitoring systems 
at this scale for disease states such as traumatic shock 
[33]. Molecular indicators such as changes in oxygen 
tension may be earlier indicators of physiological stress 
than global vital signs. There are clear biochemical inter-
actions among the identified variables. For example, glu-
cose and lactate are related via the Cory Cycle. Lactate 
and acidosis (pH) are directly related. Indeed, there are 
statistical interactions among these variables. For exam-
ple, some variables are known to swing quite widely 
during hemorrhage, such as glucose and lactate. Other 
variables are early onset indicators while others are late 
onset indicators, such as acidosis and potassium.

The main contributions of this study are (i) the estab-
lishment of a novel HISS score, (ii) the generation and 
use of Sensible Fictitious Rationalized Patient (SFRP) 
data, (iii) the prediction of the size of the patient and 
expert data set needed to achieve 99.0 and 99.9% accu-
racy in the predictions of HISS scores, and (iv) recogni-
tion of the inter-expert variability and strong intra-expert 
consistency in expert scoring data. Here, multiple ficti-
tious patient physiological status data are produced and 
multiple individual experts score the data. A key consid-
eration is thus the real-time fusion of disparate patho-
physiological data to yield an actionable HISS score. Such 
data integration has medical and biomedical engineer-
ing applications such as in rapid, wearable health moni-
toring and internet of things (IoT) monitoring [34–35]. 
Data fusion can also be applied to implantable devices 
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to generate data telemetry systems [36] with patient pro-
files [37]. Decision trees [38], support vector machine, 
neural networks [39], uncertainty index [40] and hybrid 
intelligent systems consisting of fuzzy logic and genetic 
algorithms [41] have been employed as classification 
approaches for data fusion in medicine. Decision tree 
classifiers were used to build a classification model in 
the form of a tree from the patient biomarker data [42]. 
The classifier provides a score for the data by testing each 
attribute and sorting and classifying particular instances 
in the data [43]. Ensemble bagged decision trees helped 
to reduce variance by the ‘bagging’ effect [44]. The sup-
port vector machine classifier [45] makes use of an opti-
mal hyperplane and calculates the margin or the distance 
of the points from the hyperplane [46]. The points clos-
est to the hyperplane are called the support vectors [47]. 
Support vector machines are often used because they 
are robust [48] and fast [45]. Neural networks mimic the 
structure of biological neurons, have input, output and/
or hidden layers, and propagate to adjust the weights 
between the elements of the networks [49]. They are 
often used because of their value in tuning of data [50]. 
Genetic algorithms are employed to find an optimal solu-
tion for systems based on natural evolution [51] and have 
been used in time-series based neural networks [52] and 
in steady-state gene regulatory networks [53]. Similar 
approaches for the application of artificial intelligence in 
medicine and for developing a score for patients in the 
ICU [54] include the DeepSOFA [54], an automated alert 
functions for the patient status [55]. Decision support-
systems employing an artificial intelligence clinician for 
sepsis in the ICU have also been generated [56].

Expert scoring of pathophysiological data may be 
incomplete or uncertain due to fuzziness or impreci-
sion, and in some cases may be erroneous. Possibility 
theory [57] is a framework that is particularly applicable 
to expert knowledge. Unlike probability theory, possibil-
ity theory uses a pair of dual set-functions, namely pos-
sibility and necessity measures which make it capable 
of representing partial ignorance [58]. The possibility 
rule-based classification using function approximation 
(PRBF) algorithm has been shown to successfully han-
dle the uncertainty in class labels of data and make an 
efficient use of the available data provided in the incom-
plete expert evaluation, a condition which is generally 
neglected in traditional supervised learning techniques 
[59]. Possibility labels may be directly extracted from an 
expert [60] by (1) the expert weighting the possibility of 
data belonging to each of the given c classes by a number 
between 0 and 1, or (2) to use possibility histograms from 
an empirical distribution of multiple expert opinions.

In the absence of actual viable penta-analyte patient 
data, synthetic data must be developed. Thus, a second-
ary objective of this work was to develop a synthetic data 
generation algorithm that produces Sensible Fictitious 
Rationalized Patient (SFRP) data. The SFRP algorithm 
creates a hidden seed layer and then generates biomarker 
values with filters to add noise/fuzziness and introduce 
variance to the five physiological biomarkers of interest. 
Practitioner input was sought in refining the filters and 
noise/fuzziness for each biomarker. The five biomarker 
values for each SFRP maps to a single output, the HISS 
score. The SFRP data were then shared with practicing 
physician experts who provided their individually ration-
alized HISS scores. Thus, the physicians’ scores serve as 
the ground truth but carry the inherent uncertainty born 
from disagreement among experts. Multiple SFRP data 
sets scored by a single expert, allowed an assessment of 
intra-professional variance. Correspondingly, multiple 
physicians providing ground truths of a single SFRP data 
set allowed accommodation of inter-professional vari-
ations. Multiple physician experts, given the results of a 
single set of measurements of physiological biomarkers, 
evaluate the status of patients in the form of a HISS score. 
In the decision-making processes, which incorporates 
bioanalytical diagnostic data and expertly sourced scores, 
uncertainty is inevitable. That is, given a reported set of 
measurements of the five biomarkers for a patient, dif-
ferent physicians may provide different evaluations, i.e. 
different scores, to represent the status of the patient. In 
such cases, it is possible to represent the uncertain scores 
in the form of a range of values. The generated data were 
used to make predictions for the status of the hemorrhag-
ing patients by training a decision tree classifier and rule-
based evolutionary classifier [58] to handle uncertainty 
in scores. The results of training models are presented in 
terms of their prediction accuracies. Furthermore, this 
allowed forecasting of the size of the patient data set and 
the number of clinician experts required to achieve strat-
ification accuracies of 99% and 99.9%.

Materials and methods
On-line data engines were searched for the availability of 
anonymized actual patient biomarker data for the hem-
orrhaging trauma patient (glucose, lactate, pH, potassium 
and oxygen tension). Public databases are available with 
specific datasets such as vital signs but they did not con-
tain sufficient biomolecular data elements for the trau-
matic hemorrhage. Owing to necessary HIPAA-based 
security policies at hospitals, actual data for hemorrhag-
ing patients could not be directly accessed. Access to 
diagnostic data sets under appropriate approvals is being 
pursued. Accordingly, the classification methods were 
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each employed on the synthetically derived Sensible Fic-
titious Rationalized Patient (SFRP) data.

Patient data generation‑Sensible Fictitious Rationalized 
Patient data and evaluation by practitioners
In lieu of actual patient data, synthetic (SFRP) data sets 
were generated via a scripted algorithm in Python 3.7.0. 
The flowchart for the SFRP data set generator is based on 
the pathophysiological data in Table 1. The general algo-
rithm begins with a seeded hidden layer of HISS scores 
that ranged from low(0) to severe(4). The initial seeding 
distribution for trauma scores was evenly distributed 
among the five levels. Each of the five biomarker values 
associated with each level was subsequently filled by ran-
domly selecting a value from within a pathophysiological 
range that can be attributed to that trauma level (based 
on normal physiologic values and specific trauma and 
hemorrhage perturbations). The noise was introduced 
by controlling the relative level of deviation from ini-
tially seeded values into other trauma regimes—i.e. let-
ting initially chosen values drift into other regimes not 
originally occupied by the primary, hidden trauma seed 
score. Glucose noise was based on potentially convolut-
ing scenarios (adrenergic response) or by a simple, tuna-
ble probability of taking on a value, not within the seeded 
range. Lactate was similarly assigned. Potassium noise 
was added via post mathematical calculation. Acidosis 
(pH) noise was introduced by allowing for physiologically 
normal values to be taken at any hidden seed (with the 
rationale being that pH is a late and severe biomarker). 
Oxygen tension (pO2) noise was introduced via a convo-
luting scenario (respiratory compensation based on pH—
determined randomly) and simple, random noise. The 

algorithm, in the most direct sense, allowed for initial 
seed values to bleed over into other regimes and create 
data that was confounded. For proof of concept, ran-
dom number generators of no bias were used—although 
extension into Gaussian and other distributions may be 
readily implemented.

The algorithm may be run for any number of synthetic 
patients to generate SFRP data sets for each. For assess-
ment, the initial hidden layer seeding was not output and 
was not revealed to any evaluator of the datasets. Potas-
sium was determined via the empirical relationship from 
Burnell et al. [61], which details that a 0.1 unit drop in pH 
raises the [K+] by 0.6 mM. This is implemented in pseu-
docode in the following way for each output in (1):

 where 
[

K+
]

i
 denotes the potassium of the i th patient, 

and pH [i] that patient’s pH level generated earlier. The 
random function action yields a normal potassium 
concentration within physiologic ranges, and is then 
altered if the pH of the patient is abnormal via the rela-
tion described. This concept is illustrated for the entries 
shown in italic in Table 1.

In this way a complete set of Sensible Fictitious Ration-
alized Patient data for n + 25 = 100 fictitious avatars 
(not patients) were created and ported into an excel 
spreadsheet for expert scoring and fusion considera-
tions. Empirical relationships among the biomarker vari-
ables are possible and are being explored to enhance the 
robustness of the SFRP data sets. Table 2 shows a possible 
outcome for generating the training and testing data sets 
using the SFRP data generator. Accordingly, 100 unique 
Sensible Fictitious Rationalized Patient (SFRP) data 
sets were scored by five clinical experts. Each of the five 
experts assigned a HISS score, valued 0–4, to each penta-
analyte data set while providing a rationale for their 
selection of the assigned score for a particular patient 
(0 = LOW, 1 = GUARDED, 2 = ELEVATED, 3 = HIGH, 
4 = SEVERE). This resulted in a multi-class/expert frame-
work [62] for the model-based predictions.

Classification algorithms
Data from different sources can be fused via estimation, 
association and decision fusion [63]. Multi-class [64] linear 
support vector machines (SVM-L), ensemble bagged deci-
sion tree (EBDT), artificial neural network with Bayesian 
regularization algorithm (ANN:BR) and possibility rule-
based using function approximation (PRBF) classifiers 
were used to classify the SFRP data sets. Figure 1 shows the 
concept for a fused score from the data of the five biomark-
ers. Five unique data sets, each of size 100, corresponding 
to the pathophysiological profile of 100 fictitious patients 

(1)

[

K+
]

i
= random

([

K+
]

normal

)

+ (7.35−pH [i]) ∗ 6

Table 1  Bounded pathophysiological ranges of  key 
biomarkers of  physiological stress in  the  hemorrhaging 
trauma patient

Italicized entries relate to an example implementation of the SFRP data 
generator, explained further in the text

Pathophysiological range

Analyte Low Normal High

Glucose Hypoglycemia
< 3.88 mM
< 70 mg/dL

Euglycemia
3.88–5.50 mM
70-99 mg/dL

Hyperglycemia
>5.50–10.00 mM
99–180 mg/dL

Lactate Hypolactatemia
<0.50 mM

Eulactatemia
0.50–2.00 mM

Hyperlactatemia
> 2.00–4.00 mM

Potassium Hypokalemia
(< 3.50 mM)

Eukalemia
3.50-5.50 mM

Hyperkalemia
(> 5.50 mM)

pH Acidosis
(< 7.35)

7.35-7.45 Alkalosis
(> 7.45)

pO2 Hypoxia
< 5.18 mM
< 100 mmHg

5.18-6.22 mM
100-120 mmHg

Hyperoxia
(> 6.22 mM)
>120 mmHg
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and along with the HISS scores of five healthcare provider 
experts: [100][D1], [100][D2], [100][D3] [100][D4] and 
[100][D5] were thus created from the available 100 penta-
biomarker, patient data sets.

The multi-class ensemble bagged decision tree and linear 
support vector machine classifiers were used for predic-
tions over the entire data sets (D1–D5). Neural networks 
[65] were used to determine the adequate number of train-
ing size for accurate predictions over the five data sets. 
Possibility rule-based classifiers were used to capture the 
uncertainty in the responses of the experts over the five 
data sets.

Multi‑class linear support vector machine and ensemble 
bagged decision tree classifiers
For both support vector machine and decision tree clas-
sification models, a set of hyper-parameters was tuned 
and the model with the highest test accuracy was cho-
sen to be reported. The cross-entropy was employed as 
the selection criterion at each node. Moreover, for the 
bagged decision tree algorithm the number of estimators 
was selected from [6, 20] with step 2. The ensemble tech-
nique (bagging) was applied in order to reduce an error 
of DT, as the combination of several weak predictors into 

Table 2  Partial data set for “fictitious patients”, including training data set (1 to n) and testing data set (n + 1 to n + 25) 
generated using the Sensible Fictitious Rationalized Patient (SFRP) data generator and corresponding expert assigned 
Hemorrhage Intensive Severity and Survivability (HISS) score

UD = undeclared i.e. assigned by the experts but predicted by the algorithms

Fictitious Patient Sensible Fictitious Rationalized Patient (SFRP) Data HISS

Glucose 
(mg/dl)

Lactate 
(mmol/l)

pH Potassium 
(mmol/l)

pO2 (mmHg) D1 D2 D3 D4 D5

1 70 2.7 7.42 5.10 78 1 1 1 1 0

2 160 6.0 7.11 6.14 44 4 2 3 3 3

n 41 9.7 7.26 4.84 97 3 3 4 3 3

.. .. .. .. .. .. .. .. .. .. ..

n + 1 123 3.3 7.41 5.00 86 UD UD UD UD UD

n + 2 49 8.7 7.13 5.92 53 UD UD UD UD UD

.. .. .. .. .. .. .. .. .. .. ..

n + 25 220 8.6 7.23 4.52 92 UD UD UD UD UD
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Fig. 1  Immediate and continual measurement of key biomarkers may serve as a “gauge” for identifying shock states. Discrete values from the 
five indwelling biosensors are fused into a single actionable Hemorrhage Intensive Severity and Survivability (HISS) score [1]. This score is further 
stratified into five, color-coded levels, ‘SEVERE (4)’ being the most critical and ‘LOW (0)’ corresponding to expectant



Page 6 of 17Bhat et al. J Transl Med          (2020) 18:348 

one high-quality ensemble model improves predictive 
performance [66]. For the SVM model, different kernel 
functions (linear, polynomial, radial base function, and 
sigmoid) were tested. In the case of the polynomial ker-
nel, the degree of the polynomial was selected from [2, 
6]. To train each model, fivefold cross-validation was 
employed and the average test accuracies along with the 
standard deviation of the accuracies was reported. Clas-
sifiers were trained using Python Scikit-learn [67] library.

The computations were performed using MATLAB 
R2019b Classification Learner App run on a PC.

Artificial Neural network with Bayesian regularization 
algorithm for sorted and unsorted data
ANN:BR has the advantage of tuning the incoming 
patient data sets. The term epoch in ANN is defined as 
the measure of the number of times all of the training 
vectors were used to update the weights [68]. The soft-
max activation function was used to introduce non-line-
arity into the model. The inputs were turned into a linear 
model (ωx + b), where ωx is the matrix multiplication of 
weights (ω) and inputs (x) and b is the bias. The scores 
obtained from this step were fed into the softmax func-
tion (2) which converts them into probabilities.

Softmax function maps the set of outputs onto inputs. 
In this case, there are five outputs which when passed 
through the softmax function get distributed according 
to probability (0,1). This was useful for finding the most 
probable occurrence or classification for a particular 
output.

A Bayesian regularized neural network (ANN:BR) 
capable of classifying patients using an assigned HISS 
score was developed in MATLAB 2018a Neural Network 
Pattern Recognition App run on a PC [69]. The neural 
network was trained to a max epoch size of 100 using 
Bayesian regularization algorithm [70] (training stops 
according to adaptive weight minimization) using Mean-
Square Error as the performance metric. Responses from 
the five experts were used to create a single label by cal-
culating the mathematical mode as the best metric of 
central tendency. The mode was chosen over the mean 
due to possible skew in HISS scores. The NN was trained 
using (i) sorted and (ii) unsorted data. Sorted data served 
to ensure that HISS scores were normally distributed 
among the training and test data. Sorting established 
groups of 5 different patient data using the 80:20 rule (e.g. 
80% of HISS score “1” was used in the training set, while 
20% of HISS score “1” was used in the test set). Unsorted 
data employed no such grouping and hence carried the 

(2)σ(z)j =
ezj

∑K
k=1 e

zk
forj = 1, 2 . . . , k

risk that the test data could be unbalanced in its repre-
sentation of certain HISS scores. Neural network perfor-
mance was measured by using a constant test set size of 
25 with 4 or fivefold cross-validation, where the training 
set size varied from 15 to 75% of the total data set size. 
In yet a totally different and additional approach, the 
mean test and mean training accuracy were determined 
by varying the size of the training set between 30 and 80 
instances with steps of 5. To test the trained models, a 
fixed set of instances of size 20 was used. The experiment 
for each training set size was repeated twenty times to 
reduce the effect of variance on the results and the mean 
accuracy was reported. This served as a self-consistent 
approach across all classifier algorithms.

Possibility rule‑based classifier
In the possibility rule-based classifier system using func-
tion approximation (PRBF) [71], possibility theory is used 
to handle uncertainty in expert knowledge. The degree of 
belonging of an instance to the k th class may be charac-
terized by uk ∈ [0, 1]. Different theoretical frameworks 
have been proposed to solve problems that suffer from 
uncertainty [72] including probability theory, set theo-
retic functions, and possibility theory. Under the possibil-
ity theory [71, 73] framework, uk is the level of possibility 
that the given data point belongs to the class of score k 
and the following representation holds for the set of pos-
sibilistic classes assigned to the i th instance:

In (3), c is the number of scores defined for the problem, 
i.e. in this case five scores, being LOW (0), GUARDED 
(1), ELEVATED (2), HIGH (3), SEVERE (4). Unlike the 
probabilistic labels, the values of the vector ui do not have 
to sum up to unity. Instead, each parameter takes a value 
ranging from 0 to 1. The classification scheme proposed 
by Nazmi and Homaifar [71], namely, possibility rule-
based classifier using function approximation (PRBF), 
employs this definition of a class assignment and trains 
a rule-based evolutionary model that given a data point, 
predicts the degree of possibility to which the SFRP data 
set belongs to each of the possible classes.

The possibility rule-based classifier was implemented 
using Python 3.7.5 run on a PC. A fivefold cross-valida-
tion was used with population size = 4000, stretch = 25, 
learning rate = 0.1, and training iterations = 100,000. 
Having the assigned scores from five expert physicians 
for the generated SFRP data sets, it is probable that any 
two physicians might disagree on the score of any one 
patient’s values or the same physician assigns differ-
ent scores to patient’s values that are nearly similar. This 
problem may be addressed with the use of possibility 

(3)ui =

(

u1i ,u
2
i , . . . ,u

c
i

)

∀uki ∈ [0, 1]



Page 7 of 17Bhat et al. J Transl Med          (2020) 18:348 	

theory [71], capturing the inherent intra-expert and 
inter-expert variation in the responses of physicians. 
More specifically, scores provided by the physicians for 
each set of measurements, the SFRP data set, were con-
verted into possibility values that were values between 0 
and 1. For a given measurement vector x and a hypotheti-
cal class, ωk , the possibility distribution, πx , defined for 
x represents the knowledge contribution of an informa-
tion source about the actual state of x . In other words, 
πx(ω) = 0 means that state ω is rejected as impossible, 
and πx(ω) = 1 means that state ω is totally possible (plau-
sible). In a machine learning framework, this concept is 
employed to solve classification problems by taking πx to 
represent the degree of belonging of SFRP data to classes 
which are provided by the expert(s) [60].

PRBF has two main mechanisms to generate a prob-
lem solution; a rule-based evolutionary algorithm to 
approximate possibility labels, and an information fusion 
method to make plausible inferences for unseen data. 
When trained on a dataset with possibility labels, PRBF 
iteratively evolves a population of overlapping rules 
which are piece-wise linear approximations of the target 
possibility distributions. Moreover, the data fusion tech-
nique employed in PRBF combines the data provided by 
multiple sources, i.e., rules of the model, and calculates 
the most plausible values for the class membership of 
the unseen data set. Consequently, for an unseen patient 
data set, the model generates a possibility distribution 
(π). This distribution may then either be interpreted by 
an expert for decision-making purposes or processed 
to extract a crisp class by taking the one with the high-
est possibility. To demonstrate the benefit of employing a 
model that is robust in the presence of HISS score uncer-
tainty, the same training data that were generated using 
SFRP data generator were used to train the PRBF algo-
rithm and the trained model was evaluated against the 
100 instances used in the previous sections for the model 
evaluation. The disagreement among the physicians’ eval-
uations, was captured by repeating the process for all of 
the 100 SFRP samples by calculating a set of possibility 
labels as well as a class label based on the majority vote.

Performance metric, cross‑validation, adequacy of patient 
data size and predicted patient data size with the number 
of experts
In general, the performance of a multi-class classification 
can be measured using accuracy, precision and F-score 
[74]. A confusion matrix plot can be used to evaluate the 
quality of the classifier [75]. The matrix contains values 
corresponding to true labels and predicted labels. The 
values in the major diagonal of the confusion matrix 
can determine how well the classifier has performed. In 
this work accuracy was used as a performance metric 

to report the prediction performances, which can be 
obtained from the major diagonal elements of a confu-
sion matrix as follows in (4),

Cross-validation [76, 77] helps with using all the avail-
able data for model training and hence in making more 
robust predictions. To do so, the data were randomly split 
into equal sets for training of multiple models. Here a 
fivefold cross-validation [78] was used. The adequacy for 
the patient data size was tested with the minimal point 
for stabilizing validation accuracy. The adequacy for the 
number of experts and the prediction for the patient data 
size for a test accuracy of 0.99 and 0.999 with the pre-
dicted number of experts necessary to achieve that accu-
racy was arrived at using the regression model fit and 
application of predictive modeling in JMP Pro software 
version 14.0 run on a PC.

Comparison of classification algorithms
The classification algorithms employed in the previous 
sections were compared for their respective accuracies. 
In this case, DT, SVM and PRBF classifiers were trained 
according to the approach presented in “Multi-class lin-
ear support vector machine and ensemble bagged deci-
sion tree classifiers” and “Possibility rule-based classifier” 
sections, respectively. While for ANN:BR, the number 
of nodes was selected from [5, 63] with step 5. Different 
activation functions were tested and a ‘tanh’ function was 
selected. The solver that was used to train the models was 
the ‘adam’ solver and the model was trained for 100,000 
iterations. Finally, for the PRBF model, the maximum 
number of rules was selected from {500, 1000, 3000, 
4000, 5000, 6000}. The maximum condition stretch was 
selected from [20, 27, 32, 34, 38] which modifies the pro-
portional size of the rule condition and effects the accu-
racy of the rules. The learning rate was set to 0.1, and the 
number of training iterations was 30,000.

To train the PRBF algorithm, the uncertain labels (u) 
were used and the other classification algorithms were 
trained on D1–D5 and using the majority vote of the 
labels obtained from the five physician experts. For the 
decision tree classifiers, support vector machine and the 
neural network, their Python implementation that was 
available in Scikit-learn [67] library was used. For the 
PRBF algorithm, its implementation in Java was used. All 
experiments were carried out on a 2.70  GHz Windows 
10 machine with a 16.0  GB RAM. One-way Analysis 

(4)

Accuracy =
#Correct predictions

# predictions

=

Σ of elements in themajor diagonal

# of elements
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of Variance (ANOVA) was used to determine the sig-
nificance levels for the performance of these algorithms 
using JMP Pro software version 14.0 run on a PC.

Results
Classification via linear support vector machine 
and ensemble bagged decision tree
Two well-established classifier algorithms, namely linear 
support vector machine (SVM-L) and ensemble bagged 
decision tree (EBDT), were used in the classification 
of SFRP data. Figure  2a, b provide the accuracy versus 

Fig. 2  Evaluation of the mean test and mean train accuracy versus the number of training samples for the training size varied from 30-80 in steps of 
5. Accuracy vs. training dataset size for a SVM-L, b EBDT, c ANN:BR, and d Evaluation of the influence of the size of the training set, expressed as a  % 
of available data, on the performance of the ANN:BR as expressed in the Mean-Square-Error for maximum epochs of 100. For unsorted data, trained 
ANNs were tested with a sliding window of 25 validation data set. For sorted data, trained ANNs were tested with a sliding window of 20 validation 
data set

Table 3  Application of  two different algorithms (linear support vector machine and  ensemble bagged decision tree) 
to the five(5) unique SFRP data sets; [100][D1], [100][D2], [100][D3], [100][D4] and [100][D5]

The table presents the fraction of the total observations for each class for each dataset and corresponding cross-validated accuracies for both classifiers. The confusion 
(true positive rates (TPR)) was correlated to the percentage of observations of the class

Class Frequency (%)

D1 D2 D3 D4 D5

0 56 43 37 43 53

1 14 20 27 18 17

2 5 18 7 15 13

3 19 17 11 24 17

4 6 2 18 0 0

SVM-L accuracy (%) 78.3 ± 0.5 92.7 ± 0.5 78.3 ± 2.4 88.3 ± 0.5 86.7 ± 0.9

EBDT accuracy (%) 83.3 ± 1.2 96.3 ± 0.9 72.3 ± 0.9 90.0 ± 0.0 87.7 ± 1.2

Class with the highest confusion (TPR—
sensitivity for EBDT)

4 (17%) 4 (0%) 2 (14%) 2 (60%) 2 (77%)
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the number of training samples for SVM-L and EBDT. 
Table  3 presents the findings of the SVM-L and EBDT 
classifiers in terms of their validation accuracy. 

Analysis of each experts’ model individually, revealed 
that EBDT generally performs better than SVM-L 
(Table 3). Although the differences between both predic-
tors for each dataset were slight (in the range of 2–6%), 
when it comes to patient stratification decisions, small 
improvements may be consequential to the therapeutic 
intervention for a patient. The highest cross-validated 
accuracy was achieved for the expert D2 dataset and 
the EBDT classifier (96.3 ± 0.9%). However, a confusion 
matrix revealed that D2 failed completely to predict Class 
4 (Severe), as 100% of labels were misclassified. Among 
all experts, the highest confusion (TPR) occurred for 
Class 2 (Elevated), which was the most frequently mis-
classified as either Class 1 (Guarded) or 3 (High) and for 
Class 4 (Severe) misclassified as Class 3 (High). There was 
no single instance where all the five experts concurred on 
the score of 2. This is due to the fact that 2 is a score in 
the mid-range of 0–4 and hence higher variability for this 
score was introduced compared to the extremities [79]. 
As shown in Table 3, a high level of misclassification may 
result from an imbalanced number of instances in each 
class. For example, for expert D1, only 6 instances out 
of 100 were labeled with Class 4 (Severe), which leads to 
only 17% TPR. For D3, only two data rows were labeled 
as Class 4 (Severe), which caused complete misclassifica-
tion of this score (0% TPR). While for D4 and D5, despite 
the high performance, none of the input instances were 
scored as Class 4 (Severe), leading to a model which will 
fail to make predictions of this class for the new data. 
Bagging classifiers may reduce the misclassification rate 
and improve overall accuracy of algorithms. Thus, the 
EBDT classifier, while being more time-consuming, per-
formed with high accuracy compared to the SVM-L. 
However, the support vector machine classifiers had a 
higher accuracy for the data set D3 whereas the decision 
tree algorithm was less effective in capturing the local-
ized accuracy of D3. From the literature, accuracies of 
83–88% for SVM [80], and accuracies of 70–83% have 
been reported for decision trees in medical applications 
[81].

Classification via artificial neural network classifier
With a constant size of 25 validation data sets, it was 
observed that the error increased with increase of the 
SFRP training data sets. From the literature, it is known 
that the error should have stabilized or be shown a 
decrease to some extent with increasing training data 
sets [82]. This was attributed to the difference in the 
opinions of the experts. Consequently, a sliding window 
of validation data sets was used. Using the approach of 

Mode to allow the doctors to vote together along with a 
sliding window of validation data sets showed a decrease 
in error with an increase in the training data sets, in 
agreement with the literature as shown in Fig.  2d [83]. 
Here it was observed that sorting improved output qual-
ity with a smooth trend towards equilibrium or limiting 
error. However, the unsorted data appeared chaotic with 
stochastic noise.

Unsorted data at a very low training set size (15–20%) 
showed a very high standard deviation of MSE due to a 
lack of heterogeneity within the training set. The prob-
ability of less frequently available HISS scores, such as 
4, being withheld from the training set was very high. 
For example, at a training set size of 20%, the probabil-
ity of a HISS Score of 4 showing up in the training set 
was 0.008. Unsorted data tended to the same MSE as 
sorted data (~ 0.12), but was variable in its descent due 
to probabilities of scores not being included in the train-
ing set because if low frequency (e.g. HISS Score 4). As 
shown in Fig. 2d, improvement in the test accuracy of the 
ANN:BR was insignificant for the number of SFRP train-
ing samples larger than 75. Based on Fig. 2c, d, 75 SFRP 
data sets were established to be an adequate data size to 
build a model for prediction. From the literature, predic-
tion accuracies of 44% and training accuracies of 50% and 
above have been reported for neural networks in medi-
cal applications [84, 85]. When the accuracies were on 
a lower side, the neural network approaches were often 
combined with hybrid fuzzy systems [86].

Performance of PRBF
One simple way to resolve conflict among class evalua-
tions from multiple experts is to take the class label that 
was most frequently identified. An alternative approach, 
which makes better use of the rich data provided by the 
experts, is to calculate a set of possibility labels using 
(3), which is expected to reflect the disagreement among 
experts better than solely taking the majority vote. 
Table 4A depicts the fivefold training and validation accu-
racies from experts D1–D4, for the PRBF algorithm. For 
the sample presented in Table 4B, the majority vote opts 
for class zero to represent the patient’s status, as shown 
in Table 4. The possibility labels calculated using the (3) 
for the same patient data are provided in column ‘Uncer-
tain labels’ in Table 4B. The uncertain labels assume the 
association of the patient data to class zero and one. The 
degree of possibility that the sample belongs to each 
class is different however and is equal to 1 and 0.5 for 
class zero and one, respectively. This graded association 
reflects the disagreement among the experts in deciding 
the true status of the patient.

A confusion matrix plot was used to represent the per-
formance of the possibility rule-based classifier using 
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function approximation (PRBF) [75]. Folds indicate the 
division of the data set to confirm that each of the folds 
has been used as a set. Uncertainty or error information 
has been utilized to support medical diagnostics where a 
prediction accuracy of 87% has been reported for a train-
ing accuracy of 90% [87]. Common approaches like possi-
bility rule-based classification for handling error include 
fuzzy probabilities [88], and hybrid fuzzy-NN systems 
[89].

The PRBF model was able to predict HISS scores with 
92% accuracy for a testing and training accuracy of 96% 
when using D1–D4. These results confirm that the idea of 
integrating evaluations from multiple experts and mode-
ling them with a proper uncertainty handling tool, which 
is possibility theory in this work is beneficial for decision-
making. Note that by increasing the number of training 

samples of the SFRP data sets, the model will be better 
trained and able to produce more accurate predictions.

Comparison of the test accuracies of classification 
algorithms
The performance of the four classification algorithms, 
linear support vector machine (SVM-L), ensemble 
bagged decision tree (EBDT), artificial neural network 
with Bayesian regularization algorithm (ANN:BR) and 
possibility rule-based using function approximation 
(PRBF) were compared for their ability to accurately 
classify the SFRP data sets. Figure 3a lists the test accu-
racies and Fig.  3b shows the misclassification rates for 
the classification algorithms and the uncertainty labels 
of PRBF algorithm for different experts and the majority 
vote. The highest accuracy is highlighted in bold for each 

Table 4  Results from  PRBF algorithm from  experts D1-D4. A) Cross-validation model training results for  PRBF 
algorithm for  Population size = 4000, stretch = 25, learning rate = 0.1, and  training iterations = 100,000, B) True labels 
and predicted uncertain labels for the tested SFRP sample of fictitious patient number 72

A

Training accuracy Test accuracy

Fold-1 0.95 0.90

Fold-2 0.96 0.90

Fold-3 0.98 0.95

Fold-4 0.95 0.95

Fold-5 0.94 0.90

Mean accuracy 0.96 0.92

Standard deviation ± 0.01 ± 0.03

B

Fictitious patient Majority vote Uncertain label ( u) PRBF prediction ( π)

72 0 [1,0.5,0,0,0] [0.979,0.321,0,0,0]

Fig. 3  Comparison of a Test accuracies, and b Misclassification rate, of SVM-L, EBDT, and ANN:BR for experts D1–D5 as well as the majority vote, 
along with the uncertainty labels of PRBF algorithms for experts D1–D4
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algorithm. SVM-L, EBDT, ANN:BR and PRBF generated 
score predictions with testing accuracies (majority vote) 
corresponding to 0.91 ± 0.06, 0.93 ± 0.04, 0.92 ± 0.07, and 
0.92 ± 0.03, respectively, with no statistically significant 
difference (p > 0.05) in their means for ± 95% confidence 
interval (C.I).

Predictions for the adequacy of the patient data size 
and number of experts for improved accuracy
It is reasonable to ask, given the scoring accuracies 
obtained for the 100 patients and 5 physician experts 
100 [5], what data set size and how many experts will be 
required to improve scoring accuracies? Targeted accura-
cies of 99% and 99.9% could be achieved with SFRP data 
size and clinical expert scores of 147 [7] (99%) and 154 
[9] (99.9%), respectively. The model fit for 99% was for a 
R2 = 0.96 with the Total Sum of Squares (SStotal) as 0.04 
with a statistical significance of p ≤ 0.05 for a ± 95% con-
fidence interval (C.I). The model fit for 99.9% was for a 
R2 = 0.89 with the Total Sum of Squares (SStotal) as 0.11 
with a statistical significance of p ≤ 0.05 for a ± 95% con-
fidence interval (C.I).

Discussion
Evaluation of individual classifiers
The collection, labeling and archiving of medical data 
is usually time-consuming, expensive and fraught with 
security concerns, appropriately so, [77]. Therefore, it is 
a challenge to build predictive models based on limited 
available training data. Moreover, the labels are often 
provided by multiple experts, who may have different 
opinions about the same patient’s health status. Such 
disagreement may result from differences in experts’ 
knowledge and clinical experience. As a worst-case sce-
nario, differences in opinions may lead to patient misclas-
sification, which may have serious consequences to their 
health [90]. The goal of the present study was to produce 
and use 100 instances of Sensible Fictitious Rationalized 
Patient data in the development of predictive models for 
patient stratification, to use expert opinion to achieve the 
same stratification in order to ground truth the predictive 
models and to engage cognizance of intra-expert consist-
ency and inter-expert variability. The study revealed that 
the more imbalanced the input data, the higher the mis-
classification penalty. The similarity in misclassification 
(high level of misclassification of Scores 2 and 4) for each 
dataset and for both EBDT and SVM-L classifiers, may be 
the result of insufficient information provided to perform 
reliable labeling. It is, therefore, extremely important 
to compare various classifiers in terms of not only their 
accuracy but also their level of misclassification as per-
formed in this study.

Qualitative evaluation of experts’ HISS scoring
As a pilot study, the opinions of five experts, D1– D5, 
were obtained. Expert 1 based his bias weighing deci-
sions on the abnormal levels of biomarkers, being driven 
by the extremes. For example, when the lactate levels 
were high, with potassium elevated but compensated, but 
with a normal pH, this produced a HISS score of 1. It is 
observed that a score of 2 was assigned when the lactate 
level does not correlate with other values (normal pH, 
Eukalemia, Euoxia). High lactate, very low glucose, low 
pH and normal oxygen produced a HISS score of 3. All 
values very deranged with pH almost out of physiologic 
non-recoverable range; hypoxia below 60, elevated lac-
tate, potassium elevated suggesting cell injury, resulted 
in a HISS score of 4. While providing the scores, expert 
2 was able to pick the ones that were similar. Hence, his 
scores were consistent across all different profiles. The 
scoring pattern of expert 3 was not localised. Expert 4 
localised his scores from 0 to 3. While this paper is not 
concerned with expert performance, and the data set was 
far too small to allow the analysis of experts, the very low 
intra-expert variability (8.0%) and larger inter-expert var-
iability (20.6%) is worthy of mention.

Comparison of classifiers in terms of cross‑validation 
accuracy
By the majority vote, SVM-L, EBDT, ANN:BR, and PRBF 
had cross-validated accuracies of 0.91 ± 0.06, 0.93 ± 0.04, 
0.92 ± 0.07, and 0.92 ± 0.03 respectively. The results for 
SVM-L, EBDT, and ANN:BR were statistically significant. 
The misclassification is more prominent among the mid-
dle classes of 2 and 3. For example from Fig. 4, misclas-
sification rates were 71% for the class of 2 for SVM-L This 
is because the experts converge upon the extreme values 
but may have an overlap in the middle classes. There is 
a need to better delineate the intermediate shock states 
and so successfully intervene with appropriate resus-
citation measures. The accuracy of these intermediate 
states can be improved by expanding upon the number 
of expert participants. We hope to improve accuracy of 
these intermediate states by expanding upon the number 
of expert participants. Linear support vector machine 
(SVM-L) and ensemble bagged decision tree (EBDT) 
classifiers provided for classification in a simple hierar-
chy of a tree structure and SVM-L provided robust clas-
sification. An unquestionable advantage of the presented 
decision tree classifiers is that they are simple and rapid 
prediction tools which establishes the trauma severity 
score with a high accuracy. The results showed that the 
decision tree classifiers constitute a reasonable basis for 
the further extensive studies on more specific and com-
plex prediction approaches which may overcome the 
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limitations of the current methods such as a lack of exter-
nal validation of the model, experts’ opinion, or variation.

Performance of PRBF relative to other classifiers
The PRBF classifier added a layer to the intra- and inter- 
expert variabilities addressed by the other classifiers by 
tapping into the votes (either majority or individual) of 
the experts for a particular patient data set and report-
ing the number of times a physician’s label agrees with 
the consensus. It was interesting to note that expert 4 had 
the highest concurrence from his scoring pattern local-
ized for 0–3. This coincides with real-life scenarios when 
expert physicians try to categorize the patients from 0 to 
3 and try to save them. Comparatively, the score of 4 cor-
responding to severe was rare. From the fivefold cross-
validation results, the improvement in the test accuracy 
is insignificant for the number of training samples larger 
than 70. The increase in the training samples from 30 to 
70% improved the accuracy from 71 to 78.5%.

The PRBF model seeks to incorporate the inherent 
disagreement among the physician experts into the 
model training procedure. According to Fig.  3a, inte-
grating evaluations from multiple physicians through 
the possibility theory resulted in a better performance 

than SVM-L, EBDT, ANN:BR, and PBRF trained using 
the majority vote. This implies that employing differ-
ent tools of modeling the uncertainty, allows for cap-
turing different forms of uncertainty and potentially 
leads to better prediction accuracy. Moreover, train-
ing a model using PRBF allows for an additional level 
of interpretation of the model prediction during the 
decision-making process. To illustrate this point, con-
sider the example of Fictitious Patient 72 presented in 
Table  4B. When the trained PRBF model was elicited 
for predicting a label for this sample, it was able to cor-
rectly predict association to both classes with different 
degrees of belonging, as shown in Fig. 3a. For each test 
sample, the PRBF model provides a degree of possibil-
ity to belong to each class. The possibility values can be 
used to gain more insight into the prediction process 
of the model and provides the decision-maker with 
more information about the potentially over-lapping 
classes. Figure  3b shows the misclassification rates for 
than SVM-L, EBDT, ANN:BR, and PBRF. PRBF has the 
least misclassification rates. As per the majority vote, 
SVM-L seems to have high misclassification followed 
by ANN:BR and then the EBDT. Representative confu-
sion matrices have been shown in Fig. 4.
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Prediction for an adequate patient data size and predicted 
patient data size with the number of experts
An adequate testing patient data size of 75 was found 
beyond which the Mean Square Error and the validation 
accuracy were both stabilized for ANN:BR. This therefore 
establishes the minimum patient data set needed to con-
duct predictive patient classification. The present patient 
data size of 100 and five scoring experts produced accu-
racies of 0.93. The patient data size needed to obtain an 
improved accuracy of 0.99 was predicted to be 147 with 
the predicted number of 7 experts. Similarly, for an accu-
racy of 0.999, the predicted size of the number of patient 
data was 154 with 9 scoring experts. From the model, 
R2 was 0.96, with the Total Sum or Squares (SStotal) as 
0.04 with p ≤ 0.05 for a ± 95% confidence interval (C.I). 
Increasing the number of scoring experts from 5 to 7 can 
yield an accuracy of 99% but necessitates an increase in 
patient data set size from 100 to 147 (R2 = 0.96). Likewise, 
increasing the number of scoring experts from 5 to 9 can 
yield an accuracy of 99.9% but necessitates an increase in 
patient data set size from 100 to 154 (R2 = 0.89). There is 
less certainty in the prediction in going from 99 to 99.9% 
because of the limitations of the resent data set.

Limitations of the current approach and improvements 
to the existing model‑based on a substantial number 
of experts
The HISS score is not intended to replace existing 
approaches but rather augment present decision mak-
ing. This is a preliminary evaluation of the multiple 
approaches for the fusion of discrete patient sensor data 
into an actionable HISS score. The interactions among 
variables for metabolic biomarkers across dataset fea-
tures and the effects would be captured using machine 
learning algorithms. Hence, the model-based predic-
tions along with the evaluations of the experts’ opinions 
form a baseline and serve as a precursor to a larger study 
for which the following improvement strategies can be 
implemented:

Number of experts
The current study uses five experts, D1-D5, with 100 
SFRP data sets. The robustness of the probability theory 
and capacity to ascertain and account for physician vari-
ance was tested by means of uncertainty in the experts’ 
opinions. From the results, it is observed that the self-
consistency in the scoring of 4 experts can overcome 
the scoring inconsistency of 1 expert. Hence, a ratio of 
4:1 is suggested for the number of experts. This aids in 
substantiating the robustness of the machine learning 
approaches to ascribe an accurate and actionable HISS 
score despite the presence of inter-physician variance.

Overlap of intermediate shock states
Due to the preliminary small number of experts, there is 
overlap of the intermediate states. Increasing the number 
of experts can help to delineate these states and improve 
accuracy. Future work would entail (1) improving the 
predictive accuracy of HISS by growing the expert data 
set and (2) engaging in a small scale preliminary clinical 
trial to assess feasibility. There is tremendous opportunity 
to build a longitudinal assessment data set, particularly as 
it relates to data on extreme resuscitations and long-term 
patient outcomes.

The confidence level of expert scores
It is believed that experts assign the patients to a par-
ticular class with a certain confidence level, in this case, 
100%. However, they can be requested to reveal their 
confidence level in scoring each patient. Alternatively, 
the statistical confidence can be extracted by capturing 
the variability in the responses of the physicians using 
approaches like ANOVA. This could be implemented for 
a substantial number of experts (e.g. 100).

The relative weights of each patient attribute
In arriving at the class assignment, the expert physician 
reviews the five relevant physiological attributes. In its 
implementation, the classifier algorithms accept a single 
score with the assumption that each attribute is equally 
weighted in that decision-making assignment by the 
expert. In reality, experts inherently weigh each attrib-
ute and the weight is often influenced by that value and 
the values of other attributes. Based on their experience, 
the expert physician may treat certain biomarker attrib-
utes as being more or less important/influential than oth-
ers when assigning the patient to the selected class. This 
can be extended for a substantial number of experts (e.g. 
100), where a methodology can be developed to extract 
the relative weighting of each attribute. This relative 
weighting is thus a global factor assigned to the attribute. 
From the multiple expert physician responses obtained, 
a statistical assessment of the significance of each attrib-
ute can be determined. Techniques such as “leave one out 
analysis” and ANOVA will allow the extraction of the rel-
ative sensitivity of each attribute to the class assignment.

Temporal variation in HISS scores
In the present implementation, SFRP data were pre-
sented to each classifier algorithm as STAT data. How-
ever, patients are known to display temporal changes 
or trends in these biomarker values during hemorrhage 
progression such as during evacuation from theatre to 
the Green Zone. There is increasing attention being 
given to the diagnostic relevance of trend data in patient 
stratification. Temporal variations in the data to reveal 
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physiological trends can be explored using algorithms 
like recurrent neural network; however, this is outside 
the scope of the present study.

Clinical significance and integration of HISS
HISS is proposed for use as an adjunct device in conjuc-
tion with the state-of-the-art emergency protocols. It 
would help trauma surgeons and emergency physicians 
in mass triage and point of care stabilization of traumatic 
hemorrhage patients. Presently used prediction models 
like the TRISS or RISC-2 have been useful, being aggre-
gates of gross physiological trends. HISS would serve as a 
supplement to current clinical algorithms as these can be 
improved upon especially by developing approaches that 
are capable of measuring and indicating real-time high 
resolution time series data that can be used for real-time 
decision making. Furthermore, this study may expand 
upon biological interactions and the relative contribu-
tions of each clinical/physiological parameter such as to 
inform decision making. This could be applied as a pre-
cision health approach to the diagnosis and treatment of 
victims of traumatic shock.

Conclusions
In this study, the Sensible Fictitious Rationalized Patient 
(SFRP) synthetic data generator was introduced for hem-
orrhaging trauma patients wherein five biomarkers; glu-
cose, lactate, pH, potassium, and oxygen tension, served 
as the basis for an actionable HISS score rendered by five 
experts. This score is intended to serve as an adjunct and 
be complementary to current measures. The focus is on 
metabolic biomarkers over the traditional gross physi-
ological data. Normalization of these values may greatly 
assist in preventing the under and over-resuscitation of 
victims. Several classification algorithms; linear sup-
port vector machine (SVM-L), ensemble bagged deci-
sion tree (EBDT), artificial neural network with bayesian 
Regularization algorithm (ANN:BR) and possibility rule-
based using function approximation (PRBF) were evalu-
ated for their ability to accurately classify the 100 entries 
of the SFRP data set. These data-driven predictions are 
presented as an adjunct to help the decision-making 
of physicians regarding the status of the hemorrhag-
ing patient during triage and uses a severity scale of 
(0 = LOW, 1 = GUARDED, 2 = ELEVATED, 3 = HIGH, 
4 = SEVERE). A training data set size of 75 has been 
identified as adequate to achieve the best performance 
by minimizing the Mean Square Error. This approach 
has the advantage of high validation accuracies from the 
ensemble bagged decision trees and linear support vector 
machines (93 ± 0.04% and 91 ± 0.06%) with the tunability 
of neural networks (92 ± 0.07%), and the ability to cap-
ture the uncertainty in the responses of experts with the 

help of a possibility theory-based approach (92 ± 0.03%). 
The predictions generated using the classification meth-
ods would assist in an adjunct device in the form of a bio-
sensor system for point-of-care monitoring of the trauma 
patient, especially in mass casualty situations.

Improvement strategies are discussed with an 
increase in the number of experts to 100 scoring the 
SFRP data sets. This paper has a clinical utility in terms 
of classification by grouping data, prediction for incom-
ing data and regression by means of prediction of con-
tinuous data. The predicted patient data size to obtain a 
test accuracy of 0.99 has been identified to be 147 with 
a predicted number of 7 experts. Refined prediction 
model disclosed a predicted patient data size of 154 
with a predicted number of 9 experts for a test accuracy 
of 0.999. Similarly, the adequacy of the patient data 
size has been identified to be 75 and of the number of 
experts has been noted as 5 to allow training and vali-
dation. Intermediate states reveal more overlap when 
compared to the extreme states of LOW and SEVERE. 
HISS may be clinically relevant as it relates to the trans-
lation of physiologic states to severity and outcomes. 
Future work will entail improving the predictive accu-
racy of HISS and delineating the intermediate shock 
states by growing our expert data set and engaging in a 
small scale preliminary clinical trial to assess feasibility.
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