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Abstract 

Background:  Myocardial infarction (MI) is one of the most severe manifestations of coronary artery disease (CAD) 
and the leading cause of death from non-infectious diseases worldwide. It is known that the central component of 
CAD pathogenesis is a chronic vascular inflammation. However, the mechanisms underlying the changes that occur 
in T, B and NK lymphocytes, monocytes and other immune cells during CAD and MI are still poorly understood. One of 
those pathogenic mechanisms might be the dysregulation of intracellular signaling pathways in the immune cells.

Methods:  In the present study we performed a transcriptome profiling in peripheral blood mononuclear cells of 
MI patients and controls. The machine learning algorithm was then used to search for MI-associated signatures, that 
could reflect the dysregulation of intracellular signaling pathways.

Results:  The genes ADAP2, KLRC1, MIR21, PDGFD and CD14 were identified as the most important signatures for 
the classification model with L1-norm penalty function. The classifier output quality was equal to 0.911 by Receiver 
Operating Characteristic metric on test data. These results were validated on two independent open GEO datasets. 
Identified MI-associated signatures can be further assisted in MI diagnosis and/or prognosis.

Conclusions:  Thus, our study presents a pipeline for collapsing the list of differential expressed genes, identified by 
high-throughput techniques, in order to define disease-associated diagnostic signatures.
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Background
Myocardial infarction (MI) is one of the most severe 
manifestations of coronary artery disease (CAD) and 
the leading cause of death from non-infectious diseases 
worldwide [1]. In most cases, MI occurs as a serious 
complication of atherosclerosis—a complex disease, the 
etiology of which is still not fully elucidated [2]. Recent 
studies have shown that the central component of athero-
sclerosis pathogenesis is a chronic vascular inflammation, 
resulting in endothelial dysfunction and, consequently, in 

an increased probability of hemodynamic abnormalities, 
including through the thrombosis [3]. Such a vascular 
lesion is emerged with the leading involvement of intimal 
cells (fibroblasts, endothelial and smooth muscle cells) 
and peripheral blood mononuclear cells (PBMC) [4]. 
The immune system cells are also actively involved in the 
processes accompanying MI; initiating aseptic inflamma-
tion, they contribute to the removal of cell debris from 
the injured area, remodeling and repair of heart tissue [5, 
6]. The area of myocardial injury and the disease progres-
sion depend on the activity of different processes, includ-
ing on the inflammatory phase in the first days after MI 
[5]. However, the pathogenic mechanisms underlying the 
changes that occur in PBMC (T, B and NK lymphocytes 
and monocytes) during atherosclerosis and MI are still 
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poorly understood. One of those mechanisms might be 
the dysregulation of intracellular signaling pathways in 
immune cells [7].

One way to establish MI transcriptional signatures, 
which include both dysregulated individual genes and 
signaling pathways, containing dysregulated genes, is to 
simultaneously study of transcriptional profiles of pro-
tein-coding genes and genes for regulatory non-coding 
RNA. Among non-coding RNAs, miRNAs are of par-
ticular interest in the context of robustness of biological 
processes, since they regulate key elements of extensive 
segments of signaling pathways’ networks [8–10]. To 
date, consistency of expressional changes of miRNAs and 
their target genes has been investigated in macrophages 
of pigs and rats with experimental MI [11] and in the 
whole blood of MI patients [12].

In the present study, we performed a transcriptome 
profiling in PBMC in MI patients 24–36  h after disease 
onset and healthy individuals and revealed MI-associ-
ated signatures, consisting of individual protein-coding 
genes or functional patterns of genes, such as miRNA 
with its co-expressed target genes or combination of 
co-expressed genes, attributed to a definite signaling 
pathway.

Materials and methods
Pipeline
The pipeline of the study design is illustrated in Fig.  1. 
RNA Microarray analysis was used to identify genes 
that were significantly (p < 0.05) associated with MI 

(differentially expressed genes, DEGs). Those DEGs that 
have passed threshold for multiple comparisons were 
considered MI transcriptional signatures. Functional 
patterns of co-expressed DEGs were also considered 
MI transcriptional signatures. Such functional patterns 
included i) differentially expressed miRNA and its co-
expressed target mRNA(s) and ii) DEGs attributed to 
a Reactome gene set. In the latter case, the Reactome 
gene sets were considered the most informative if they 
(i) account for more than 10% of all co-expressed DEGs 
and/or (ii) include DEGs passed multiple comparisons 
correction.

The validation of identified MI transcriptional sig-
natures was performed on two open data sets; DEGs 
which were not validated on at least one of these sets 
were excluded from further consideration. The DEGs 
within validated MI transcriptional signatures were used 
to construct binary classifiers. Given the high quality 
of classification and stability of the detected composite 
transcriptional biomarker, a logistic regression with the 
L1-norm penalty function was used to select the most 
significant DEGs on test dataset.

Patients and controls
Six patients (all men, mean age 51.3 ± 5.9  years) with 
first ST-segment elevation MI were enrolled in this 
study. All patients were diagnosed at the National Medi-
cal Scientific Center for Cardiology (Moscow, Russia) 
based on symptoms of myocardial ischemia, increase 
of high-sensitivity cardiac troponin I (hs-cTn-I) and/or 

Fig. 1  A schematic pipeline of the study for MI transcriptional signatures’ identification. DEGs differentially expressed genes. MI patients with 
myocardial infarction. CTRLs individuals in the control group, CV cross-validation
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emergence of new or presumed new ST-segment eleva-
tion, new left bundle branch block or development of 
pathological Q waves in accordance with Third Universal 
Definition of MI [13]. Hs-cTn-I was measured during the 
initial patient assessment (from 1 to 18 h after the onset 
of disease symptoms). All patients underwent coronary 
angiography on admission and were treated accord-
ing to contemporary guidelines. The characteristics of 
MI patients are presented in Table  1. A total of 6 indi-
viduals of the control group (CTRLs) (all men, mean age 
51.0 ± 7.1 years) with normal electrocardiogram, no his-
tory of CVD and diabetes mellitus were included in the 
study; CTRLs characteristics by smoking status, age and 
body mass index were compatible to MI patients. All par-
ticipants lived in European Russia. The ethical approval 
was obtained from the local Ethics Committee, and writ-
ten informed consent had been received from each per-
son in accordance with the Declaration of Helsinki.

Peripheral blood mononuclear cells collection and RNA 
extraction
Blood samples were collected in the morning from MI 
patients (24-36  h after the disease onset) and CTRLs. 
PBMC were isolated using Ficoll-Hypaque density gradi-
ent method (Sigma-Aldrich, St. Louis, MO, USA) within 
3  h of sampling. Total RNA including small RNA was 
extracted using miRNeasy Mini Kit (Qiagen, Hildren, 
Germany) following the manufacturer’s instructions. The 
RNA quantity was measured using the NanoDropTM 
spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA, USA); the RNA integrity was assessed by QIAxcel 
Advanced System (Qiagen, Hilden, Germany). Samples 
with RNA integrity number (RIN) value above eight were 
included in subsequent experiments.

RNA microarray analysis
The transcriptome analysis was performed using Gene-
Chip Human Transcriptome Array 2.0, which provides 
the ability to analyze the expression of 44,699 protein-
coding genes and 22,829 non-protein coding genes, 
including 1346 miRNA genes (ThermoFisher Scientific, 
Santa Clara, CA, USA). Briefly, total RNA (500  ng) of 
samples were each proceeded to poly(A)tailing and bio-
tin ligation reactions using FlashTag Biotin HSR RNA 
Labeling Kit (ThermoFisher Scientific, Santa Clara, CA, 
USA). The biotin-labeled RNA samples were hybridized 
on GeneChip Human Transcriptome Array 2.0 using 
manufacturer’s instructions and scanned on the Gene-
Chip Scanner 7G System. Computational analysis of the 
microarray data files was performed using R program-
ming language version 3.5.1. Data processing was car-
ried out based on the affy package written in R [14]. A 
biomaRt package was used to annotate the obtained data 
[15]. Probes demonstrating evidence for cross-hybridi-
zation, i.e. transcript sequences annotated to more than 
two coding genes were excluded from this study. If tran-
scripts belong to the same gene ID, a transcript with the 
most detectable expression level was selected. To detect 
differentially expressed genes, calculate the levels of sta-
tistical significance and adjust them for multiple com-
parisons by Benjamini–Hochberg procedure (p and padj, 
respectively) the standard limma package protocol was 
used [16]. All expression data are deposited in the Gene 
Expression Omnibus international public repository 
under accession identification as GSE141512 [17].

Bioinformatic analysis
MirTarBase was used to select experimentally validated 
target genes for miRNAs [18]. Gene set enrichment anal-
ysis (over-representation analysis) was performed using 
Tools of Reactome Database [19].

To construct and analyze the gene–gene interaction 
networks, NetworkX 2.0 package for Python was used 
[20]. STRING database [21] was used to find protein–
protein interactions.

Statistics analysis and machine learning
Statistical analysis was performed using R programming 
language version 3.5.1. Null hypotheses were reject-
ing if p < 0.05. To study the dependence/correlation of 
two continuous random variables, the Spearman’s Rank 
Correlation test was used. The logistic regression classi-
fier was trained using the tools of scikit-learn v0.20.3 for 

Table 1  Baseline characteristics of MI patients (all men)

Total number 6

Mean age ± SD (years) 51.3 ± 5.9

Body mass index ± SD, (kg/m2) 28.2 ± 3.3

Smoking (%) 68

Total cholesterol ± SD, (mmol/l) 5.2 ± 1.3

Triglycerides ± SD, (mmol/l) 1.4 ± 0.34

LDL cholesterol ± SD, (mmol/l) 2.6 ± 1.4

HDL cholesterol ± SD, (mmol/l) 1.0 ± 0.1

Left ventricular ejection fraction at the time of MI onset 
(%)

55.2 ± 6.0

High-sensitivity cardiac troponin I (hs-cTn-I) ± SD, (pg/ml) 1857.9 ± 98.5

Previous MI (n) 0

Previous revascularization (n) 0

Coronary obstructive/non-obstructive MI (n) 3/3

Hypercholesterolemia (n) 2

Accompanied diseases

 Diabetes mellitus before MI (n) 0

 Essential hypertension before MI (n) 3

 Chronical bronchitis (n) 2
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Python [22]. To reduce the possible classification model 
overfitting the l2-norm regularization and tenfold cross 
validation were used. The selection of the optimal regu-
larization coefficient was performed by grid search using 
the GridSearchCV () function. The quality of the classifi-
cation model was estimated by the areas under receiver 
operating characteristic curve (ROC-AUC). The final 
assessment of the quality of the classification model 
was carried out on the test dataset that was not used for 
training. For training and testing the model z-scaling of 
continuous features was performed at the preprocessing 
data stage.

Validation analysis
The Gene Expression Omnibus database (GEO,  http://
www.ncbi.nlm.nih.gov/geo) was used in order to vali-
date the obtained results. Two open data sets–GSE59867 
and GSE62646 with gene expression profiles in PBMC of 
MI patients and healthy individuals without a history of 
CVD were investigated; they were obtained on GeneChip 
Human Gene 1.0 ST Array [transcript (gene) version]. 
The dataset GSE59867 included expression data of 111 
MI cases and 48 CTRLs; the dataset GSE62646–of 28 MI 
patients and 14 CTRLs (mixed-gender sets).

Results
Array‑based transcriptome profiling
Transcriptome profiling in PBMC of six MI patients 
and six gender- and age-matched control individuals 
(CTRLs) was performed using GeneChip Human Tran-
scriptome Array 2.0 (Fig.  1). As a result, a total of 84 
differentially expressed genes (DEGs) were identified 
(−0.5 < log2FC > 0.5, p < 0.05) (Additional file 1: Table S1), 
from which 48 protein-coding genes and 2 miRNA genes 
(MIR21 and MIR223) were upregulated, while 34 protein-
coding genes were downregulated in MI patients. Among 
all observed DEGs KLRB1 and ADAP2 passed the thresh-
old for multiple comparisons correction (log2FC =−0.64, 
p.adj = 0.0454 and log2FC = 0.64, p.adj = 0.0495, respec-
tively); both these genes were further considered as MI 
transcriptional signatures.

The search for MI transcriptional signatures: miRNA and its 
target mRNA(s)
Among identified DEGs (p < 0.05) presented in Fig.  2, 
BCL6, CCR1, PDGFD, SGK1, and TGFBR3 genes were 
found to be targets of miR-21, while MAFB—target of 
miR-223 based on MirTarBase database. As assessed 
by Spearman’s correlation analysis the expression lev-
els of BCL6, CCR1, and SGK1 were positively correlated 
(p < 0.001, Ro > 0.9) and PDGFD and TGFBR3 —nega-
tively correlated (p < 0.05; Ro < −0.6) with MIR21 expres-
sion level in MI patients and CTRLs (Additional file  1: 

Figure S1). A positive correlation between the expression 
levels of MAFB and MIR223 (p < 0.1, Ro = 0.5) was also 
observed (Additional file 1: Figure S2). Thus, MIR21 and 
MIR223 genes, together with their functionally associ-
ated co-expressed target genes, were considered as two 
MI transcriptional signatures.

The search for MI transcriptional signatures: Reactome 
gene sets
The enrichment analysis was undertaken in order 
to search for the functional patterns which included 
DEGs attributed to a Reactome gene set (Table 2). Nine 
Reactome gene sets were significantly overrepresented 
(FDR < 0.05) among the 48 upregulated protein-coding 
genes (see above). The first three sets included each 
more than 10% of upregulated genes: “Immune sys-
tem” − 22 DEGs from 2663 genes presented in the set 
(FDR = 0.023), “Neutrophil degranulation” − 13 DEGs 
from 480 genes (FDR = 0.0035) and “Cytokine Sign-
aling in Immune system” − 9 DEGs from 1055 genes 
(FDR = 0.015). “Immune system” gene set is at the 
highest level of the Reactome hierarchy and includes 
“Neutrophil degranulation” and “Cytokine Signal-
ing in Immune system” pathways that are separately 
characterized by more significant overrepresentation 
of DEGs. So that, the DEGs from these two pathways 
were chosen to further analysis in the context of poten-
tial MI transcriptional signatures. Notably, “Cytokine 

Fig. 2  Volcano plot of gene expression changes in PBMC of MI 
patients compared to CTRLs. Blue dot indicates downregulated gene 
(log2FC < −0.5); red dot indicates upregulated gene (log2FC > 0.5), 
which passed threshold for multiple comparisons (p.adj < 0.05); 
Among differentially expressed genes (DEGs) MIR21 and its target 
genes are marked in orange, MIR223 and its target gene − in purple 
(−0.5 < log2FC > 0.5, p < 0.05)

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Signaling in Immune system” pathway involves BCL6 
and CCR1—the target genes of miR-21, which were 
already included in one of the identified MI transcrip-
tional signatures.

As can be seen from Table 2, two Reactome gene sets 
were significantly overrepresented among the 34 down-
regulated in MI genes: “Immunoregulatory interactions 
between a Lymphoid and a non-Lymphoid cell” (6 DEGs 
from 297 genes, FDR = 0.021) and “DAP12 signaling” (4 
DEGs from 29 genes, FDR = 0.021). Each of these sets 
includes more than 10% of the downregulated genes 
and is involved in signal transduction in lymphoid cells, 
namely in natural killers (NK). The “DAP12 signaling” 
pathway was overrepresented exclusively among the 
genes which encode the killer cell lectin-like receptors 
(KLR) expressed in NK cells, two of these DEGs (KLRD1 
and KLRC1) were as well observed in “Immunoregulatory 
interactions between a Lymphoid and a non-Lymphoid 
cell” pathway. The last mentioned pathway was also over-
represented by KIR2DL1 and KIR2DL3 genes, encoding 
a killer cell immunoglobulin-like receptors, the trans-
membrane glycoproteins expressed by NK and T cells’ 
subsets. Notably, KLRB1 gene, defined previously indi-
vidually as MI transcriptional signature (log2FC =−0.64, 
p.adj = 0.0454) was included only in “Immunoregulatory 
interactions between a Lymphoid and a non-Lymphoid 
cell” pathway. The DEGs from this pathway were chosen 

for further analysis in the context of potential MI tran-
scriptional signatures.

The search for interacting genes/proteins among the 
DEGs from selected Reactome sets “Neutrophil degran-
ulation”, “Cytokine Signaling in Immune system” and 
“Immunoregulatory interactions between a Lymphoid 
and a non-Lymphoid cell” (lines 2, 3 and 10 in Table 2) 
was performed using String database. Almost all the 
DEGs from the “Neutrophil degranulation” set (with the 
exception of the PADI2, GRN and PYGL genes) were 
found to interact among themselves (Fig. 3a). The expres-
sion levels of these 10 interacting genes were significantly 
positively correlated between each other (0.93 > Ro > 0.51, 
p < 0.05) (Additional file  1: Figure S3). Thus, we consid-
ered the pattern of interacting genes from this pathway, 
namely BST1, C3AR1, CD14, CLEC4D, CR1, FPR1, FPR2, 
S100A12, SLC11A1 and TLR2 as potential MI transcrip-
tional signature.

In the “Cytokine Signaling in Immune system” gene set 
six interacting genes (CCR1, FCGR1A, FCGR1B, FPR1, 
HLA-DQB1 and S100A12) were found (Fig. 3b), and the 
expression levels of these genes, with the exception of the 
HLA-DQB1, were positively correlated with each other 
(0.99 > Ro > 0.62, p < 0.05) (Additional file 1: Figure S4). As 
previously mentioned, CCR1 is the target gene of miR-
21, and has already been included to MIR21-containing 
MI transcriptional signature. According to correlation 

Table 2  Reactome gene sets significantly overrepresented among  the  differentially expressed genes in  PBMC from  MI 
patients when compared to controls

No Reactome set name Total number 
of genes 
in the set

Number of differentially 
expressed genes (DEGs)

DEGs FDR

Upregulated genes

 1 Immune system 2663 22 BCL6, BST1, C3AR1, CCR1, CD14, CLEC4D, 
CLEC6A, CR1, FCGR1A, FCGR1B, FLT3, 
FPR1, FPR2, GRN, HLA-DQB1, PADI2, PYGL, 
S100A12, SLC11A1, SOCS3, TLR2, TLR8

0.023

 2 Neutrophil degranulation 480 13 BST1, C3AR1, CD14, CLEC4D, CR1, FPR1, FPR2, 
GRN, PADI2, PYGL, S100A12, SLC11A1, TLR2

0.0035

 3 Cytokine Signaling in immune system 1055 9 BCL6, CCR1, FCGR1A, FCGR1B, FLT3, FPR1, 
HLA-DQB1, S100A12, SOCS3

0.015

 4 Interferon gamma signaling 250 4 FCGR1A, FCGR1B, HLA-DQB1, SOCS3 0.015

 5 Signaling by non-receptor tyrosine kinases 70 2 NRG1, SOCS3 0.033

 6 Signaling by PTK6 70 2 NRG1, SOCS3 0.033

 7 PTK6 Activates STAT3 7 1 SOCS3 0.033

 8 GRB7 events in ERBB2 signaling 6 1 NRG1 0.031

 9 Transport of glycerol from adipocytes to 
the liver by Aquaporins

3 1 AQP9 0.015

Downregulated genes

 1 Immunoregulatory interactions between a 
Lymphoid and a non-Lymphoid cell

297 6 KLRB1, KLRC1, KLRD1, KLRF1, KIR2DL1, 
KIR2DL3

0.021

 2 DAP12 signaling 29 4 KLRC1, KLRC2, KLRC3, KLRD1 0.021
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analysis, MIR21 expression level positively correlates not 
only with CCR1, but also with FCGR1A, FCGR1B, FPR1 
and S100A12 expression levels (0.93 > Ro > 0.71, p < 0.01) 
(Additional file 1: Figure S4). Thus, we considered these 
genes as components that extend the MIR21-containing 
MI transcriptional signature.

In Reactome pathway “Immunoregulatory interactions 
between a Lymphoid and a non-Lymphoid cell” different 
interacting gene pairs were found between all the genes 
from this set: KLRB1, KLRC1, KLRD1, KLRF1, KIR2DL1, 
KIR2DL3 (Fig. 3c) and they were predominantly charac-
terized by significantly positive correlation between their 
expression levels (0.88 > Ro > 0.55, p < 0.05) (Additional 
file 1: Figure S5). Noteworthy, KLRB1 gene whose differ-
ential expression passed correction for multiple compari-
sons and could be considered as the MI transcriptional 
signature, interacts with KLRD1 and KLRF1 from this 
gene set. Therefore, we included genes KLRC1, KLRD1, 
KLRF1, KIR2DL1 and KIR2DL3 in the KLRB1-containing 
MI transcriptional signature.

Overall, the conducted analysis allowed us identifying 
the following five MI transcriptional signatures contain-
ing all in all 29 DEGs: {ADAP}, {KLRB1 + KLRC1, KLRD1, 
KLRF1, KIR2DL1, and KIR2DL3}, {MIR21 + BCL6, CCR1, 
PDGFD, SGK1, TGFBR3, FCGR1A, FCGR1B, FPR1, and 
S100A12}, {MIR223 + MAFB} and {BST1, C3AR1, CD14, 
CLEC4D, CR1, FPR1, FPR2, S100A12, SLC11A1, and 
TLR2}.

The validation analysis of differential expression of genes 
in identified MI transcriptional signatures using GEO 
datasets
To confirm the differential expression of genes in iden-
tified MI transcriptional signatures we used open 
datasets GSE62646 and GSE59867 from GEO data-
base, in which gene expression profiles in PBMC of MI 
patients and healthy individuals without a history of 

cardiovascular diseases (CVD) were investigated using 
GeneChip Human Gene 1.0 ST Array. The genes 
KIR2DL1, KIR2DL3, FCGR1A and FCGR1B that were 
according to our results included in MI transcriptional 
signatures were not represented on this array and were 
therefore excluded from the corresponding MI transcrip-
tional signatures on further consideration. Thus, in a fur-
ther analysis, 25 genes were considered.

Of the five MI transcriptional signatures we identi-
fied, the differential expression of all genes included in 
the ADAP2-, KLRB1-, and MIR223-containing MI tran-
scriptional signatures was validated in both open data-
sets GSE62646 and GSE59867 (Table 3). The differential 
expression of all genes included in the MIR21-containing 
MI transcriptional signature and MI transcriptional sig-
nature from “Neutrophil degranulation” Reactome gene 
set was validated in GSE59867 dataset. The differential 
expression of a number of these genes was validated also 
on GSE62646 dataset with the exception of FPR1 and 
SGK1 from the MIR21-containing signature and BST1, 
CLEC4D, FPR1, FPR2 and TLR2 from the “Neutrophil 
degranulation” signature; these genes were excluded from 
the corresponding MI transcriptional signatures on fur-
ther consideration.

Thus, after the validation analyses MI transcriptional 
signatures look as follows: {ADAP2}, {KLRB1 + KLRC1, 
KLRD1, KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, 
TGFBR3, S100A12}, {MIR223 + MAFB} and {C3AR1, 
CD14, CR1, S100A12, SLC11A1}.

The diagnostic value of the identified MI transcriptional 
signatures
The design of our study does not allow to assess the 
causality between MI and validated transcriptional sig-
natures, which does not exclude the possibility of con-
sidering them as diagnostic biomarkers. Their diagnostic 
value can be assessed by the quality of the classification 

Fig. 3  Network analysis of the Reactome gene sets “Neutrophil degranulation” (a), “Cytokine Signaling in Immune system” (b) and 
“Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell” (c). The edges indicate molecular interactions between nodes 
based on String database
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of MI patients from healthy controls. To search for such 
an optimal classifier, a L2 regularized logistic regression 
model was trained on the GSE59867 dataset (Fig. 4).

Figure 4a shows that MI patients at the time of admis-
sion to hospital could be classified from healthy individu-
als based on the selected MI transcriptional signatures, 
and the quality of the classification model on the test 
dataset (AUC = 0.926) is slightly higher than on the 
training dataset (AUC = 0.910), illustrating the stability 
of the model and the lack of its overfitting. While ana-
lyzing the available data from GSE62646 dataset on the 
levels of gene expression during the 6-month follow-up 
after MI (Fig.  4b), we observed that the classification 
model remains effective within 6  days after MI onset 
(AUC = 0.773, blue line) but 6  month after MI onset 
the effectiveness of this model considerably decreases 
(AUC = 0.594, red line).

For the feature selection and to reduce the number 
of DEGs included in the classification model we used a 
logistic regression with the L1-norm penalty function 

(Fig. 5). As a result, ADAP2, KLRC1, MIR21, PDGFD and 
CD14 genes were selected for the classification model as 
the most important DEGs (Fig.  5a). ROC-curves con-
structed for these genes are demonstrated in Figs. 5b, c. 
The comparison of ROC-curves from Figs. 4 and 5 dem-
onstrates that the quality of the classification on test 
dataset slightly decreased from 0.926 (dark green curve 
on Fig. 4b) to 0.911 after applying L1 regularization (dark 
green curve on Fig. 5b). While analyzing the changes in 
the quality of the classification model based on the levels 
of gene expression over time after MI onset, ROC-AUC 
values also slightly changed after applying L1 regulariza-
tion (see Figs. 4b and 5c). Thus, five DEGs are sufficient 
for the classification; among these genes DEGs from 
MIR223-containing MI transcriptional signature were 
not presented.

Table 3  The expression of  genes from  identified MI transcriptional signatures based on  our data and  data obtained 
from GSE62646 and GSE59867 GEO datasets

Underline indicates p value > 0.05

MI signature Gene Our data GSE62646 GSE59867

LOGFC P-value LogFC P-value LogFC P-value

ADAP2-containing MI signature ADAP2 0.64 8.70E − 05 0.62 6.40E − 08 0.42 4.54E − 13

KLRB1-containing MI signature KLRB1 − 0.64 3.82E − 05 − 0.57 1.27E − 03 − 0.44 2.85E − 06

KLRC1 − 0.69 1.09E − 02 − 0.80 3.60E − 05 − 0.70 5.28E − 10

KLRD1 − 0.77 3.78E − 04 − 0.69 1.64E − 04 − 0.70 7.77E − 13

KLRF1 − 0.65 1.90E − 03 − 0.79 1.06E − 03 − 0.70 1.20E − 08

MIR21-containing MI signature MIR21 1.51 5.45E − 03 0.36 3.57E − 02 0.80 2.03E − 12

BCL6 0.80 3.38E − 03 0.51 1.06E − 04 0.48 2.37E − 12

CCR1 0.55 1.97E − 02 0.57 1.63E − 04 0.67 1.29E − 13

PDGFD − 0.52 1.29E − 04 − 0.68 1.56E − 04 − 0.65 3.06E − 12

SGK1 0.54 3.91E − 02 0.18 3.00E − 01 0.34 4.78E − 04

TGFBR3 − 0.56 7.32E − 03 − 0.59 1.06E − 03 − 0.58 4.65E − 11

FPR1 0.66 6.74E − 03 0.28 5.20E − 02 0.52 7.58E − 12

S100A12 0.70 4.78E − 03 0.43 4.71E − 03 0.55 1.07E − 10

MIR223-containing MI signature MIR223 0.63 9.43E − 03 0.61 6.85E − 05 0.53 4.85E − 09

MAFB 0.65 2.16E − 02 0.45 5.70E − 04 0.52 7.80E − 12

Neutrophil degranulation MI signature BST1 0.54 5.13E − 03 0.12 2.70E − 01 0.50 9.74E − 15

C3AR1 0.60 1.88E − 02 0.34 3.14E − 02 0.48 1.07E − 06

CD14 0.57 5.09E − 03 0.48 3.67E − 05 0.60 5.79E − 18

CLEC4D 0.81 3.75E − 02 − 0.29 6.48E − 02 0.22 1.72E − 02

CR1 0.58 3.57E − 02 0.62 9.67E − 04 0.64 1.51E − 13

FPR1 0.66 6.74E − 03 0.28 5.20E − 02 0.52 7.58E − 12

FPR2 0.65 4.06E − 02 0.34 6,67E − 02 0.63 6.28E − 10

S100A12 0.70 4.78E − 03 0.43 4.71E − 03 0.55 1.07E − 10

SLC11A1 0.59 2.38E − 04 0.54 6.12E − 05 0.50 2.58E − 12

TLR2 0.70 5.09E − 03 0.06 5.93E − 01 0.22 3.57E − 04
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Fig. 4  Quality and robustness of the classification model with a L2-norm penalty function based on the cumulative expression levels of genes 
included in considered MI transcriptional signatures: {ADAP2}, {KLRB1 + KLRC1, KLRD1, KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, TGFBR3, S100A12}, 
{MIR223 + MAFB} and {C3AR1, CD14, CR1, S100A12, SLC11A1}. a Areas Under receiver operating characteristic Curve (ROC-AUC) for the training 
(GSE59867) and test (GSE62646) datasets. b Time-depended (starting from MI onset) ROC-AUC metrics of the classification model

Fig. 5  Quality and robustness of the classification model with a L1-norm penalty function based on the cumulative expression levels of genes 
included in considered MI transcriptional signatures: {ADAP2}, {KLRB1 + KLRC1, KLRD1, KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, TGFBR3, S100A12}, 
{MIR223 + MAFB} and {C3AR1, CD14, CR1, S100A12, SLC11A1}. a Coefficients of the classification model; the most important upregulated genes ADAP2, 
MIR21 and CD14 are marked in red, downregulated genes KLRC1 and PDGFD–in blue colour. b ROC-AUC metrics of the L1-regularized classification 
model consisted of ADAP2, MIR21 and CD14 genes. ROC-AUC were constructed using the training (GSE59867) and test (GSE62646) datasets. c 
Time-depended (starting from MI onset) ROC-AUC metrics of the L1-regularized classification model based on test dataset
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Discussion
In the study we searched for MI transcriptional signatures 
(individual dysregulated genes or functional patterns of 
dysregulated genes) that could be potentially used in MI 
diagnosis. We compared the transcriptome profiles in 
PBMC of patients with first MI and healthy individuals 
using GeneChip Human Transcriptome Array 2.0 and 
identified five MI transcriptional signatures containing 
from 1 to 6 DEGs: {ADAP2}, {KLRB1 + KLRC1, KLRD1, 
KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, TGFBR3, 
S100A12}, {MIR223 + MAFB} and {C3AR1, CD14, CR1, 
S100A12, SLC11A1}.

In order to select the most important for classifica-
tion DEGs, further research steps included: validation 
on open datasets GSE62646 [23] and GSE59867 [24], 
construction of L2 regularized logistic regression model 
for estimation the diagnostic value of the MI transcrip-
tional signatures and feature selection using L1-norm 
penalty function. This approach allowed to exclude 
from the classification model MI transcriptional signa-
ture (MIR223 + MAFB) as insufficiently effective and 
to reduce the number of DEGs from other signatures to 
ADAP2, KLRC1, MIR21, PDGFD and CD14. Accord-
ing to the ROC-AUC analysis the obtained classification 
model, including 5 genes, is enable classifying MI patients 
and healthy controls with a quality of 0.911 while the 
quality of initial classification model, including 18 genes, 
was equal to 0.926. Thus, a decrease in the number of 
genes did not significantly affect the quality of the model. 
A comparable decline in the quality of both classification 
models over time from MI onset was shown. This decline 
occurs rather slowly, for days and weeks. After 6 months 
the cumulative expression levels of genes included in MI 
signatures almost completely return to the normal levels, 
which indicates the dependence of their expression on 
time since the onset of MI as an acute condition.

Patients with obstructive and non-obstructive MI were 
included in the initial group equally, while there is no 
information on this characteristic for the patients from 
datasets GSE62646 [23] and GSE59867 [24] we used 
for validation. Therefore, there is reason to argue that 
the transcriptional signatures we identified are associ-
ated with MI development regardless of specificities 
of its pathogenesis. Therefore, there is reason to argue 
that the transcriptional signatures we identified reflect 
the development of MI regardless of specificities of its 
pathogenesis.

Consider consistently the characteristics of genes-
classifiers. The gene ADAP2 encodes ArfGAP With Dual 
PH Domains 2 protein and was designated in our study 
as individual MI transcriptional signature; no data on 
the involvement of this gene in the development of CVD 

and/or its complications were found. However, the prod-
uct of this gene was shown to be involved in heart devel-
opment, and its dysfunction presumably is associated 
with cardiovascular malformations in NF1 microdeletion 
syndrome [25].

The gene KLRC1 refers to a MI transcriptional signa-
ture containing the genes of killer cell lectin-like recep-
tors (KLR) that encode a family of transmembrane 
proteins, characterized by a type II membrane orienta-
tion and the presence of a C-type lectin domain; they are 
predominantly expressed in NK cells. The association 
of some genes from this signature (KLRD1 and KLRC1) 
with MI or its complications was previously shown by 
Maciejak et al. and Kiliszek et al., whose data were used 
for validation analysis in our study [23, 24]. We have 
shown that the expression of the genes KLRB1, KLRC1, 
KLRD1, KLRF1 is consistently decreased in MI, that is in 
a good accordance with the study by Yan et al. [26], where 
a loss of NK cell activity was found in patients with acute 
MI, in particular, due to a decrease in KLRB1 expression.

The MIR21 gene and target genes of miR-21 were 
included in one MI transcriptional signature, composed 
mainly of genes from “Cytokine Signaling in Immune 
system” pathway. Thus, in addition to cytokine signaling 
pathways, which role in MI development was previously 
described [27], we have identified and validated on inde-
pendent GEO datasets the influence of miR-21 through 
the regulation of this pathway in PBMC during MI. The 
functional role of miR-21 in cardiac tissue has been stud-
ied for a long time, and by now a large amount of data has 
been accumulated on this subject [28], while in PBMC its 
role remains unclear. In one of the studies the negative 
correlation of miR-21 expression level in MI with the lev-
els of IL-1β, IL-6, and TNF-α cytokines was shown due 
to regulatory effect of this miRNA on the expression of 
KBTBD7; this gene encodes a member of BTB-kelch pro-
teins, kelch repeat and BTB (POZ) domain containing 7, 
which promotes inflammatory responses in macrophages 
[29]. In turn, in our study, the association of miR-21 
and its target genes PDGFD, TGFBR3, CCR1 and BCL6 
expression levels with MI was demonstrated, from which 
PDGFD gene encoded platelet derived growth factor D 
was found to be the most important based on the results 
of L1 regularization. The genes of the PDGF family and 
their involvement in the pathogenesis of various diseases 
are well studied; in particular, PDGFD is known to be 
involved in the fibrosis and neovascularization of the car-
diac tissue [30].

The gene CD14 encodes a receptor on the surface of 
myeloid cells, which participates in CD14/TLR4/MD2 
signaling pathway involved in the recognition of lipopol-
ysaccharides [31]. This gene was identified in our study 
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as a component of “Neutrophil degranulation” pathway. 
The neutrophils are known to be actively involved in the 
development and elimination of MI consequences [32]. 
Furthermore, polymorphic variants in CD14 gene were 
found to be associated with MI [33].

Further investigations are implicitly needed to clarify 
the causality between MI and the identified MI-associ-
ated signatures.

The data on differential expression of a number of 
genes in PBMC of MI patients obtained in our study 
were validated on two independent datasets that indi-
cates their value. The identified DEGs could be suitable 
for the prediction of the first MI before the appearance 
of the disease symptoms, as it was previously described 
for some miRNAs [34]. Further investigations are 
implicitly needed to clarify the functional role of the 
identified MI-associated genes in the development of 
this disease.

Conclusions
The present study implements the pipeline designed to 
the collapsing the list of differentially expressed in MI 
genes into a diagnostic signature; the obtained robust 
classification model includes ADAP2, KLRC1, MIR21, 
PDGFD and CD14 genes and is enable classifying MI 
patients and healthy controls with a quality of 0.911 
on an independent test data. This confirm the relevan-
ceof our results demonstrating the associations of these 
genes with MI, which were obtained on small sample 
set by our pipeline. This pipeline could be useful in 
high-throughput data analysis for the searching of diag-
nostic signature of other diseases.
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