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Antifibrotic therapy to normalize the tumor 
microenvironment
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Abstract 

Most tumors develop abnormal fibrotic regions consisting of fibroblasts, immune cells, and a dense extracellular 
matrix (ECM) immersed in a viscous interstitial fluid, and an abundant fibrotic tumor microenvironment (TME) is 
associated with poor outcome of treatment. It has been hypothesized that the treatment of cancer may be improved 
by interventions aiming to normalize this TME. The approaches used in attempts to normalize the fibrotic TME can 
be categorized into three strategies of targeted antifibrotic therapy: targeting of components of the ECM, targeting 
of the producers of the ECM components—the activated cancer-associated fibroblasts (CAFs), and targeting of the 
signaling pathways activating CAFs. To target the ECM, enzymes against components of the ECM have been used, 
including collagenase, relaxin, hyaluronidase, and lyxyl oxidase. Targeting of CAFs have been investigated by using 
agents aiming to eliminate or reprogram CAFs. CAFs are activated primarily by transforming growth factor-β (TGF-β), 
hedgehog, or focal adhesion kinase signaling, and several agents have been used to target these signaling pathways, 
including angiotensin II receptor I blockers (e.g., losartan) to inhibit the TGF-β pathway. Taken together, these stud-
ies have revealed that antifibrotic therapy is a two-edged sword: while some studies suggest enhanced response 
to treatment after antifibrotic therapy, others suggest that antifibrotic therapy may lead to increased tumor growth, 
metastasis, and impaired outcome of treatment. There are several possible explanations of these conflicting obser-
vations. Most importantly, tumors contain different subpopulations of CAFs, and while some subpopulations may 
promote tumor growth and metastasis, others may inhibit malignant progression. Furthermore, the outcome of anti-
fibrotic therapy may depend on stage of disease, duration of treatment, treatment-induced activation of alternative 
profibrotic signaling pathways, and treatment-induced recruitment of tumor-supporting immune cells. Nevertheless, 
losartan-induced suppression of TGF-β signaling appears to be a particularly promising strategy. Losartan is a widely 
prescribed antihypertensive drug and highly advantageous therapeutic effects have been observed after losartan 
treatment of pancreatic cancer. However, improved understanding of the mechanisms governing the development 
of fibrosis in tumors is needed before safe antifibrotic treatments can be established.
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Background
A solid tumor is an intricate ecosystem, consisting of 
a range of different cell types including parenchymal 
tumor cells, fibroblasts, endothelial cells, and immune 

cells, vasculature, and a scaffolding extracellular matrix 
(ECM)—all immersed in interstitial fluid. The various 
constituents interact closely with each other, creating a 
tumor microenvironment (TME) which is physiologically 
and structurally different from that in normal tissues. 
Common abnormal characteristics include hypoxia, low 
extracellular pH, nutrient deprivation, high interstitial 
fluid pressure (IFP), and a stiff and compact ECM—con-
ditions known to promote tumor progression and impair 
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the effect of treatment [1–4]. Hence, an increasing num-
ber of anticancer strategies aim to normalize the TME 
in order to potentiate established cancer therapies, like 
chemotherapy and radiation therapy, and achieve better 
tumor control [5–9].

Fibrosis (i.e., excess deposition of ECM components 
producing a fibrous connective tissue) is a critical feature 
of the TME in many solid tumors. Such thickening and 
scarring of connective tissue normally occur as a repara-
tive response to injury or tissue damage, and is essential 
during the course of wound healing. In cancerous tissue, 
however, the process of fibrosis tends to be permanently 
activated, and accordingly, tumors have been described 
as “wounds that do not heal” [10]. Although the under-
lying mechanisms are not yet fully understood, the sig-
nificance of tumor fibrosis and a dense ECM for cancer 
behavior—and thus the management of cancer patients—
is now being increasingly acknowledged [11].

A major implication of the fibrotic TME is the 
increased solid stress experienced by cancer cells and 
other components of the tumor tissue [8, 12, 13]. In 
particular, excessive production of ECM molecules may 
lead to compression of blood vessels and significantly 
diminished perfusion and tumor oxygenation. Also, 
compressed vessels imply decreased supply of therapeu-
tic agents to the tumor. Because certain important ECM 
molecules [e.g., hyaluronan (hyaluronic acid)] bind water, 
the abundance of such compounds has further been 
associated with elevated IFP [14]. Thus, a compact ECM 
does not only hinder the vascular transport of therapeu-
tic molecules; it also affects the transfer of drugs across 
the vessel wall, as high IFP lowers the pressure gradi-
ents required for extravasation of drugs into the inter-
stitial space [15–17]. Moreover, the transport of drugs 
through the interstitium is hampered by the ECM fibers 
themselves, acting as physical barriers to macromolecu-
lar movement [18, 19]. Finally, it is crucial to notice that 
the ECM is a highly dynamic network, whose structure 
and mechanical properties change over time. As such, it 
interferes with numerous molecular signaling pathways 
within and between the tumor cells, and consequently—
other than affecting the tumor supply of blood, oxygen, 
and therapeutic agents—an abnormal ECM leads to 
altered molecular signaling in the TME [11]. Increased 
ECM stiffness has for instance been coupled with 
mechanical activation of signaling pathways that promote 
the survival and metastatic spread of cancer cells [20].

Not surprisingly, high expression of ECM molecules, 
such as collagen and hyaluronan, has been associated 
with poor outcome for patients with several types of can-
cer [21, 22]. As a consequence, it has been hypothesized 
that antifibrotic therapy (i.e., therapy aimed at reducing 
the amount of fibrosis) may be advantageous to cancer 

patients. Potential benefits include decreased solid stress 
and IFP, improved perfusion and tumor oxygenation, 
and a normalized TME resembling the microenviron-
ment of corresponding normal tissues. Accordingly, 
antifibrotic therapy could allow for enhanced delivery 
and effect of anticancer agents. Various antifibrotic treat-
ment strategies against solid tumors are outlined in this 
review, along with pivotal preclinical and clinical find-
ings related to each approach. We also discuss the lessons 
learned from these studies, and provide some concluding 
remarks on the future prospects of this intriguing thera-
peutic concept.

Antifibrotic treatment strategies in cancer
In tumors as in normal tissues, components of the ECM 
are produced mainly by fibroblasts, which are the most 
common connective tissue cells in humans and ani-
mals. The fibroblasts within a tumor are usually termed 
cancer-associated fibroblasts (CAFs). Only CAFs that 
are activated produce ECM compounds, and activation 
and proliferation of CAFs occur in response to soluble 
signaling molecules secreted by several cell types includ-
ing immune cells, blood platelets, and cancer cells. The 
most essential and well characterized signaling pathway 
in this matter is the transforming growth factor-β (TGF-
β) pathway. Other important signaling pathways include 
the hedgehog (Hh) pathway, the connective tissue growth 
factor (CTGF) pathway, and the platelet-derived growth 
factor (PDGF) pathway [23–25].

On the basis of this fibrotic “machinery”, reported strat-
egies against tumor fibrosis can be categorized into three 
main approaches of antifibrotic therapy: direct targeting 
of the ECM, targeting of CAFs, and targeting of upstream 
profibrotic signaling (Fig. 1).

Targeting the ECM
Direct targeting and depletion of ECM molecules, or 
alternatively, targeting of compounds of importance for 
the organization and cross-linking of ECM molecules, 
is one of the approaches being used in attempts to com-
bat tumor fibrosis. Among essential ECM constituents 
are fibrous matrix proteins [e.g., collagen and elastin, 
glycosaminoglycans (e.g., hyaluronan), and various pro-
teoglycans] and different cross-linking molecules and 
enzymes. Collagen is the most abundant protein in the 
ECM, and collagen and hyaluronan have been identified 
as main determinants of the transport of drugs and other 
molecules between the cells in a tumor [26–34]. There-
fore, most antifibrotic strategies aiming to target the 
ECM directly have been directed at either of these two 
components. Different types of the enzyme collagenase, 
as well as the protein relaxin, have been tested for the 
breakdown of collagen fibers [35–39], and hyaluronidase 
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has been used to cleave the hyaluronan polymer [40–42]. 
Several such matrix-depleting agents have improved the 
intratumoral distribution and efficacy of anticancer drugs 
in preclinical settings [43–51]. Nevertheless, this kind 
of treatment has also been associated with unacceptable 
normal tissue toxicity and increased risk of tumor pro-
gression [11, 52, 53].

An ECM-targeted drug of particular interest is the 
PEGylated recombinant human hyaluronidase PEGPH20 
[54–60]. In pancreatic mouse tumors, treatment with 
PEGPH20 resulted in ablation of hyaluronan and low-
ering of IFP [61], although it should be noticed that 
untreated pancreatic tumors were reported to have 
strikingly high IFP values in this investigation [62, 63]. 
Even so, the remodeling of the tumor stroma appeared 
to be permanent and resulted in increased animal sur-
vival when combined with gemcitabine treatment [61]. 
A phase II clinical study in pancreatic cancer patients 
demonstrated that patients treated with PEGPH20 in 
addition to chemotherapy experienced increased pro-
gression-free survival as compared to patients treated 

with chemotherapy alone [64]. Further, the difference 
between the two treatment groups was more pronounced 
for a subset of patients having hyaluronan-rich tumors, 
in which the combined treatment resulted in a four-
months delay in disease progression [64]. A phase III 
clinical study on adding PEGPH20 to nab-paclitaxel and 
gemcitabine was then initiated in patients with hyalu-
ronan-rich pancreatic ductal adenocarcinoma (PDAC) 
[65]. Recently, it was revealed that the combined treat-
ment failed to show an improvement in overall survival, 
duration of response, or progression-free survival ver-
sus gemcitabine and nab-paclitaxel alone, and Halozyme 
Therapeutics notified that the clinical development of 
PEGPH20 will be discontinued.

Studies investigating the structuring of the ECM as 
potential target are receiving increasing attention, and 
the enzyme lysyl oxidase (LOX) is of particular interest 
in this regard. LOX is a major contributor to the stiff-
ness of the tumor stroma, as it up-regulates cross-linking 
of collagen fibers as well as cross-linking of collagen and 
other ECM components [4, 66–69]. Moreover, LOX is 
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Fig. 1  Treatment strategies against tumor fibrosis. Three main approaches of antifibrotic cancer therapy are currently being investigated: (I) 
targeting the extracellular matrix (ECM), (II) targeting cancer-associated fibroblasts (CAFs), and (III) targeting profibrotic signaling pathways. 
Collagen, hyaluronan, and fibronectin are major constituents of the extracellular matrix. Lysyl oxidase (LOX) is a major contributor to the stiffness of 
the tumor stroma
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highly expressed under hypoxic conditions and has been 
identified as a driver of metastasis [70–80]. Inhibition 
of LOX combined with gemcitabine treatment in PDAC 
mouse models resulted in stromal alterations including 
reduced fibrillar collagen, suppression of metastasis, and 
extended disease-free survival of mice with early-stage 
tumors [81]. The small molecule LOX inhibitor PXS‐
5505A (Pharmaxis Ltd), initially aimed at patients with 
myelofibrosis and pancreatic cancer, is currently being 
assessed in a clinical phase I study [82, 83].

Targeting CAFs
Another antifibrotic strategy under investigation aims at 
targeting the producers of the ECM—the CAFs (Fig. 2). 
The CAFs interact closely with cancer cells in solid 
tumors and have been shown to serve multiple and 
diverse roles in cancer progression. Apart from deposit-
ing excess amounts of collagen fibers, hyaluronan, and 
other ECM constituents, CAFs are involved in angio-
genesis, in creating an immunosuppressive TME that 
supports tumor growth, and in promoting metastasis 
[84–87]. One approach to identify and eliminate CAF 
populations is to exploit their expression of molecular 
markers such as α-smooth muscle actin (α-SMA), fibro-
blast-specific protein-1 (FSP-1), and fibroblast activation 
protein-α (FAP-α). This was tested by Özdemir et al. [88], 
who generated genetically modified mouse models of 
PDAC in which they could selectively reduce the num-
ber of α-SMA+ CAFs by pharmacological treatment. 

The aim was to interrogate the functional contribution 
of CAFs to PDAC initiation and development, and when 
eliminating activated CAFs, extensive ECM remodeling, 
a reduction in collagen content, and decreased tumor 
stiffness were observed. Nevertheless, the mice in lack of 
these CAFs also showed more aggressive tumors, immu-
nosuppression, and reduced survival, suggesting a highly 
complex role of CAFs in cancer progression.

On a general basis, antifibrotic treatments that use tar-
geting of CAFs as a strategy have faced significant obsta-
cles. A plethora of molecular markers has been used to 
detect CAFs, but unique markers or specific markers that 
are expressed in all CAFs have not been identified [11]. 
The poor specificity restrains direct depletion of CAFs 
via molecular markers, and targeting CAFs without dam-
aging normal tissue remains a challenge.

Furthermore, there is large heterogeneity among the 
CAFs in a tumor, and the causes and consequences of 
this heterogeneity are poorly understood. Differences 
among CAFs in the expression level and distribution of 
frequently used molecular markers suggest that there are 
different subpopulations of CAFs in tumors [89]. Several 
CAF subpopulations may co-exist in a single tumor, and 
different tumors may not necessarily have the same CAF 
subpopulations, not even tumors of the same histologi-
cal category. Tumors show different subpopulations of 
CAFs primarily because CAFs may originate from differ-
ent progenitor cells, including stellate cells, fibroblasts, 
fibrocytes, endothelial cells, and mesenchymal stem cells 
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Fig. 2  Strategies for targeting cancer-associated fibroblasts (CAFs). CAF populations can be eliminated by targeting molecular markers such 
as α-smooth muscle actin (α-SMA), fibroblast-specific protein-1 (FSP-1), and fibroblast activation protein-α (FAP-α). Alternatively, CAFs can be 
reprogrammed and inactivated by treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A that binds to a receptor in the nucleus of 
CAFs
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and, in addition, CAFs originating from the same cellular 
source may transdifferentiate into distinctly different sub-
types depending on the juxtacrine and paracrine micro-
environment [90–98]. Different subpopulations of CAFs 
may have dissimilar functions in tumors, and certain 
CAF subpopulations may serve a protective rather than 
a tumor-promoting role, as indicated by the findings of 
Özdemir et al. [88]. Consequently, antifibrotic treatments 
that inactivate or modulate CAFs may have unpredictable 
effects on tumor aggressiveness and require thorough 
evaluation before being used clinically.

Yet, along with improved understanding of CAF biol-
ogy and dynamics, the enthusiasm for CAF-targeted 
therapies is currently growing and several promising 
preclinical studies have been reported [99–108]. For 
instance, instead of depleting CAFs, treatment with all-
trans retinoic acid (ATRA; also known as tretinoin)—a 
metabolite of vitamin A—has been shown to reprogram 
activated CAFs and make them more quiescent [109]. 
This is achieved by ATRA binding to a receptor in the 
CAF nucleus, potentially leading to suppression of ECM 

remodeling and inhibition of cancer cell invasion [109]. 
Results are awaited from clinical phase I studies on 
reprogramming CAFs in pancreatic cancer using ATRA 
in combination with chemotherapy [110, 111].

Targeting profibrotic signaling pathways
Other than CAFs and the ECM, upstream signaling path-
ways that ultimately activate CAFs or otherwise promote 
the production of ECM constituents are potential targets 
for antifibrotic therapy (Fig. 3). This antifibrotic approach 
has been the focus of much attention in recent years, and 
several studies have been reported on interfering with the 
TGF-β or Hh signaling pathway in particular [112–118]. 
For instance, inhibition of TGF-β signaling via the angi-
otensin system has been successfully tested [119–123]. 
The peptide angiotensin II promotes fibrosis by binding 
to its receptor (angiotensin II receptor I) and thereby 
increasing the concentration of thrombospondin-1—a 
major activator of TGF-β. Angiotensin II receptor block-
ers (ARBs) may prevent this signaling cascade and cause 
suppression of active TGF-β levels and other profibrotic 
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Fig. 3  Strategies for targeting profibrotic signaling pathways. The two most important profibrotic signaling pathways are the hedgehog (Hh) 
pathway and the transforming growth factor-β (TGF-β) pathway. Binding of the Hh ligand to its receptor Patched (Ptc) enables the transmembrane 
protein Smoothened to activate the Gli transcription factors, ultimately leading to proliferation of cancer-associated fibroblasts (CAFs) and 
deposition of extracellular matrix components. Similarly, activation of the TGF-β pathway, mediated by the Smad proteins, activates CAFs and may 
cause tumor fibrosis. Several inhibitors of the Hh pathway have been developed, the most interesting being the Smoothened inhibitor IPI-926. The 
TGF-β pathway can be inhibited by angiotensin II receptor I blockers (ARBs) such as losartan, by halofuginone (a derivative of febrifugine), and by 
activating vitamin D receptor (VDR) signaling. Furthermore, high focal adhesion kinase (FAK) signaling in CAFs and parenchymal cancer cells may 
advance the formation of a fibrotic tumor microenvironment, and the FAK inhibitor defactinib is an efficient inhibitor of this pathway
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signals. As clinically approved drugs for the indication of 
hypertension, ARBs like losartan are of particular interest 
for this purpose, and the first use of losartan as an antifi-
brotic agent in tumors was described by Diop-Frimpong 
et  al. [119] in 2011. Subsequent preclinical experiments 
with breast and pancreatic cancer models showed losar-
tan to reduce the amount of both collagen and hyaluro-
nan intratumorally, resulting in decompression of tumor 
vessels and significantly improved perfusion [120]. Fur-
thermore, less hypoxia, enhanced delivery of chemother-
apy, and improved overall survival were observed after 
losartan treatment—both for mice with breast tumors 
and mice with pancreatic tumors [120].

The promising preclinical reports on repurposing 
losartan as an anticancer agent, together with supporting 
retrospective clinical data, led to a phase II study being 
initiated for the treatment of locally advanced pancreatic 
cancer. After eight cycles of FOLFIRINOX chemotherapy 
and losartan, followed by chemotherapy and radiation 
therapy, 69% of the patients included in the study were 
eligible for surgical tumor resection [121], as compared to 
a resection rate of 26% found in a meta-analysis of twelve 
previous studies, in which locally advanced pancreatic 
cancer patients received chemotherapy and/or radiother-
apy without losartan [122]. Nevertheless, more individu-
alized chemoradiotherapy as well as the use of proton 
beam radiation in the losartan study may also have con-
tributed to these improved resection rates. Interestingly, 
the use of angiotensin system inhibitors such as losartan 
has further been associated with enhanced activation of 
the immune system, and pancreatic cancer patients are 
now being recruited to a larger multicenter randomized 
phase II study on combining chemoradiotherapy and 
losartan with immunotherapy [123].

Halofuginone—a synthetic derivative of the antimalar-
ial and antiparasitic agent febrifugine—is another potent 
antifibrotic agent blocking TGF-β signaling [124–126]. 
Due to its multifaceted antitumor effects in preclinical 
experiments, a phase I study of halofuginone was per-
formed in patients with solid tumors refractory to stand-
ard therapy, leading to recommended doses for phase II 
studies [127]. Recent experiments in an autochthonous 
mouse model of PDAC demonstrated halofuginone to 
effectively remove biophysical barriers to drug delivery, 
and to increase the infiltration of antitumor immune 
cells, warranting further exploration of halofuginone as 
part of combination treatments against PDAC [22].

Although mostly quiescent in adult tissues, the Hh 
signaling pathway is hyperactivated in many solid 
tumors, and excessive Hh signaling promotes the gen-
eration of a fibrous interstitium and stimulates tumor 
growth [115, 118]. More specifically, binding of the Hh 
ligand to its receptor on the surface of CAFs enables 

the transmembrane protein Smoothened—which is 
otherwise repressed—to activate the Gli family of tran-
scription factors, ultimately leading to CAF prolifera-
tion and deposition of ECM components [128–130]. 
Numerous inhibitors of the Hh pathway have been 
studied and are in varying stages of clinical develop-
ment, following studies like the game-changing work of 
Olive et al. [131] in 2009 on the treatment of pancreatic 
mouse tumors with the Smoothened inhibitor IPI-926. 
Daily administration of IPI-926 for 8‒12  days caused 
depletion of collagen fibers, along with a transient 
increase in the density of blood vessels, both of which 
contributed to increased intratumoral concentration of 
gemcitabine and a transient stabilization of the tumor 
tissue. Furthermore, mice treated with IPI-926 and 
gemcitabine in combination had fewer liver metastases 
and extended survival as compared to control mice or 
mice treated with IPI-926 or gemcitabine alone [131].

In spite of encouraging findings in animal models of 
several cancer types, patient trials on Hh inhibition 
plus chemotherapy have yielded conflicting results 
[115–118]. Whereas robust antitumor activity and 
acceptable safety were reported after a phase I study on 
pancreatic cancer, other studies have failed to improve 
patient outcome, or even demonstrated more rapid dis-
ease progression and decreased survival for the com-
bination regimen as compared to chemotherapy and 
placebo [132, 133]. Preclinical experiments intending to 
explain these contradictory findings revealed that long-
term inhibition of the Hh pathway may result in more 
aggressive disease [134–137]. Accordingly, it was pos-
tulated that certain elements of the tumor stroma may 
act to restrain rather than support tumor growth, and 
moreover, that long-term antifibrotic therapy may fuel 
tumor progression [134].

Numerous profibrotic signaling pathways exist, and 
in addition to the angiotensin system and Hh signaling, 
vitamin D receptor (VDR) signaling and focal adhesion 
kinase (FAK) signaling have received significant attention 
[138, 139]. Activation of VDR by vitamin D or a vitamin 
D analogue interferes with TGF-β signaling and renders 
CAFs less active, and VDR-mediated manipulation of 
the tumor stroma has shown promise in enhancing the 
efficacy of pancreatic cancer therapy [138]. Also, because 
high FAK activity in cancer cells advances the formation 
of a fibrotic and immunosuppressive TME, FAK inhibi-
tion combined with immunotherapy—found to double 
the survival of mice with pancreatic tumors—represents 
an intriguing anticancer strategy [139]. At present, pan-
creatic cancer patients, as well as patients with mesothe-
lioma, non-small-cell lung cancer, and other advanced 
solid tumors, are being treated with the FAK inhibitor 
defactinib in combination with the programmed cell 



Page 7 of 11Hauge and Rofstad ﻿J Transl Med          (2020) 18:207 	

death protein-1 (PD-1) inhibitor pembrolizumab in early 
phase clinical trials [140, 141].

Lessons learned and points to consider
As justified by a great number of preclinical studies, 
therapeutic interventions with the intention to combat 
tumor fibrosis are currently under clinical evaluation. 
Nevertheless, in the wake of stirring reports of potential 
detrimental outcomes of certain antifibrotic approaches, 
questions have been raised about the relative benefit or 
harm of such therapy. As for the lessons learned thus 
far, one of the most important relates to the heterogene-
ity and dynamics of CAFs. Substantial heterogeneity has 
been demonstrated among the CAFs in a solid tumor, 
and various subpopulations may influence tumor devel-
opment and progression differently [142–144]. Thus, 
while some CAF populations promote tumor growth, 
others may prevent malignant progression [145]. In con-
sequence, antifibrotic therapy that somehow affects the 
number or properties of CAFs must be given with cau-
tion. Furthermore, as the role of CAFs may evolve with 
time and disease level, it is plausible that the response of 
a patient to CAF-targeting strategies will depend on the 
stage of the patient’s disease. Tumor stage-dependent 
effects would also be expected for several agents used to 
manipulate the ECM, since many such agents (e.g., LOX 
inhibitors) block only progressive ECM remodeling, and 
do not reverse previous activity. Therefore, advanced 
tumors with a well-established ECM may not respond to 
these medications.

Another critical issue is that of the duration of anti-
fibrotic therapy. Studies have shown that long-term 
administration of antifibrotic agents may be unwise, 
as beneficial short-term effects (e.g., increased drug 
delivery) may be overcome by detrimental long-term 
effects (e.g., accelerated tumor growth) [134]. In fact, 
chronic, systematic depletion of fibrosis has been linked 
to increased metastatic ability and elevated presence of 
tumor-supporting immune cells [88, 134]. Also, when 
targeting profibrotic signaling pathways for a longer time 
period, alternative signaling pathways may be activated 
to restore the fibrous tumor stroma and cause treatment 
resistance [134]. This could explain the transitory effects 
observed after certain antifibrotic therapies, like inhibi-
tion of Hh signaling. In addition, it is important to recog-
nize that the conditions within the tumor stroma, such as 
the expression level of CAF genes, may change during a 
course of treatment [11, 146].

Finally, CAFs and many profibrotic signaling molecules 
(e.g., Hh and TGF-β) exert multiple physiological func-
tions and affect several cell types. Hence, interventions 
targeting these entities could cause bystander effects 
on other stromal compartments as well as adverse side 

effects. Also in this regard, short-term and pulsed admin-
istration of antifibrotic therapy—allowing fine-tuned 
manipulation of the tumor stroma as compared to long-
term therapeutic intervention—is likely to be preferable, 
and to result in manageable toxicity [146].

Conclusions and future perspectives
Preclinical studies and clinical investigations have evi-
denced that great care must be taken when develop-
ing antifibrotic strategies for normalizing the TME and, 
hence, improving the outcome of established cancer 
treatments. There are, nevertheless, strategies hold-
ing better promise than others, of which suppression 
of TGF-β signaling (e.g., induced by losartan) deserves 
special attention. Highly advantageous effects have 
been observed after losartan treatment [121, 123], and 
in addition, this drug is considered safe, it is relatively 
inexpensive, and it is already widely prescribed as an anti-
hypertensive agent [147, 148]. In contrast, routine clinical 
use of treatments targeting the Hh pathway lies further 
up the road, as inhibition of Hh signaling has provided 
conflicting findings both in animal models and patients, 
despite it being crosstalk between the TGF-β and Hh 
pathways in cancerous tissue [118, 149]. Also therapeutic 
strategies aiming to degrade and/or destabilize the ECM 
directly as well as treatments targeting CAFs, such as 
ATRA treatment, have to be investigated further before 
their clinical potential can be assessed.

The increasing number of studies assessing antifibrotic 
cancer therapy have one conclusion in common: the 
microenvironment of solid tumors is extremely complex 
and greatly influences therapeutic resistance. Accord-
ingly, there is an urgent need for enhanced understand-
ing of the physicochemical and molecular mechanisms 
governing the TME. Furthermore, in order to identify 
subgroups of patients that might benefit from specific 
antifibrotic approaches (i.e., personalized antifibrotic 
therapy), improved methods for thorough characteriza-
tion of the heterogeneous tumor stroma are required.

Whereas time will show whether fibrosis-target-
ing strategies will translate into improved outcome of 
patients with advanced solid tumors, recognizing the 
inherent limitations of antifibrotic therapy is crucial. For 
instance, despite successful manipulation of the ECM, 
severe gradients in intratumoral drug concentration and 
nutrient supply may still be present due to features like 
the abnormal and partly dysfunctional tumor vasculature. 
In other words, one may still have tumor regions in which 
the cells are more or less resistant to treatment because 
they are hypoxic, poorly nourished, and slowly prolifer-
ating or because they are not even exposed to the drug 
in question. Consequently, and as a result of the intricate 
interactions between different elements of the tumor 
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stroma, combination therapies may be the future—not 
just antifibrotic therapy and conventional chemora-
diotherapy, but also antifibrotic therapy combined with 
immunotherapy and/or antiangiogenic therapy.
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