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Abstract 

Background:  The formal risk assessment is essential in the management of acute coronary syndrome (ACS). In this 
study, we develop a risk model for the prediction of 3-year mortality for Chinese ACS patients with machine learning 
algorithms.

Methods:  A total of 2174 consecutive patients who underwent angiography with ACS were enrolled. The missing 
data among baseline characteristics were imputed using the MissForest algorithm based on random forest method. 
In model development, a least absolute shrinkage and selection operator (LASSO) derived Cox regression with 
internal tenfold cross-validation was used to identify the predictors for 3-year mortality. The clinical performance was 
assessed with decision curve analysis.

Results:  The average follow-up period was 27.82 ± 13.73 months; during the 3 years of follow up, 193 patients died 
(mortality rate 8.88%). The Kaplan–Meier estimate of 3-year mortality was 0.91 (95% confidence interval (CI): 0.890.92). 
After feature selection, 6 predictors were identified: Age,” “Creatinine,” “Hemoglobin,” “Platelets,” “aspartate transaminase 
(AST)” and “left ventricular ejection fraction (LVEF)”. At tenfold internal validation, our risk model performed well in 
both discrimination (area under curve (AUC) of receiver operating characteristic (ROC) analysis was 0.768) and calibra‑
tion (calibration slope was approximately 0.711). As a comparison, the AUC and calibration slope were 0.701 and 0.203 
in Global Registry of Acute Coronary Events (GRACE) risk score, respectively. Additionally, the highest net benefit of 
our model within the entire range of threshold probability for clinical intervention by decision curve analysis demon‑
strated the superiority of it in daily practice.

Conclusion:  Our study developed a prediction model for 3-year morality in Chinese ACS patients. The methods of 
missing data imputation and model derivation base on machine learning algorithms improved the ability of predic‑
tion. .
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Introduction
As the unstable and progressive stage of coronary heart 
disease (CHD), acute coronary syndrome (ACS) includes 
three serious and life-threating clinical manifestations: 
ST-segment elevation myocardial infarction (STEMI), 
non-STEMI, and unstable angina pectoris [1, 2]. The 
prognosis of ACS patients varies considerably for differ-
ent pathophysiological changes in individuals based on 
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their level of disease. Thus, a formal assessment to iden-
tify high-risk patients is essential in the management of 
ACS [3].

Currently, the Global Registry of Acute Coronary 
Events (GRACE) is the most commonly used risk assess-
ment tool and is recommended by guidelines for pre-
dicting short- and long-term mortality [4]. However, 
the GRACE risk score was developed in North America, 
South America, and Europe but included few partici-
pants in Asia [5]. The clinical performance of this risk 
score has not been assessed in the Chinese population. 
A risk tool derived from Clinical Pathways for Acute4 
Coronary Syndromes (CPACS) investigators for Chinese 
patients with ACS has been described previously [6]. 
However, this CPACS risk score only predicted hospital 
mortality and did not use algorithms to avoid overfitting 
in the model estimation. Therefore, we aim to develop 
a specific risk model for the prediction of long-term 
(3-year) mortality for Chinese ACS patients in a hospital-
based dataset.

Results
Study population and outcomes
From January 2009 to September 2012, a total of 2174 
ACS patients were included in this study. The average 
follow-up period was 27.82 ± 13.73  months; during the 
3  years of follow up, 193 patients died (mortality rate 
8.88%), including 121 cases of cardiac death (cardiac 
mortality was 5.57%) and 55 cases of non-cardiovascular 
death. 31 patients were categorized into unknown death. 
The Kaplan–Meier estimate of 3-year mortality was 
0.91 (95% confidence interval (CI) 0.890.92). The base-
line characteristics of this study population were strati-
fied according to patients who survived until the end of 
the follow-up period and those who did not survive. The 
mean age of the patients was 64.54 ± 10.57 years, and the 
number of male patients was 1713 (78.79%). More than 
half of patients had hypertension (1183, 54.64%) and one 
in five had diabetes (470, 21.72%) or previous myocar-
dial infarction (379, 23.9%). Meanwhile, the higher per-
centage of usage of evidence-based medications were 
found in survival group, including aspirin, clopidogrel, 

beta-blockers, angiotensin-converting-enzyme inhibitors 
or angiotensin II receptor blockers and statins. The dif-
ference between two groups is summarized in Table 1.

The Killip classifications were excluded as predictors in 
the model because of a large amount of missing data and 
the difficulty of conducting accurate measurements. The 
details of missing data among baseline characteristics are 
listed in Additional file 1.

Model derivation
First, we conducted Cox regression with the least abso-
lute shrinkage and selection operator (LASSO) penali-
zation to perform predictor selection, which can help 
reduce the dimensions of a prediction model. To deter-
mine the penalty factor (lambda), a tenfold cross-val-
idated error plot of the lasso model was constructed as 
shown in Fig. 1. The optimal lambda was determined by 
choosing the most regularized and parsimonious model 
within 1 standard error from the minimum.

Because of the imbalance in our data, even the most 
parsimonious model with 0 characters was less than 
7.7%, and that model was also within 1 standard error. 
To balance the power of the lasso penalty and the accu-
racy of our model, after some experiments with different 
lambdas, we manually choose a proper lambda that is still 
within 1 standard error and provided good results. The 
lambda is shown in Fig. 1. The LASSO path of all coef-
ficients of predictors at varying log-transformed lambda 
values is shown in Fig. 2. We added the thrombolysis in 
myocardial infarction (TIMI) classification in predictor 
selection just as reference.

The final LASSO model with the optimal lambda 
included the following 6 non-zero variables: “Age,” 
“Serum creatinine,” “Hemoglobin,” “Platelets,” “aspartate 
transaminase (AST),” and “left ventricular ejection frac-
tion (LVEF)”. After we determined the most important 
predictors, the prediction model was developed using 
normal Cox regression without penalization. Under the 
proportional hazard assumption, the baseline hazard 
function can be estimated by Breslow’s Estimator. The 
formula for predicting the risk of 3-year mortality is as 
follows:

H(t = 36|xα ) = exp(Age ∗ 0.7504017+ Serum creatinine ∗ 0.00166143

+ Haemoglobin ∗ −0.01728725+ Platelets ∗ 0.00154873

+ AST ∗ 0.0013414 + LVEF ∗ −0.03612834) ∗H0(36)
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where H0 (36) = 0.02727. We created an Excel file 
of this formula to favor workability in daily practice. 
Additionally, the use of this predictive model was dem-
onstrated in 5 patients from this study population (Addi-
tional file 2).

Model validation
The discrimination by tenfold cross-validation and 
receiver operating characteristic curve (ROC) analy-
sis result of our risk model for the prediction of 3-year 

mortality was good (area under curve (AUC) = 0.7681) 
(Fig.  3). However, the GRACE score had relatively poor 
power in the discriminative ability (AUC = 0.709). The 
Harrell’s C-statistic was 0.7601 for this risk model. 
We found good agreement between the predicted and 
observed 3-year risk of mortality. The calibration slope 
was approximately 0.711, as calculated by linear least-
squares regression of the given points in the calibration 
plot (Fig. 4). The calibration slope for the GRACE score 

Table 1  Clinical characteristics of the study population

Data are expressed as mean ± SD or counts and percentages, as appropriate

HR heart rate, SBP systolic blood pressures, DBP diastolic blood pressure, LVEF left ventricular ejection fraction, GRACE Global Registry of Acute Coronary Events, TIMI 
thrombolysis in myocardial infarction, WBC white blood cell, RBC red blood cell, AST aspartate transaminase, ACEI angiotensin-converting-enzyme inhibitors, ARB 
angiotensin II receptor blockers

Characteristics Total Patients survived Patients died P Value
No. of patients N = 2174 N = 1981 N = 193

Age 64.54 ± 10.57 63.96 ± 10.54 70.54 ± 8.83 <0.001

Gender, man, n (%) 1713 (78.79%) 1572 (79.35) 141 (73.06) 0.041

Medical history

 Pre-hypertension, n (%) 1183 (54.64) 1072 (54.31) 111 (58.12) 0.313

 Pre-diabetes mellitus, n (%) 470 (21.72) 412 (20.88) 58 (30.37) 0.002

 Pre-heart failure, n (%) 83 (5.3) 60 (4.3) 23 (12.2) <0.001

 Pre-myocardial infarction, n (%) 379 (23.9) 329 (23.6) 50 (26.3) 0.475

At admission

 HR, beats/min 74.99 ± 26.09 74.51 ± 26.69 79.96 ± 18.05 <0.001

 SBP, mm Hg 130.51 ± 22.1 130.68 ± 21.52 128.79 ± 27.43 0.263

 DBP, mm Hg 76.29 ± 12.8 76.52 ± 12.64 73.88 ± 14.11 <0.001

 LVEF,  % 50.52 ± 24.62 50.55 ± 24.95 50.22 ± 19.41 0.896

Risk assessment

 GRACE risk score 92.95 ± 26.1 91.35 ± 25.64 109.44 ± 25.2 <0.001

 TIMI classification 4.58 ± 2.03 4.39 ± 1.94 5.94 ± 2.20 <0.001

Laboratory values

 Serum creatinine, μmol/L 94.44 ± 51.3 92.69 ± 47.87 112.37 ± 76 <0.001

 Blood glucose, mmol/L 7.17 ± 3.3 7.03 ± 3.11 8.59 ± 4.6 <0.001

 Total cholesterol, mmol/L 4.13 ± 1.11 4.13 ± 1.1 4.09 ± 1.2 0.602

 WBC, n × 109/L 7.92 ± 5.66 7.79 ± 5.75 9.23 ± 4.43 <0.001

 RBC, n × 1012/L 4.45 ± 1.11 4.47 ± 1.15 4.16 ± 0.65 <0.001

 Hemoglobin, g/L 134.22 ± 35.39 135.17 ± 36.42 124.42 ± 19.89 <0.001

 Platelets, n × 109/L 162.28 ± 61.05 161.79 ± 60.75 167.33 ± 63.95 0.229

 AST, U/L 56.91 ± 102.95 52.55 ± 81.82 102.8 ± 222.7 <0.001

 Serum K+, mmol/L 3.96 ± 0.47 3.96 ± 0.45 4 ± 0.62 0.261

 Serum Ca2+, mmol/L 2.32 ± 4.4 2.34 ± 4.61 2.16 ± 0.18 0.619

 Fibrinogen, g/L 3.83 ± 11.22 3.8 ± 11.46 4.18 ± 8.23 0.679

Discharge medications

 Aspirin, n (%) 2005 (94.18%) 1865 (96.68%) 140 (70.0%) <0.001

 Clopidogrel, n (%) 2002 (94.03%) 1854 (96.11%) 148 (74.0%) <0.001

 ACEI/ARBs, n (%) 1228 (57.73%) 1140 (59.16%) 88 (44.0%) <0.001

 Beta-blockers, n (%) 1434 (67.45%) 1340 (69.57%) 94 (47.0%) <0.001

 Statins, n (%) 1949 (91.55%) 1807 (93.68%) 142 (71.0%) <0.001
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Fig. 1  10-fold cross-validated error plot: The blue dot line equals lambda with the minimum error, whereas the red dot line is the lambda we 
manually choose

Fig. 2  LASSO path of all coefficients of predictors at varying log-transformed lambda values: The red dot line is the lambda we manually choose. 
LASSO least absolute shrinkage and selection operator, BMI body mass index, HR heart rate, SBP systolic blood pressures, DBP diastolic blood 
pressure, LVEF left ventricular ejection fraction, WBC white blood cell, RBC red blood cell, AST aspartate transaminase, ALT alanine transaminase, BUN 
blood urea nitrogen, T-Bil total bilirubin, D-Bil direct bilirubin, HDL-C high-density lipoprotein cholesterol, LDL-C low density lipoprotein cholesterol, 
TG triglyceride, PLT platelets, Fib Fibrinogen, TIMI thrombolysis in myocardial infarction
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was 0.203. Thus, our model exhibited better calibration 
than the GRACE score.

Clinical performance
We performed a decision curve analysis to compare the 
clinical utility of our risk model and the GRACE score. 
Because all of the treatments for ACS, including percu-
taneous coronary intervention (PCI) and thrombolysis, 
involve some harm for patients, the optimal decision 
threshold was > 0%. We observed the highest net benefit 
of our model within the entire range of threshold prob-
ability for clinical intervention (Fig. 5). This indicates the 
superiority of our risk model in clinical performance, 
regardless of the risk threshold for PCI or thrombolysis.

Discussion
In this study, we developed a risk model to predict the 
long-term mortality in Chinese ACS patients and per-
formed internal validation of this model. Compared 
to the GRACE risk score, our risk model demonstrated 
better discriminative ability, improved calibration and 
a greater net benefit for clinical performance. Fur-
thermore, we used machine learning methods such as 
random forest imputation and a penalty algorithm to 
maintain statistical power and avoid overfitting during 
model derivation. To the best of our knowledge, this is 

Fig. 3  Tenfold cross-validation and ROC analysis result of our model for the prediction of 3-year mortality. ROC receiver operating characteristic 
curve

Fig. 4  Calibration plot: Calibration plot showing the agreement 
between predicted (x-axis) and observed (y-axis) 3-year risk of the 
mortality. Squares represent binned Kaplan–Meier estimates with 
95% confidence filled with the blue area. The dotted line represents 
perfect calibration. The bar histogram on the x-axis reflects the 
percentage of patients with a predicted risk corresponding to the 
x-axis
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the first prediction model for long-term mortality in Chi-
nese ACS patients.

The predictors selected by this risk model include 
“Age,” “Creatinine,” “Hemoglobin,” “Platelets,” “AST,” and 
“LVEF”. These risk factors could be supported by existing 
theories and research. Usually, older patients are more 
fragile and have more comorbidities. Many studies have 
considered age to be an independent predictor of ACS, 
and in studies focusing on other risk factors, age usu-
ally needs to be adjusted [7]. Creatinine or eGFR levels 
are thought to be associated with mid- and long-term 
mortality in ACS patients, and ACS patients with renal 
insufficiency are more likely to experience bleeding and 
other complications when given invasive treatment [8, 9]. 
In previous studies, baseline hemoglobin levels or ane-
mia status were predictors of 30-day and 1-year mortality 
in patients with ACS or STEMI [10], while hemoglobin 
levels of 1416  g/dl resulted in the lowest risk of death 
[11]. Studies have reported that AST is associated with 
microvascular obstruction in ACS patients, and its pre-
dictive value is even better than that of NT-proBNP [12]. 
A meta-analysis of 8 studies indicated that high baseline 
platelet levels would increase short-term and long-term 
mortality in ACS patients [13], which may be related to 
the pathological basis of coronary heart disease involving 
the platelet-granulocytic system and acute pathogenesis 
of ACS involving intravascular inflammatory mecha-
nisms [14]. Finally, the LVEF is considered as a marker of 
cardiac function in heart disease, and the guidelines also 
recommend ultrasound or angiography for NST-ACS 

patients to evaluate left ventricular function [3]. Low 
baseline LVEF is a predictor of mortality and MACE in 
ACS patients [15].

The GRACE risk score was developed based on 123 
hospitals in 14 countries but only involved a small num-
ber of Chinese patients [4]. Most of the related studies 
on risk assessment of Chinese ACS patients investigated 
the domestic optimization or application of GRACE 
risk score. Previous CPACS studies have only reported 
patients with in-hospital mortality [6]. Therefore, there 
is no long-term risk prediction tool for the Chinese ACS 
population. This study is the first attempt for this pur-
pose, and several new machine learning algorithms were 
used to improve the accuracy of the model.

This prediction model was established according to 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis (TRIPOD) 
statement [16], and we also referred to the opinion of 
ABCD proposed by Ewout W for validation [17]. Addi-
tionally, we did not use the conventional multiple impu-
tations for missing value processing but applied a novel 
random forest algorithm. The random forest algorithm 
has been demonstrated as an efficient method to handle 
missing data. It can manage different types of missing 
data and can scale to high dimensions [18]. Several differ-
ent imputation algorithms based on random forests have 
been developed, and among them, MissForest was found 
to have a noticeable improvement on performance com-
pared to other methods such as the k-nearest neighbors 
and parametric MICE methods [19]. In this dataset, ran-
dom forest imputation had a higher statistical power and 
better accuracy for prediction than complete-case analy-
ses (AUC of the ROC for tenfold cross-validation, 0.744).

In the model derivation, we used the LASSO-Cox 
method to estimate the relationship between predictors 
and time-event. LASSO regularization is a method to 
manage overfitting and perform variable selection and 
has been widely used many types of machine learning 
algorithms [20]. It adds the L1 norm of coefficients as the 
penalty term to the loss function and hence adds con-
straints to the coefficients. In contrast to ridge regulari-
zation, LASSO regularization performs different degrees 
of shrinkage on variables and pushes some coefficients 
to zero. When adding the LASSO method to the Cox 
model, the estimation variance is reduced, and a subset 
of predictors is selected while providing an interpretable 
Cox model [21]. To ensure the accuracy of the model, we 
did not use a nomogram to simplify the parameters in the 
model presentation but to estimate the patient’s death 
risk through the cumulative hazard using the Cox model. 
This model showed good consistency (AUC of the ROC 
for tenfold cross-validation and C-statistic) for patients 
who died within 3 years and good agreement (slope and 

Fig. 5  Decision curve analysis: Decision curve analysis comparing 
the clinical performance of our risk model (the green line) and the 
GRACE risk score (the yellow line). For risk of 3-year mortality, our risk 
model showed the highest net benefit for all potential thresholds 
(ranging from 0% to 20%). This demonstrated that our model would 
result in the highest weighted balance of clinical intervention for 
ACS patients, regardless of the risk threshold. ACS: acute coronary 
syndrome, GRACE: Global Registry of Acute Coronary Events
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plot) for the actual and predicted 3-year mortality risk. 
The clinical usefulness of this model mainly lies in its 
ability to quantify the long-term mortality of patients by 
combining baseline data before angiography at an indi-
vidual level. DCA could be used to evaluate whether our 
model is more advantageous for clinical applications than 
the GRACE model, which is currently widely used in clin-
ical research [22]. This method could help physician to 
assess the value of information provided by a risk assess-
ment tool or test by weighted the potential risk and ben-
efit [23]. For all risk thresholds > 0%, our model showed 
a higher net benefit than the GRACE model. Therefore, 
we believe that our model can better help patients under-
stand the disease and help doctors make clinical deci-
sions. Particularly for patients with a high risk of ACS, 
doctors can use this model to assess whether patients can 
benefit from treatment.

There were some limitations of our study. First, the pre-
sent study lacked external validation. In addition, due to 
the number of samples, there were relatively few death 
events in this dataset. However, careful statistical meth-
ods were used for the machine learning and penalty algo-
rithms to ensure the accuracy of the model and prevent 
overfitting.

Conclusion
Our study developed a prediction model based on 
machine learning for 3-year morality in Chinese ACS 
patients. The external validation and further studies are 
needed to confirm the usefulness of it.

Methods
Study population
The data source for this investigation was the West China 
Hospital CHD database. This single center database pro-
spectively includes all CHD or high-risk patients under-
going angiography in West China Hospital affiliated to 
Sichuan University. For this analysis, we enrolled con-
secutive CHD patients from January 2009 to September 
2012 who were included in the database. ACS patients 
were eligible for inclusion if they had (1) angiographic 
evidence of ≥ 50% stenosis in ≥ 1 coronary vessel; (2) 
ischemic chest discomfort that increased or occurred 
at rest; and/or (3) electrocardiography or cardiac bio-
marker criteria consistent with ACS. The exclusion crite-
ria were malignancies, pregnancy, end stage renal disease 
and severe liver or hematological diseases. These inclu-
sion and exclusion criteria were met by 2406 continuous 
CHD patients enrolled from the database. After exclud-
ing patients with loss of follow-up (n = 192) and much 
missing data (n = 40), 2174 patients were included in the 
data analysis. The study protocol was approved by the 
local institutional review boards in accordance with the 

Declaration of Helsinki. All subjects provided written 
informed consent before enrolment.

Baseline characteristics
Demographic data, medical history, cardiovascular risk 
factors, vital signs at admission, medication at discharge, 
and the final diagnosis were obtained from the patients’ 
electronic medical records and reviewed by a trained 
study coordinator. Blood samples were collected at 
admission and before angiography, and plasma biomark-
ers including Fib, liver and kidney function, blood glu-
cose, and serum lipids were analyzed in the Department 
of Laboratory Medicine, West China Hospital, accredited 
by the College of American Pathologists. The Elevated 
myocardia enzyme is defined as the cardiac troponin T 
or Creatine kinase-MB raised beyond the upper limit of 
laboratory reference values. Hypertension was defined 
as systolic blood pressure (SBP) ≥ 140  mm Hg, dias-
tolic blood pressure (DBP) ≥ 90 mm Hg and/or patients 
receiving antihypertensive medications. Diabetes mel-
litus was diagnosed in patients who had previously 
undergone dietary treatment for diabetes, had received 
additional oral antidiabetic or insulin medications or had 
a current fasting blood glucose level of ≥ 7.0 mmol/L or a 
random blood glucose level ≥ 11.1 mmol/L. The GRACE 
risk prediction tool used for analysis of mortality has 
been described previously [4]. The calculation of the 
GRACE risk score was performed using an online pro-
gram (http://www.outco​mes-umass​med.org/grace​).

Follow‑up and study outcome
The follow-up period ended in January 2013. Follow-
up information was collected through contact with the 
patients’ physicians, patients or their family. All data 
were corroborated with the hospital records. The pri-
mary endpoint of this study was all-cause mortality, and 
the secondary endpoint was cardiovascular death, as 
documented in the database. Death was considered to 
be cardiac death when it was caused by acute myocar-
dial infarction (MI), significant arrhythmias, or refractory 
heart failure. Sudden unexpected death occurring with-
out another explanation was considered cardiovascular 
death.

Statistical analyses
Baseline demographics and clinical characteristics were 
compared between non-surviving patients and survivors. 
Continuous variables are expressed as the mean ± stand-
ard deviation (SD), and categorical variables are reported 
as counts and percentages. T-tests and Chi squared tests 
were used to evaluate differences between groups for 
continuous and categorical variables, respectively. The 

http://www.outcomes-umassmed.org/grace
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Kaplan–Meier method was used to calculate the rate of 
cumulative events during the follow-up period.

Missing data
To avoid loss of statistical power, all missing data among 
baseline characteristics were assumed to be missing 
at random and imputed using a random Forest-based 
imputation method [18, 24]. Specifically, the “MissFor-
est” method was used. MissForest handles missing data 
by iteratively using Random Forests. It starts by imputing 
the missing values of the candidate column, which is the 
column with the least missing values. Then, the imputer 
fills other missing values of the remaining columns with a 
mean imputation and uses them as predictors to perform 
a random Forest model with the candidate column as 
output. The missing values of the candidate column are 
imputed according to the prediction made from the fit-
ted random Forest. This process starts over again for the 
remaining columns and repeats over multiple times until 
a certain stopping criterion is met.

Model derivation and validation
The development and validation of this risk model fol-
lowed the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) statement [16]. The independent predictors 
of 3-year mortality were identified among baseline char-
acteristics using a Cox proportional-hazards regression 
model. The proportional hazard assumption was verified 
using the Schoenfeld residuals method.

When performing model estimation, the LASSO 
method was applied to avoid the overfitting, and the 
penalty parameter was selected by cross-validation [20, 
21]. According to design of our study, only the clinical 
characteristic before intervention were put into LASSO 
path and feature selection. The LASSO method is a 
shrinkage regression technique using L1 regularization 
and designed for high-dimensional data. Furthermore, 
this algorithm shrinks the coefficients of noninfluen-
tial predictors to zero and thus excludes them from the 
final model. This technique has been widely used in both 
machine learning and clinical practice. The estimated risk 
of mortality of a given patient was calculated from the 
cumulative hazard function of the Cox model as follows:

In this equation, H0 (t) is the baseline hazard function 
of time t, and xTα β is the linear product of the predictors 
and associated coefficients for a patient.

The model was validated with tenfold cross-validation 
[25]. In the assessment of the discrimination ability of 
the prediction model, Harrell’s C-statistic was used to 

H (t|xα ) = exp (xTα β)H0 (t).

estimate the degree of discrimination, and ROC analy-
sis was conducted for visual inspection. Furthermore, 
the calibration was investigated using a calibration plot 
by plotting the predicted and observed probabilities of 
events across increasing levels of predicted risk.

Clinical performance
To assess the utility of our model in clinical practice, we 
compared this risk model to the GRACE score. First, we 
sought to examine the difference in the AUC of ROC 
between these two risk-assessment tools. Second, we 
performed decision-curve analysis to quantify the clini-
cal usefulness of our prediction model (which was also 
compared with that of the GRACE score) [26]. This anal-
ysis was used to assess the net true-positive classification 
rate using a model over a range of thresholds. The values 
(from 0 to 1) represent the benefit from clinical interven-
tion, and higher values indicate more significant benefit.

Data analyses were performed using Python (version 
3.6) with the scientific libraries “scikit-learn”, “scikit-sur-
vival”, “lifelines” and Stata Statistical Software (Release 
15. College Station, TX: StataCorp LLC).
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