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Abstract 

Background: As the most common form of lymphoma, diffuse large B-cell lymphoma (DLBCL) is a clinical highly 
heterogeneous disease with variability in therapeutic outcomes and biological features. It is a challenge to identify 
of clinically meaningful tools for outcome prediction. In this study, we developed a prognosis model fused clinical 
characteristics with drug resistance pharmacogenomic signature to identify DLBCL prognostic subgroups for CHOP-
based treatment.

Methods: The expression microarray data and clinical characteristics of 791 DLBCL patients from two Gene Expres-
sion Omnibus (GEO) databases were used to establish and validate this model. By using univariate Cox regression, 
eight clinical or genetic signatures were analyzed. The elastic net-regulated Cox regression analysis was used to select 
the best prognosis related factors into the predictive model. To estimate the prognostic capability of the model, 
Kaplan–Meier curve and the area under receiver operating characteristic (ROC) curve (AUC) were performed.

Results: A predictive model comprising 4 clinical factors and 2 pharmacogenomic gene signatures was established 
after 1000 times cross validation in the training dataset. The AUC of the comprehensive risk model was 0.78, whereas 
AUC value was lower for the clinical only model (0.68) or the gene only model (0.67). Compared with low-risk patients, 
the overall survival (OS) of DLBCL patients with high-risk scores was significantly decreased (HR = 4.55, 95% CI 3.14–
6.59, log-rank p value = 1.06 × 10−15). The signature also enables to predict prognosis within different molecular sub-
types of DLBCL. The reliability of the integrated model was confirmed by independent validation dataset (HR = 3.47, 
95% CI 2.42–4.97, log rank p value = 1.53 × 10−11).

Conclusions: This integrated model has a better predictive capability to ascertain the prognosis of DLBCL patients 
prior to CHOP-like treatment, which may improve the clinical management of DLBCL patients and provide theoretical 
basis for individualized treatment.
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Background
Diffuse large B-cell lymphoma (DLBCL), as the most 
frequent adult non-Hodgkin lymphoma, representing 
approximately 30–40% of patients with lymphoid neo-
plasms in different geographic regions, with an annual 
incidence rate of over 100,000 cases worldwide [1, 2]. As 
an aggressive malignancy, DLBCL showing some hetero-
geneous disorders with variable clinical characteristics, 
morphology, gene profile, and response to therapy [3, 4]. 
These changeable characters make it difficult to prog-
nosis and decide therapeutic strategies for patients with 
DLBCL. Nowadays, the initial standard therapy with 
rituximab in combination with CHOP (R-CHOP) chem-
otherapy is consists of rituximab, cyclophosphamide, 
doxorubicin, vincristine and prednisone, and approxi-
mately 75–80% patients get completely remission [5, 6]. 
However, a proportion of patients still intractable to this 
first-line therapy. Therefore, it is increasingly essential to 
identify early therapeutic prognosis and identify high-
risk patients who are unlikely to respond sensitively or 
benefit from therapeutic medicines.

The resistance of chemotherapy is changing among 
patients. It often occurs at the beginning of drug treat-
ment or after an initial response. Numerous clinical, 
pathological and molecular markers have been developed 
to characterize the disease. Different kinds of resistance 
have been defined and associated with adverse clinical 
prognosis. Patients response to cancer medicines is sig-
nificantly related with the genetic features of cancer cells 
lines [7]. Due to the heterogeneous response of patients 
to therapies and the frequent development of drug resist-
ance, it is vital to recognize the molecular biomarkers to 
manage tolerable treatments for patients [8–10]. Since 
the development of microarrays, resistance gene signa-
tures (REGSs) have been widely researched for predic-
tion of cancer chemoresistance. There are some useful 
websites which contain plenty of information about drug 
resistance in cancer cell lines [11–13]. Genomics of Drug 
Sensitivity in Cancer (GDSC), one of the public databases 
provides drug sensitivity information in cancer cell lines 
and link with genomic datasets to identify new biomark-
ers for therapy. Recently, many molecular studies involv-
ing gene expression profiling in cancer cell lines [14–16] 
have shown that variant resistance possibility of therapies 
could influence patients’ prognosis. Researches on drug 
resistance based on cancer cell lines have typically been 
generated through dose response experiments. Based on 
various analysis methods, more useful REGSs have been 
developed with strong prediction for clinical outcomes. 
Boegsted et al. [15], Steffen et al. [14] and Liedtke et al. 
[16] have described predictive REGSs based on the gene 
expression of cells lines for multiple myeloma, DLBCL 
and breast cancer, respectively.

On the purpose of predicting response to cyclophos-
phamide, doxorubicin and vincristine, Steffen et al. [14] 
have formulated three drug-specific resistance gene 
signatures from DLBCL patients treated with CHOP-
like therapy, which could be potentially used to guide 
effective therapy for the individual patient from the 
beginning. These discovery and application of prognos-
tic molecular signatures help identify potentially high-
risk patients with DLBCL. Currently, in addition to this 
molecular methods, bio-clinical approach is also used 
to formulate treatment modalities for DLBCL [17, 18]. 
There are many clinicopathological features associated 
with the outcomes of DLBCL patients [19–21], such as 
the Eastern Cooperative Oncology Group (ECOG) per-
formance status, age, Ann Arbor stage and the nodal 
and extra nodal sites number were used commonly as 
clinical parameters in large number of studies. Inter-
national Prognostic Index (IPI) is a robust prognostic 
tool, based on clinical and biochemical pre-treatment 
parameters, usually used to predict the outcomes of 
patients with DLBCL [22]. However, it seems that 
REGSs or clinical factors alone are insufficient to pre-
dict patients’ prognosis. And to data, there is no one 
has ever considered to combine drug resistance signa-
tures with clinical information to predicting prognosis 
of DLBCL. Thus, in order to establish a more sensitive 
models for forecasting patients’ outcomes prior to ther-
apy, our model comprehensively considered both drug 
sensitive information and clinical factors which have 
closely relation to the prognosis.

In our study, to build an integrated model for prog-
nosis prediction for DLBCLs, we initially calculated 
cyclophosphamide, doxorubicin and vincristine drug 
resistance probabilities for each DLBCL patients treated 
with CHOP-like (including cyclophosphamide, doxo-
rubicin, vincristine) chemotherapy. Then we analyzed 
clinical data and three drug resistance probabilities of 
DLBCL patients treated with CHOP-like therapy from 
GEO to screen factors that predictive for survival time, 
such as OS or progression-free survival (PFS). By using 
Cox regression analysis, we found four clinical variables 
and the resistance probabilities to doxorubicin and vin-
cristine were associated with OS of DLBCL patients, and 
developed an integrated gene-and-clinical model for OS 
and another integrated gene-and-clinical model for PFS 
including three clinical variables and the resistance prob-
abilities to doxorubicin from the training dataset, respec-
tively. Due to the PFS of patients in the validating dataset 
wasn’t recorded, we only confirmed the prognostic pre-
diction ability of model for OS in validation dataset. We 
also compared the prognosis power of this integration 
model with a pharmacogenomic signature-alone model 
and a clinical-alone model. Our results suggested that a 
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pharmacogenomic gene-and-clinical signature can more 
exactly indicates the prognosis of patients with DLBCL 
before chemotherapy.

Methods
Patients’ samples
Two datasets that containing corresponding clinical 
information and genome-wide gene expression microar-
ray data by using pretreatment lymphoma tissues from 
DLBLC were download from the GEO databases (http://
www.ncbi.nlm.nih.gov/geo/, Additional file  1: Table  S1). 
All patients receiving CHOP or CHOP based (R-CHOP) 
treatment (cyclophosphamide, doxorubicin, vincristine 
and prednisone plus rituximab). The gene expression 
profiles of patients were conducted using the Affyme-
trix Human Genome U133 Plus 2.0 array from datasets 
utilized in this study. Our study included overall 791 
patients with DLBCL, consisting of 449 patients from 
Visco’s study (GSE31312) [23] and 342 patients from 
Lenz’s study (GSE10846) [24], who have complete clini-
cal information. Dataset GSE31312 was used for train 
prognosis models, and GSE10846 was used to validate 
the prognosis model generated from the training dataset. 
The clinical endpoint was death, or the date of last assess-
ment without any such event (censored observation), and 
the secondary endpoint was disease progression. The 
raw files in CEL format were downloaded from GEO and 
preprocessed with the RMA algorithm using the ‘affy’ R 
package for the expression data. The probe-level expres-
sion values were converted into gene-based expressions 
via the collapse row function [25].

Clinical and Pharmacogenomic factors
Univariate cox regression analysis was separately per-
formed to select the demographic and clinical features 
and drug resistance signatures associated with the OS 
or PFS of DLBCL patients from following eight factors: 
gender, age at diagnosis, stage, extra nodal sites number, 
ECOG performance score and resistance probabilities of 
cyclophosphamide, doxorubicin, and vincristine. REGSs 
for three specific drugs (cyclophosphamide, doxorubicin, 
and vincristine) were applied to calculated the possibil-
ity of drug-specific resistance for individual patient [14]. 
Next, by using elastic net-regulated Cox regression, clini-
cal related factors or pharmacogenomic factors resulting 
in a p-value less than 0.05 were respectively selected into 
the clinical alone model or gene alone model in the train-
ing dataset with 1000 times cross validations using the 
glmnet R package.

Integrated clinical‑and‑gene model for OS
Furthermore, we built an integrated model for OS of 
DLBCL patients with six factors, comprising age at 

diagnosis, stage, extra nodal sites number, the ECOG 
performance score, drug resistance probability of doxo-
rubicin and drug resistance probability of vincristine. The 
prediction score was calculated according the following 
formula:

where n is six,  factori and  Coei stands for the value of 
 factori and the estimated regression coefficient of  factori 
in the elastic net-regulated Cox regression model after 
1000 times cross validation, respectively. We used multi-
variate Cox regression analysis to examine whether drug 
specific resistance signatures were independent of clini-
cal factors.

Integrated clinical‑and‑gene model for PFS
Meanwhile, we built an integrated model for PFS of 
DLBCL patients with 4 factors, comprising stage, extra 
nodal sites number, the ECOG performance score, drug 
resistance probability of doxorubicin. The prediction 
score was calculated according the following formula:

where n is four,  factori and  Coei stands for the value of 
 factori and the estimated regression coefficient of  factori 
in the elastic net-regulated Cox regression model after 
1000 times cross validation, respectively. We used multi-
variate Cox regression analysis to examine whether drug 
specific resistance signatures were independent of clini-
cal factors.

Signature performance evaluation
According to the median cutoff of the signature, we clas-
sified DLBLC patients into two distinct risk groups. Then 
DLBCL patients’ OS or PFS were compared between two 
groups via Kaplan–Meier curves and p values (log-rank 
test). ROC analysis was used to estimate the prognos-
tic utility of this integrated signatures according to their 
ability and efficiency to predict the risk of death or dis-
ease progress, which was performed with survivalROC 
R packages. The ROC curve draws the true-positive vs. 
false-positive predictions. The higher AUC value indi-
cates better prediction efficiency (AUC = 0.5 means 
random prediction). The predictive capability of the inte-
grated model was compared with the pharmacogenomic 
gene model and the clinical model. Meanwhile, to esti-
mate the prediction and survival classification value 
of integrated model, the overall concordance statistic 
(C-index), integrated discrimination improvement (IDI), 

Prognosis score (OS) =

n
∑

i=1

(

factori ∗ Coei
)

Prognosis score (PFS) =

n
∑

i=1

(

factori ∗ Coei
)

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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net reclassification improvement (NRI) and restricted 
mean survival (RMS) ratio were calculated in training 
and validating dataset. Furthermore, we examined the 
predictive power of prognostic model in distinct DLBCL 
subtypes.

Statistical analysis
Statistical analysis in this study were all performed using 
the R software version 3.4.1 (https ://www.r-proje ct.org/) 
with related packages or our custom compiled func-
tions. All reported p-values were two sided. The survival 
R package was utilized for survival analysis. We calcu-
lated the hazard ratio (HR) and 95% confidence interval 
(CI) with a Cox regression model, and survival curves 
were drawn from Kaplan–Meier estimates. Differences in 
survival between groups were compared using the two-
sided log-rank test. C-index, IDI and NRI were calculated 
in each datasets by R package survC1. The RMS analysis 
was performed using R package survRM2 [26].

Results
Demographic and clinical characteristics of datasets 
utilized in our study
DLBCL datasets with whole genome mRNA expression 
information and clinical data were obtained from the 
GEO database with accession number GSE31312 and 
GSE10846. After removal of patients without clinical and 
survival data, 791 DLBCL patients were analyzed in our 
study (Table  1), including 449 patients from GSE31312 
and 342 patients from GSE10846. Gene expression of 
DLBCL patients were profiled with Affymetrix HG U133 
plus 2.0 gene chips. Patient characteristics, including age 
at diagnosis, gender, extra nodal sites number, tumor 
stage, ECOG performance score, molecular subtypes and 
overall survival, are listed in Table 1. Five clinical factors 
were analyzed by univariate survival analysis, including 
gender, age at diagnosis, stage, the number of extra nodal 
sites, the ECOG performance score. We determined all of 
the above tested clinical variable except gender to be cor-
related with OS in DLBCL patients (p < 0.05, Additional 
file  2: Table  S2). And stage, the number of extra nodal 
sites, the ECOG performance score were related to PFS 
in DLBCL patients (p < 0.05, Additional file 3: Table S3).

Pharmacogenomic gene only signature
In dataset GSE31312 and GSE10846, each individual 
was calculated three drug-specific resistance probabil-
ity for cyclophosphamide, doxorubicin, and vincristine 
separately via resistance gene signature classifiers [14]. 
Among 3 drug-specific resistance probability, two of 
them with elastic net-regulated Cox regression coef-
ficients that did not equal 0 were included in the 
pharmacogenomic gene signature for OS and one 

drug-specific resistance probability was chosen as 
pharmacogenomic gene signature for PFS. The risk-
score formula based on the expression of resistance 
gene signature for death risk prediction as follows: 
pharmacogenomic gene score = coefficient* (expres-
sion level of gene level), the corresponding coefficient 
for each gene is listed in Additional file 4: Table S4 (OS) 
and Additional file 3: Table S3 (PFS). According to the 
formula of model for OS or PFS, patients in the training 
dataset were divided into two adverse risk groups via 
the median score as the cut-off value, respectively. The 
survival time between two groups were estimated by 
using Kaplan–Meier analysis. Then using the two-sided 
log rank test to compare different OS or PFS between 
these two risk groups in the training and validating 
dataset (Additional file  5: Figure S1; Additional file  6: 
Figure S2). In univariate factor analysis, the HR of the 
high-risk group versus the low-risk group for OS was 
1.79 (95% CI 1.30-2.46, p = 3.50 × 10−4) in the train-
ing dataset and 1.64 (95% CI 1.17-2.30, p = 3.77 × 10−3) 
in the validation dataset and for PFS was 1.71 (95% CI 

Table 1 Clinical and  pathological characteristics 
of patients with DLBCL in our study

GCB germinal center B-cell-like subtype, ABC activated B-cell-like subtype, SD 
standard deviation
a The Eastern Cooperative Oncology Group (ECOG) performance score ranges 
from 0 to 3, with a higher score indicating greater impairment

Characteristic Training dataset Validating dataset
(GSE31312) (GSE10846)

Sample size 449 342

Age, years mean (SD) 61.81 (14.75) 61.24 (15.48)

Gender

 Female 189 144

 Male 260 182

 Unknown 0 16

Stage

 1 124 58

 2 96 103

 3 101 77

 4 128 104

 Unknown 0 0

 ≥ 2 Extranodal sites 100 29

 ECOGa performance status > 1 81 84

Microarray subtype

 GCB 214 147

 ABC 193 144

 Unclassified subtype 42 51

 Unknown 0 0

Overall survival

 Time, years mean (SD) 3.24 (2.14) 2.80 (2.35)

 Death 164 148

https://www.r-project.org/
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1.26–2.32; p = 6.26 × 10−4) in the training dataset, sug-
gesting that the higher risk scores based on pharmacog-
enomic gene signature was markedly related to shorter 
OS or PFS.

Prognostic value of the drug resistance factors 
is independent of clinical information
To further test whether the drug resistance signature 
was an independent prognosis predictor of DLBCL 
patients, the multivariate analysis was performed. We 
first performed Multivariate Cox regression analysis 
and identified clinical information that be associated 
with OS (Table  2) or PFS (Additional file  7: Table  S5). 
Further, the effect of above predictors on OS or PFS of 
DLBCL patients was further estimated by multivari-
ate Cox regression analysis. The results showed that 
resistance probability of doxorubicin is an independ-
ent predictor of OS when adjusted by age, extra nodal 
sites number, stage and ECOG score either in training 
dataset (HR = 2.70, 95% CI 1.24–5.86, p = 1.23 × 10−2) 
and validating dataset (HR = 3.24, 95% CI 1.41–7.45, 
p = 5.61 × 10−3), and is also an independent predictor 
of PFS when adjusted by extra nodal sites number, stage 
and ECOG score in training dataset (HR = 3.29, 95% CI 
1.54–7.05, p = 2.14 ×  10−3).

Integrated clinical‑and‑gene model in the training dataset
In our study, we develop an integrated clinical-and-
genomic model for OS or PFS in the training dataset 
using elastic net-regulated Cox regression model after 
1000 times cross validation, respectively. All of the 
prognosis related factors with a non-zero elastic net-
regulated Cox regression coefficients were selected 
into the model for OS: drug resistance signature, age at 
diagnosis, stage, the number of extra nodal sites and the 
ECOG performance score (Table  3; Additional file  8: 
Figure S3). We created a risk-score formula for OS as 
follows: Prognosis score (OS) = 0.0213* (age at diag-
nosis) +0.1499* (extra nodal sites number) + 0.2360* 
stage + 0.2951* (ECOG performance score) + 0.8221* 
(drug resistance probability of doxorubicin) + 0.0998* 
(drug resistance probability of vincristine). According 
to prognosis score, patients were separated into low-
risk (n = 224) and high-risk groups (n = 225) in the 
training dataset via the median score from formula as 
cut-off. Distribution of the prognosis score, survival 
status and gene expression in patients in the training 
dataset (Fig. 1a). In univariate factors analysis, the HR 
of high score group versus the low score group for OS 
was 4.55 (95% CI 3.14–6.59, p = 1.06 × 10−15, by log-
rank test, Fig.  1b), suggesting that the patients with 
high scores was significantly associated with shorter 
OS. Meanwhile, A risk-score formula for PFS was 
developed as follows: Prognosis score (PFS) = 0.0726* 
(extra nodal sites number) + 0.3347* stage + 0.1615* 
(ECOG performance score) + 0.9754* (drug resistance Table 2 Multivariate Cox regression analysis of  overall 

survival in each dataset

HR hazard ratio, 95% CI 95% confidence interval
a The Eastern Cooperative Oncology Group (ECOG) performance score ranges 
from 0 to 3, with a higher score indicating greater impairment

Multivariate analysis

HR 95% CI p value

Training cohort

 GSE31312 (n = 449)

  Age 1.03 1.01–1.04 1.38 × 10−5

  Extra nodal sites number 1.20 1.03–1.41 2.37 × 10−2

  Stage 1.31 1.12–1.52 6.26 × 10−5

  ECOGa 1.41 1.21–1.64 7.33 × 10−6

  Resistance probability of doxorubicin 2.70 1.24–5.86 1.23 × 10−2

  Resistance probability of vincristine 1.28 0.61–2.70 0.51

Validating cohort

 GSE10846 (n = 342)

  Age 1.02 1.01–1.04 1.45 × 10−4

  Extra nodal sites number 0.99 0.80–1.22 0.95

  Stage 1.41 1.19–1.67 5.40 × 10−5

  ECOGa 1.59 1.32–1.91 6.43 × 10−7

  Resistance probability of doxorubicin 3.24 1.41–7.45 5.61 × 10−3

  Resistance probability of vincristine 1.40 0.61–3.23 0.43

Table 3 Univariate cox regression analysis of  overall 
survival and  ridge regression coefficients of  clinical 
information and drug resistance signatures in the training 
dataset

a The Eastern Cooperative Oncology Group (ECOG) performance score ranges 
from 0 to 3, with a higher score indicating greater impairment

HR hazard ratio, 95% CI 95% confidence interval

Clinical information Univariate analysis Coefficient

HR 95% CI p value

Age 1.03 1.01–1.04 9.56 × 10−6 0.0213

Gender (reference = female)

 Male 0.95 0.70–1.30 0.75 –

 Extra nodal sites number 1.43 1.25–1.63 1.38 × 10−7 0.1499

 Stage 1.52 1.32–1.75 3.15 × 10−9 0.2360

 ECOGa 1.54 1.34–1.77 1.66 × 10−9 0.2951

Drug resistance probability

 Cyclophosphamide 0.76 0.40–1.44 0.40 –

 Doxorubicin 3.44 1.86–6.36 7.86 × 10−5 0.8221

 Vincristine 2.41 1.31–4.41 4.48 × 10−3 0.0998
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probability of doxorubicin) (Additional file 9: Table S6; 
Additional file 10: Figure S4). 

To compare the sensitivity and utility of prognosis 
prediction between integrated gene-clinical model and 
pharmacogenomic gene only or clinical only model in 
the training model, Kaplan–Meier curve analysis and 
ROC analysis was conducted and the under receiver 
operating characteristic (AUC) value were calculated. 
ROC curves suggested that all the above three signa-
tures showed prediction power in predicting OS in the 
training dataset (AUC > 0.5). Furthermore, compared 
with pharmacogenomic gene-only and clinical-only 
model, the integrated model with pharmacogenomic 
gene score and clinical information showed better 
performance in predicting OS at 10-year time point, 
as demonstrated by AUC values (Fig.  1c, Additional 
file 11: Table S7; Additional file 5: Figure S1). Compared 
with clinical-only model and pharmacogenomic gene 
signature, integrated model for OS had a highest mean 
C-index 0.73 with a SE of 0.02 and a significant RMS 

time ratio (1.73) in training dataset (Additional file 12: 
Table S8; Additional file 13: Table S9).

IPI, as a powerful predictor, is often used to predict 
outcomes in patients with DLBCL. According to risk 
group defined by our risk score and IPI, then we per-
formed the Kaplan–Meier curve analysis to compare the 
value of survival prediction between these two predic-
tive models in training dataset (Additional file  14: Fig-
ure S5).The integrated model achieved higher HR value 
(HR = 5.07) than IPI index (HR = 2.94), indicating that 
the predictive ability of our integrated model was better 
than IPI index.

Validation of the prognostic integrated model for OS 
in independent dataset
To test the robustness and repeatability of our find-
ings, we validated our integrated gene- and clinical-
signature in an independent dataset. Due to lack of 
validation, the model for PFS will not be discussed. We 
classified patients into high risk (n = 171) or low risk 

Fig. 1 Integrated model analysis for OS of patients in the training dataset. Patients’ survival and disease progress status and risk score generated 
with integrated model were analyzed in the training set patients (GSE31312, n = 449). a The distribution plot, patients’ overall survival status and 
time and heatmap of the integrated model profiles. Rows represent clinical information and drug resistance probability, and columns represent 
patients. The grey dotted line represents the median integrated model risk score cutoff dividing patients into low- and high-score groups. Kaplan–
Meier analysis for OS (b) of DLBLC patients using the integrated model in the training dataset. The ROC curves of the pharmacogenomic gene 
signature, clinical only model and integrated model for prediction of OS (c)
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group (n = 171) using the median value of the risk scores 
generated with the same model formula above as cutoff. 
The distribution of the prognosis score (OS), the survival 
status of the DLBCL patients treated with CHOP-like 
chemotherapy and the gene expression

were shown in Fig. 2a. In accordance with the finding 
in the training dataset, patients with high risk had sig-
nificantly shorter OS than individuals in low risk group 
(HR = 3.47; 95% CI 2.42–4.97; p = 1.53 × 10−11, by log-
rank test, Fig. 2b, Additional file 11: Table S7). The ROC 
curves suggested that the prognosis score showed pre-
diction power in predicting OS in the validating dataset 
(AUC = 0.67, Fig. 2c). The mean C-index 0.71 with a SE of 
0.02 and significant RMS time ratio (1.97) showed inte-
grated model for OS also had a stable predictive power 
in validating dataset. (Additional file 12: Table S8; Addi-
tional file 13: Table S9). And the integrated model repre-
sented higher HR value (HR = 3.31) than IPI (HR = 2.72), 
indicating that our integrated model performed a 

stronger power to predict patients’ survival (Additional 
file 14: Figure S5).

Validation of the integrated gene‑clinical signature 
in molecular subsets
A subgroup analysis was performed in different sub-
sets according to the microarray molecular classifier for 
prognosis. In the training dataset, the prognosis score 
(OS) classified 199 patients with ABC subtype into high 
risk and low risk groups with obviously distinct OS 
(HR = 3.96, 95% CI 2.42–6.48, p = 3.95 × 10−6, by log-
rank test, AUC = 0.67, Fig. 3a, c). As for 227 patients with 
GCB subtype, the forecast capability of the integrated sig-
nature between different risk subgroups in predicting OS 
(HR = 4.45, 95% CI 2.42–8.19, p = 1.6 × 10−6, by log-rank 
test, AUC = 0.73, Fig. 3b, c) was similar. In the validating 
dataset, patients with higher level of risk score were asso-
ciated with shorter OS in ABC subtype (HR = 1.99, 95% 
CI 1.29–3.05, p = 1.69 × 10−3, by log-rank test, Fig.  3d, 

Fig. 2 Performance evaluation of the integrated model for OS of DLBCL patients treated with CHOP-based chemotherapy in the validating dataset. 
Patients’ overall survival status and risk score generated with integrated model in the validating dataset (GSE10846, n = 342). a The distribution plot, 
patients’ overall survival status and time and heatmap of the integrated model profiles. Rows represent clinical information and drug resistance 
probability, and columns represent patients. The grey dotted line represents the median integrated model risk score cutoff dividing patients into 
low- and high-score groups. b The Kaplan–Meier curves for patients in the validating dataset. The two-sided Log-rank test was performed to test 
the difference for OS between the high-risk and low-risk groups determined based on the median risk score from the validating set patients. The 
number of patients at risk was listed below the survival curves. The tick marks on the Kaplan–Meier curves represents the censored subjects. c The 
ROC curve had an AUC of 0.67
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f ) and GCB subtype (HR = 4.27, 95% CI 2.05–8.92, 
p = 1.10 × 10−4, by log-rank test, Fig.  3e, f ). A subgroup 
analysis was also performed in different molecular sub-
sets for PFS. In the training dataset, patients in different 
risk groups shown obviously distinct PFS either in ABC 
subtype (HR = 2.27, 95% CI 1.47–3.50, p = 1.98 × 10−4, 
by log-rank test, AUC = 0.62, Additional file  15: Fig-
ure S6) or GCB subtype (HR = 3.31, 95% CI 1.93–5.70, 
p = 1.52 × 10−5, by log-rank test, AUC = 0.70, Additional 
file 15: Figure S6). The results shown that the integrated 
gene-clinical model for OS or PFS has a prognostic value 
in both different subsets categorized based on a microar-
ray molecular classifier.

Discussion
DLBCL is a molecular heterogeneous disease leading to 
heterogeneous responses to therapy and different sur-
vival outcomes. Given the variations of drug resistance 
and clinical features among patients with DLBCL, the 
gene expression profiles (GEP) of tumor cells and clinical 

parameters have enabled the identification of genetic and 
clinical factors associated with prognostic value. In our 
study, we built a comprehensive DLBCL prognosis model 
for OS that combined 4 clinical factors and 2 genomic 
signatures of drug resistance. The prognostic probability 
of this integrated model was confirmed in another data-
set. The results suggest that the combined genetic and 
clinical signature plays a crucial role in predicting prog-
nosis of DLBCL and guiding therapeutic efficacy.

Numerous clinical, pathological and molecular markers 
have been developed to characterize the disease [2, 27–
31]. Based on these characteristics, new different combi-
nations of predictive biomarkers are being investigated 
to optimize the treatment and improve the outcomes 
of DLBCL. So far, there have been proposed advanced 
methods for survival prediction of various cancer and 
analysis of gene expression profiling. Some integrated 
bioinformatics analyses have progressively attempted 
to stratify patients with related diseases into low and 
high-risk groups, identified by gene expression profiling. 

Fig. 3 Integrated model performance for OS in ABC and GCB molecular subtypes. Kaplan–Meier curves with hazard ratio (HR), 95% confidence 
interval (CI) and log-rank p value for overall survival in the training cohort (a, b) and validating dataset (d, e) stratified by integrated model for OS 
into high and low risk. The ROC curves of the integrated model for prediction of OS in molecular subtypes in training dataset (c) and validating 
dataset (f)
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Similar studies have also been reported for DLBCL. 
Caroline Bret et al. [32]. Shipp et al. [33] and Rosenwald 
et al. [34] have proposed several gene signatures to pre-
dict the clinical outcomes of DLBCL patients. Song et al. 
[35] demonstrated that CD59 could predict the reaction 
to R-CHOP treatment of patients with DLBCL. Another 
study identified a single molecular biomarker associated 
with diagnosis and treatment of DLBCL by using bio-
informatics analysis [36]. Though molecular researches 
have filtered a plenty of genes, come out very divergent 
results. There are a few overlap prognostic genes in those 
studies. As we known, based on GEP is one of the prom-
ising methods for establish prognostic models to predict 
patients’ survival with high accuracy, this method is still 
having some limitations in clinical practice. While some 
GEP studies [24, 32–34, 37] showed that using genetic 
signatures could predict the clinical outcomes of DLBCL 
patients, lacking of reliable, stable and efficient biomark-
ers restrained its clinic application. Some studies dem-
onstrating combined predictive models for prognosis is 
superior to predictive models relying on a single predic-
tor [22, 38]. Combined gene biomarker of DLBCL and IPI 
score showed a better predictive capability for prognosis 
than either one of these markers alone [39]. Liu et al. [40] 
reported that combining gene signature (five-miRNA 
signature) and clinical factors (TNM stage) was a more 
sensitive predictor for nasopharyngeal carcinoma. In 
another study, the FGD3-SUSD3 metagene model was 
demonstrated to have a superior prognostic value for 
breast cancer [41].

To overcome the above problems, first we respectively 
selected genetic and clinical factors associated with 
OS of 449 patients by using univariate survival analysis 
in the training dataset. To improve the validity of the 
model, then we developed a promising prognostic signa-
ture model contained gene and clinical factors by using 
elastic net-regulated Cox regression. Interestingly, when 
combined gene signature with clinical signature, the 
integrated model led to a more potent prognostic pre-
diction of DLBCL patients. And the integrated model 
seems to have a better predictive value for OS than IPI. 
Integrated model could probably ensure valid therapy for 
each individual patient before the treatment is initiated. 
In this study, we split DLBCL patients into two distinct 
risk groups according to the risk score of each individual, 
and we found that, as the time passing by, patients in low 
score group had better survival outcomes. In order to 
have a good prognosis for DLBCL patients, the patients 
with high risk score should tried other different treat-
ment methods.

In recent years, activated B-cell-like (ABC) type and 
germinal center B-cell-like (GCB) type as two distinct 

molecular subtypes of DLBCL have been recognized by 
gene expression profiling, which based on Cell-of-Origin 
(COO) classifier [42]. These two molecular subclasses 
express different gene expression, clinical presentation 
and drug response [34, 43, 44]. Next, we performed the 
predictive power of our model in patients of ABC and 
GCB subtypes from training and validation datasets, the 
model’s prognostic capability was also strong in each 
group, indicating the good reproducibility and reliability 
of this signature. Though this signature showed few dif-
ferences in the predictive capability, it is still powerful in 
both subtypes.

It is the first time to propose the idea of associating 
clinical information with drug resistance signatures to 
predicting prognosis of DLBCL individual with CHOP-
like treatment. Nevertheless, there were several limita-
tions in our study. First, we used only two independent 
datasets to respectively establish and validate the model. 
Therefore, more research is needed to validate this inte-
grated model among enough number of DLBCL patients. 
Besides, there was only one drug resistance signature was 
independent of clinical factors, which may be caused by 
the limited sample number in analysis. And there were 
only three drug-specific resistance probability calculated 
in our study. The other drug resistance signatures may 
also worthy of investigation which need further research.

Conclusions
In conclusion, the new comprehensive clinical-gene 
model for OS presented in our study has a better value 
than gene only model for predicting prognosis for 
patients with DLBCL. And these clinical information 
and drug-specific resistance probability of patients with 
DLBCL before treatment play a vital role in therapy man-
agement. Our findings suggest that combining clinical 
factors with genomic data could help us in-depth under-
stand DLBCL survival and improve prognosis accuracy 
and promote the development of individualized therapy. 
Future investigations will focus on the validation of our 
defined integrated signature in planned clinical trials.
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