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Glandular orientation and shape determined 
by computational pathology could identify 
aggressive tumor for early colon carcinoma: 
a triple‑center study
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Abstract 

Background:  Identifying the early-stage colon adenocarcinoma (ECA) patients who have lower risk cancer vs. the 
higher risk cancer could improve disease prognosis. Our study aimed to explore whether the glandular morphological 
features determined by computational pathology could identify high risk cancer in ECA via H&E images digitally.

Methods:  532 ECA patients retrospectively from 2 independent data centers, as well as 113 from The Cancer 
Genome Atlas (TCGA), were enrolled in this study. Four tissue microarrays (TMAs) were constructed across ECA hema‑
toxylin and eosin (H&E) stained slides. 797 quantitative glandular morphometric features were extracted and 5 most 
prognostic features were identified using minimum redundancy maximum relevance to construct an image classifier. 
The image classifier was evaluated on D2/D3 = 223, D4 = 46, D5 = 113. The expression of Ki67 and serum CEA levels 
were scored on D3, aiming to explore the correlations between image classifier and immunohistochemistry data and 
serum CEA levels. The roles of clinicopathological data and ECAHBC were evaluated by univariate and multivariate 
analyses for prognostic value.

Results:  The image classifier could predict ECA recurrence (accuracy of 88.1%). ECA histomorphometric-based image 
classifier (ECAHBC) was an independent prognostic factor for poorer disease-specific survival [DSS, (HR = 9.65, 95% 
CI 2.15–43.12, P = 0.003)]. Significant correlations were observed between ECAHBC-positive patients and positivity of 
Ki67 labeling index (Ki67Li) and serum CEA.

Conclusion:  Glandular orientation and shape could predict the high risk cancer in ECA and contribute to precision 
oncology. Computational pathology is emerging as a viable and objective means of identifying predictive biomarkers 
for cancer patients.
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Background
Colon cancer is one of the most common cancer type 
and cancer-related death worldwide [1], with 80% colon 
adenocarcinoma (CA). Detection of early-stage colon 
adenocarcinoma (T1N0M0–T4N0M0) could improve 
the survival rates and prognosis [2]. Nowadays, ECA is 
primary treated with colon radical resection or endo-
scopic resection, with or without adjuvant radiation and/
or chemotherapy. According to a survey from American 
Joint Committee on Cancer [3], 5  years survival rate as 
follows: I stage (T1-2N0)–93%; IIA stage (T3N0)–85%, 
IIB stage (T4N0)–72%. The overall recurrence rate of 
ECA is less than 20% [4]. Once the tumor relapses, the 
survival time will be significantly shortened. There-
fore, this has prompted efforts to utilize clinicopatho-
logic and molecular features to select groups of patients 
with higher-risk early stage disease who have a greater 
risk of recurrence and might derive a greater absolute 
degree of benefit from adjuvant chemotherapy. Most tri-
als have been developed to identify molecular signatures 
that provide an accurate and personalized assessment 
of the risk of relapse, such as 12-gene recurrence score 
(Oncotype-DX Colon Cancer Assay) [5–7], 18-gene clas-
sifier (ColoPrint) [8, 9], 13-gene classifier (ColoGuideEx) 
[10] and other micro-based tests [11]. There are different 
biomarkers postulated to have a role in the clinical and 
therefore therapeutic aspects of the disease i.e. Ki-67 
[12] and p53 [13, 14]. However, these assays tend to be 
expensive and tissue destructive. Currently, pathological 
analysis of haematoxylin and eosin (H&E) stained section 
is still the gold standard in the prognosis assessment of 
CA and other types of cancers. However, these decisions 
often suffered intra-observer and inter-observer variabil-
ity [15, 16].

Many recent researches focus on mining quantitative 
morphological features from diagnostic pathology slides, 
which has been proved to be an effective way to allevi-
ate the intra-observer and inter-observer variability, by 
analyzing digital pathology images in context of cancer 
grading [17, 18], risk stratification [19–22], and tumor 
outcomes prediction [20, 21, 23–26]. Wang et  al. [19] 
presented an image classifier using nuclear orientation, 
texture, shape and tumor architecture to predict dis-
ease recurrence in early stage non-small cell lung cancer 
from digitized H&E images. Yu et al. [24] extracted 9879 
quantitative image features and use regularized machine-
learning methods to select the top features and to stratify 
patients into long-term vs. short-term survivors.

Glands are important histological structures that are 
comprised of a single sheet of columnar epithelium, 
forming a finger-like tubular structure that extends from 
the inner surface of the colon into the underlying connec-
tive tissue [27]. A typical gland is composed of a lumen 
area forming the interior tubular structure and epithelial 
cell nuclei surrounding the cytoplasm. Within malig-
nant tumors, the irregularly degenerated formed gland 
morphology has been widely used in the routine of his-
topathological examination for assessing the malignancy 
degree of breast [28], prostate [29, 30], and colon [31]. 
Numerous evidences have indicated genetic instability 
could be displayed by diversity of gland shape, size [28, 
32–34] and polarity [35, 36], playing a key role in tumor 
metastasis, proliferation and recurrence.

The gland histomorphometric features includes the 
gland shape, size, orientation and spatial relationships, 
have been shown playing an important role for cancer 
grading, and cancer prognosis [18, 28, 36, 37]. However, 
to our best knowledge, the quantitative analyses of gland 
morphology have never been reported in colon cancer 
literature. In this paper, we aimed to investigate whether 
computer-extracted gland morphologic features, related 
to gland orientation, shape and size, based machine 
learning risk score could distinguish aggressive tumor 
verse indolent tumor in ECA. 797 gland morphometric 
features were captured and thereby composed a quanti-
tative histomorphometry model to stratify ECA patients 
into different recurrence groups. Finally, the image clas-
sifier predicted labels were validated on different inde-
pendent validation cohorts, as well as TCGA cohort, and 
compared with human grading on D1 and D2 along with 
immunohistochemical data and serum CEA level. Our 
methods may ultimately provide prognostic information 
for the patients, and contribute to precision medicine of 
colon cancer. The overall schema of the proposed method 
is shown in Fig. 1.

Methods
Study population and TMA construction
With approval from the ethical committee of WRH and 
WCH, Four TMAs (TMA107–TMA110) were con-
structed as described in Additional file  1: File S1 by 
FFPE tissue samples from 2 independent data cent-
ers, representing a total of 532 patients (486 from WRH 
and 46 from WCH) between January 2000 and Decem-
ber 2011. The period of recurrence was limited from the 
time after the surgery to the diagnosis of recurrence or 
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the time of final follow-up. The disease-specific survival 
time was from surgery to death or the endpoint of follow-
up. The deadline for follow-up was on December 31st, 
2017. The workflow of patient selection could be found 
in Additional file  1: Figure S1. In all cohorts, the inclu-
sion criteria included: pathologically confirmed CA, with 
stage T1N0M0–T4N0M0 according to the AJCC/UICC 
TNM staging system 8th edition; radical (R0) resection 
of the primary tumor; and complete clinic pathological 
data. Patients who underwent other primary malignant 
tumors or chemotherapy and/or immunotherapy before 
surgery or palliative surgery were excluded in this study. 
TCGA cohort was also included in this study for valida-
tion. For the TCGA cohort, the inclusion criteria covered 

pathologically confirmed CA, with clinical stage I or 
stage II according to the clinical AJCC/UICC TNM stag-
ing system 8th edition with complete clinic pathological 
data.

Image processing and model construction
Individual gland was automatically segmented as ref [38, 
39]. A total of 797 gland histomorphometric features 
were calculated. A summary list of the gland morpho-
metric features referred in this study is shown in Addi-
tional file  1: Table  S1. A comprehensive list of all 797 
quantitative features could be found in Additional file 1: 

Fig. 1  The overall schema of the proposed method. The overall workflow consists of model construction, recurrence prediction, survival analysis 
and immunohistochemical and CEA validation. C+ recurrence, C− non-recurrence, CEA carcinoembryonic antigen
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Table S2. Additional file 1: File S2 described the techni-
cal and mathematical details relating to gland shape/size 
feature extraction.

The minimum redundancy maximum relevance 
(MRMR) [40] was employed to identify the most 
informative features from D1. Only 5 top ranked gland 
morphological features were included for model con-
struction to avoid overfitting problem. SVM (support 
vector machine), RF (Random Forest), DAC (discrimi-
nant analysis classifier), were used to construct super-
vised machine learning classifiers for discriminating 
recurrence ones (C+) vs. non-recurrence cases (C−). 
A five-fold cross-validation on the training cohort was 
applied to ensure the classifier robustness. The optimal 
predictive model was locked down based off the clas-
sifiers’ performance. All the patients in the validation 
cohort were classify into different risk groups according 
to the predictive risk score.

Immunohistochemistry and scoring 
of immunohistochemical stains and serum CEA
Immunohistochemical (IHC) staining was performed on 
FFPE tissue microarray sections according to the stand-
ard protocol described by Additional file 1: File S3. Ki67Li 
was determined by the proportion of positive tumor 
cells observing in 5 randomly selected areas of the sec-
tion with 400× high-power fields; 200 tumor cells were 
counted in each area. The Ki67Li was assigned as positive 
(≥ 14% reactive tumor cells) and negative (< 14% reactive 
tumor cells) as recommended by Goldhirsch [41]. Serum 
CEA levels were determined with an enzyme immunoas-
say test kit (DPC Diagnostic Product Co., Los Angeles, 
CA, USA). Serum CEA values with the upper limit of 
5 ng/ml referred as normal according to the manufactur-
ers of the kits used.

Inter‑observer variability in ECA estimation by human 
readers
Two expert pathologists (Z.Z and N.Z) were invited to 
estimate cancer grade blindly across inspecting each digi-
tal H&E image in D1 and D2, respectively. Each patholo-
gist was asked to assign an in-house score to each case 
according to a widely used two-tiered criterion referred 
by Compton et  al. [42]. Namely, the tumor was defined 
as low grade (≥ 50% tumor is glandular) and high grade 
(< 50 tumor is glandular) based on the degree of gland 
formation, respectively. The Kappa index was utilized 
to measure the inter-observer variability among human 
readers.

Survival analysis
The SPSS 17.0 software package was employed to 
report hazard ratios (HR), as well as corresponding 95% 

confidence intervals (95% CI), and P values, with P < 0.05 
was considered to be statistically significant. Chi-square 
test was used to assess the expression rates of Ki67 
between ECAHBC-positive and ECAHBC-negative. The 
Kaplan–Meier analysis was used to detect cum survivals 
illustrated by KM curves and the log-rank test was used 
to analyze the survival differences. Multivariate Cox pro-
portional hazard models were employed to investigate 
the independence of prognostic variables. Correlations 
between the binary classifier results and the other cate-
gorical clinical and pathologic variables were determined 
by Chi-square tests.

Results
Study population characteristics
532 patients with ECA from 2 independent institutions 
were enrolled in this study, the details of clinic charac-
teristics were shown in Table  1. Of those 532 patients, 
patients were primarily from Asia. 335 (63.0%) were 
men and 197 were (37.0%) women. 393 patients (73.9%) 
were in T1/T2 whereas 139 (26.1%) had advanced dis-
ease (T3/T4). 125 (23.5%) of the 532 cases differentiated 
poorly, with 24.7%, 22.9% and 19.6% in D1, D2/D3 and 
D4, respectively. Approximate 25% patients’ tumor size 
was ≥ 5 cm. At the end points of follow-up, 112 (21.1%) 
patients suffered tumor recurrence, with 58 patients 
(22.1%), 53 patients (23.8%) and 6 patients (13.0%) in D1, 
D2/D3 and D4, respectively. More patient characteris-
tics of TCGA cohort details refer to Additional file  1: 
Table S3.

Representative features
The top 5 discriminative morphologic features identified 
within the training cohort were (1) mean tensor infor-
mation_measure1, (2) mean tensor contrast average, (3) 
mean circularity entropy, (4) mean tensor contrast energy 
and (5) Standard Deviation energy of Fractal Dimension 
(more details refer to Additional file 1: Table S4). Among 
these representative features, the nuclear orientation 
related morphometric features (mean tensor informa-
tion_measure1, mean tensor contrast energy, and mean 
tensor contrast energy) were predominated (3 out of 5). 
Likewise, the gland shape-based features (mean circu-
larity entropy and SD energy of Fractal Dimension) also 
account for 40% of the discriminative features (2 out of 
5). For non-recurrence ECA patients, the gland shapes 
seems more uniform and regular compared with the 
recurrences group (Fig.  2b, f ). Similarly, the arrows on 
each gland were almost all uniformly oriented in the 
same direction, while those in the recurrence group dis-
played a higher degree of orientation disorder (Fig.  2c, 
g). Comparatively, the underlying distribution of gland 
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Table 1  Summary of patients’ clinicopathological characteristics

W/M** well/moderately, MSI: MSI-L/H microsatellite instability—low/high, MSS microsatellite stable

Variables Sub variables Total D1 D2/D3 D4

Number of patients 532 (100%) 263 (49.4%) 223 (41.9%) 46 (8.6%)

Gender Male 335 (63.0%) 162 (61.6%) 141 (63.2%) 32 (69.6%)

Female 197 (37.0%) 101 (38.4%) 82 (36.8%) 14 (30.4%)

Age, years <65 141 (29.1%) 77 (29.3%) 45 (20.2%) 19 (41.3%)

≥65 391 (70.9%) 186 (70.7%) 178 (79.8%) 27 (58.7%)

Race Asian 523 (96.4%) 257 (97.7%) 220 (98.7%) 46 (100%)

Others 9 (3.6%) 6 (2.3%) 3 (1.3%) 0 (0.0%)

Histology grade W/M** 407 (76.5%) 198 (75.3%) 172 (77.1%) 37 (80.4%)

Poorly 125 (23.5%) 65 (24.7%) 51 (22.9%) 9 (19.6%)

Tumor size <5 cm 397 (75.4%) 195 (69.5%) 169 (75.8%) 33 (71.7%)

≥5 cm 135 (24.6%) 68 (30.5%) 54 (24.2%) 13 (28.3%)

Tumor stage T1/T2 393 (73.9%) 190 (72.2%) 166 (74.4%) 37 (80.4%)

T3/T4 139 (26.1%) 73 (27.8%) 57 (25.6%) 9 (19.6%)

Manual grade low 282 (69.2%) 181 (68.8%) 156 (70.0%) 31 (67.4%)

high 164 (30.8%) 82 (31.2%) 67 (30.0%) 15 (32.6%)

Location Right 278 (52.3%) 134 (50.9%) 117 (52.5%) 27 (58.7%)

Left 254 (47.7%) 129 (49.1%) 106 (47.5%) 19 (41.3%)

MSI status MSS/MSS-L 451 (84.8%) 219 (83.3%) 194 (87.0%) 38 (82.6%)

MSI-H 81 (15.2%) 44 (16.7%) 29 (13.0%) 8 (17.4%)

Perineural invasion Yes 75 (14.1%) 36 (13.7%) 33 (14.8%) 6 (13.0%)

No 457 (85.9%) 227 (86.3%) 190 (85.2%) 40 (87.0%)

Vascular invasion Yes 68 (12.8%) 33 (12.5%) 30 (13.5%) 5 (10.9%)

No 464 (87.2%) 230 (87.5%) 193 (86.5%) 41 (89.1%)

Recurrence Yes 112 (21.1%) 58 (22.1%) 53 (23.8%) 6 (13.0%)

No 420 (78.9%) 205 (77.9%) 170 (76.2%) 40 (87.0%)

Original H&E images Gland contours Gland orientation map Underlying distribution
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Fig. 2  Representative digital H&E image for recurrence and non-recurrence patient, respectively. a, e Original image of ECA with recurrence 
and non-recurrence, separately. b, f Gland contours by gland segmentation automatically. c, g Gland orientation map, the arrow on each gland 
represented the orientation direction. d, h Underlying distribution of gland shape
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shape in terms of non-recurrences cohort appeared more 
uniform than those of the recurrence groups (Fig. 2d, h).

Image classifier evaluation
The 5 most outstanding gland morphometric features 
were used for constructing three classifiers (SVM, DAC 
and RF). The performances of the three models were 
shown in Additional file  1: Table  S5. As illustrated in 
Additional file  1: Table  S5, SVM predicted 74 cases as 
high risk tumor verse 75 cases by DAC and 84 cases by 
RF on the validation cohort. The SVM yielded an accu-
racy = 0.881, PPV = 0.649, NPV = 0.969 verse accu-
racy = 0.723, PPV = 0.560, NPV = 0.938 by DAC and 
accuracy = 0.754, PPV = 0.536, NPV = 0.951 by RF in dis-
tinguishing high risk tumor and low risk cancer on D2. 
So, we locked down the SVM as the optimal ECAHBC. 
Likewise, the ECAHBC predicted 78 and 11 patients as 
recurrence cases on D3 and D4, with accuracy = 0.866 & 
0.869, PPV = 0.615 & 0.636 and NPV = 0.949 & 0.943.

Correlations between image classifier and other 
clinicopathologic features
In D2, the image classifier predicted 74 of 269 as posi-
tive. 48 of the 74 ECHBC-positive patients developed 
disease recurrence compared with 6 of 195 ECHBC-
negative patients correspondingly. The recurrence rate of 
ECHBC-positive patients was over 20 times higher than 
that of ECHBC-negative patients, comparatively. The 
ECAHBC yield an accuracy of 0.881, with PPV = 0.649 
and NPV = 0.969, respectively. The ECAHBC had the 
best predictive ability compared with other single other 
clinicopathologic feature (Additional file  1: Table  S6). 
Among the traditional clinical and pathologic variables, 
patients with T4 verse T1/T2 or T3 (accuracy = 0.822, 
PPV = 0.563, NPV = 0.878), and Poor verse W/M 

(accuracy = 0.781, PPV = 0.453, NPV = 0.861) had bet-
ter ability in predicting disease recurrence. Details of 
the correlation analysis are shown in Additional file  1: 
Table S6.

Correlations between immunohistochemical data, CEA 
and image classifier
Additionally, our study showed that the high serum CEA 
level was observed in 87.8% (65/74) of the ECAHBC-
positive patients, as well as did the normal serum CEA 
level found in 95.8% (183/191) of the ECAHBC-negative 
patients. The Ki67 labeling index (Fig. 3a, b) positive rate 
was much higher [66/78 (89.2%)] in ECAHBC-positive 
patients, whereas the Ki67 positive rate was relatively 
lower [6/185 (3.1%)] in ECAHBC-negative cases. The 
relative expression levels of Ki67 in ECAHBC-positive 
patients and ECAHBC-negative patients were shown 
in Fig.  3c. There was statistically significant difference 
between ECAHBC-positive vs. NGAHIC-negative with 
serum CEA level (P < 0.001) and Ki67 labeling index 
(P < 0.001), respectively. More details could be found in 
Additional file 1: Table S7.

Image classifier evaluation on WSIs from TCGA​
The histopathology images, pathology reports, and clini-
cal information of the TCGA data set are available in a 
public repository from the TCGA Data Portal (https​://
porta​l.gdc.cance​r.gov/). Performances of the image clas-
sifier on TCGA cohort were reported in Additional file 1: 
Table  S8. The image model successfully distinguished 
high risk recurrence patients from low risk recurrence 
patients with ECA (P < 0.01). Additionally, histopathol-
ogy patterns, such as tumor stage, were insufficient for 
predicting the recurrence outcomes of patients with ECA 
significantly (P = 0.18).

high risk of recurrence low risk of recurrence IHC expression levels

K
i6

7

(a) (b) (c)
Fig. 3  Representative images of IHC for the markers of ECA tested on D3. The first column is high risk of recurrence identified by ECAHBC 
accompanying with a positive Ki67 IHC staining, b negative Ki67 IHC staining, c IHC expression levels. IHC immunohistochemistry, ECAHBC 
early-stage colon adenocarcinoma histomorphometric-based image classifier

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Survival analysis
Survival analysis was conducted to explore the relation-
ship between traditional clinic pathological charac-
teristics along with the image classifier on D2. Table  2 
summarized the univariate log-rank survival analysis 
and multivariate survival analysis for DSS on D2. As 
seen from Table  2, the ECAHBC-positive patients had 
worse DSS statistically and significantly. The Kaplan–
Meier survival curve was plotted in Fig.  4. Clearly, 
the disease recurrence hazard increased the risk by 
9.65 times (HR = 9.65, 95% CI 2.15–43.12, P = 0.003). 
Namely, patients, considered as high-risk of recurrence 
by the ECAHBC (ECAHBC-positive), were more eas-
ily to develop disease recurrence and had worse DSS. 
This indicated the image classifier might be an attractive 
image marker for ECA tumor behavior. Some major clin-
icopathologic variables with patients’ survival time could 
found in Additional file 1: Figure S1. Multivariate survival 
analysis conducted on D4 could be found in Additional 
file 1: Table S9. 

Discussion
Worldwide, the colon cancer is the fourth most com-
mon gastrointestinal tumor with high mortality [43]. 
In clinical routine, the morphology of glands has been 
widely used for assessing the malignancy degree of CA 
and informs prognosis and treatment planning. Unfor-
tunately, diagnosis of early-stage colon cancer, estimated 
by manual observation provided limited prognostic 
information.

Computerized methods for automatic estimations have 
proved to mitigate the subjectivity and low reproduc-
ibility associated with human grading, across utilizing 

of quantitative morphology. In this work, we first identi-
fied the gland automatically and extracted 797 morpho-
logical features relating to gland heterogeneity from the 
H&E digital images. These morphological features cov-
ered gland orientation, gland shape/size, texture, density 
and gland architecture descriptors. By utilization of these 
computer-extracted objective features, an image classifier 
could identify high risk recurrence verse low risk recur-
rence in ECA, indicating our computer-extracted gland 
features could efficiently capture the important aggres-
sive tumor features, while difficultly spotted by manual 
inspection.

The informatics image classifier for recurrence predic-
tion was validated on D2 and D4, yielding an accuracy 
of 0.881 and 0.869, respectively. Focusing specifically on 
disease recurrence, only 48 of 269 (14.4%) patients had 
a positive ECAHBC result, but these ECAHBC-positive 
patients were over 20 times more likely to develop disease 
recurrent (64.9% vs. 3.1%) compared with ECAHBC-neg-
ative patients. Among the other major clinic and patho-
logical variables, having a T4 tumor made a patient 4.6 
times more likely to develop recurrent disease, and hav-
ing poor histology grade disease made a patient 3 times 
more likely to develop recurrent disease. Thus, ECAHBC 
was the most predictive feature for recurrent disease in 
this patient cohort. Besides, on another cohort D3 (from 
different tumor region of the same patient of D2), the 
image classifier was able to achieve an accuracy of 0.866 
in predicting disease recurrence in these patients, indi-
cating ECAHBC could deal with intra-tumor heteroge-
neity efficiently. We also validated the glandular features 
based image classifier for recurrence prediction by an 
independent WSI data set from TCGA, demonstrating 

Table 2  Univariate log-rank analysis and multivariate survival analysis conducted on D2

W/M* well/moderately, CI confidence interval, HR hazard ratio, MSI: MSI-L/H microsatellite instability—low/high, MSS microsatellite stable

Values in italic are statistically significant, P < 0.05

Variables Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Gender: male vs. female 0.86 (0.52–1.41) 0.550

Age, years: ≥ 65 vs. < 65 0.81 (0.37–1.76) 0.595

Race: Asia vs. other 0.67 (0.04–9.15) 0.765

Histology grade: poorly vs. W/M* 1.51 (1.04–2.19) 0.029 0.21 (0.21–3.81) 0.293

Tumor size: ≥ 5 cm vs. < 5 cm 0.52 (0.06–4.79) 0.564

Tumor grade: T3/T4 vs. T1/T2 1.29 (1.01–1.65) 0.034 0.13 (0.01–1.64) 0.115

Perineural invasion: yes vs. no 2.37 (1.12–4.98) 0.023 4.65 (0.51–41.98) 0.171

Vascular invasion: yes vs. no 2.46 (1.15–5.21) 0.019 4.83 (0.72–32.60) 0.106

MSI status: MSS-H vs. MSS/MSS-L 1.08 (1.15–5.21) 0.037 0.35 (0.08–1.40) 0.183

Location: right vs. left 0.79 (0.11–2.27) 0.362

Manual grade: high vs. low 1.15 (1.01–1.31) 0.036 0.16 (0.01–1.89) 0.146

ECAHBC: positive vs. negative 5.63 (1.64–19.31) 0.006 9.65 (2.15–43.12) 0.003
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the generalizability of our approach. The model itself 
could locate the aggressive cancer-related features 
among the very large set of measurements of the image. 
The image model yield information (accuracy = 0.849, 
PPV = 0.409, NPV = 0.945, P < 0.01, Additional file  1: 
Table S6) above and beyond that from other major clin-
icopathologic measures of cancer severity, such as tumor 

stage (accuracy = 0.849, PPV = 0.333, NPV = 0.888, 
P < 0.18, Additional file  1: Table  S6). A Kaplan–Meier 
analysis demonstrated a strong relationship between the 
prognosis and ECAHBC predictions for D2 (P = 0.001), 
D3 (P = 0.005) and D4 (P = 0.009), respectively (Fig. 4e, f, 
i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i )
Fig. 4  Prognostic prediction results for human readers for D1 and D2, as well as ECAHBC, tumor grade, histology grade and manual grade for D2. a, 
b Kaplan–Meier curves of reader1 for D1 and D2; c, d Kaplan–Meier curves of reader2 for D1 and D2; e, f Kaplan–Meier curves of ECAHBC for D2 and 
D3; g, h Kaplan–Meier curves of histology, tumor grade. i Kaplan–Meier curves of ECAHBC for D4
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We further investigated the associations between 
the most discriminative features and the prognosis in 
ECA. A multivariate Cox proportional survival analysis 
revealed that the image classifier tent to be prognostic 
in both D2 (P = 0.03, Table 2) and D4 (P = 0.006, Addi-
tional file  1: Table  S9). The most representative prog-
nostic morphology features included (1) mean tensor 
information_measure1, (2) mean tensor contrast aver-
age, (3) mean circularity entropy, (4) mean tensor con-
trast variance, (5) Standard Deviation energy of Fractal 
Dimension. Among those prognostic morphological 
features, the gland disorder features were predomi-
nated [3 out of 5, (60%)]. The mean tensor information_
measure1 reflects the chaotic degree of the glands in a 
TMA core. Higher values indicate a higher likelihood of 
the presence of deformed, closely packed glands clus-
ter, spanning the aggressive tumor regions, resulting in 
the greater presence of heterogeneous values in linear 
directions. This could be explained by the large num-
bers of tumor glands proliferation in aggressive colon 
cancer. The second most predictive gland morphologi-
cal feature was the mean tensor contrast average, which 
quantifies the disorder in the orientation of neighbor 
glands. Another gland morphological features relat-
ing to the disorder of gland orientation was the mean 
tensor contrast variance, which quantified the chaotic 
of the gland orientation. Intuitively, in the aggressive 
tumors, highly irregular organizational glandular pat-
ters were formed because of the rapid disorganized 
tumor proliferation, differentiation and apoptosis. 
Additionally, the morphological features relating to 
gland shape/size also tend to be prognostic in ECA [2 
out of 5, (40%)]. The mean entropy of circularity and 
Standard Deviation energy of Fractal Dimension are the 
most discriminative gland shape/size features, related 
to worse prognosis in ECA. The mean entropy of cir-
cularity measures the homogeneity of the TMA glands; 
low values indicate the increasingly heterogeneous 
gland circularity. The SD energy of Fractal Dimension 
quantifies variants of glandular boundaries; high value 
indicates variants of the glandular boundaries. Intui-
tively, for high risk of recurrence ECA patients, greater 
variability could be seen in the context of gland shape. 
Indeed, changes in gland shape and size of histologic 
primitives are hallmarks in terms of different type of 
cancers, and our model could capture these variations 
precisely. These findings appear to be corroborated 
with the studies by Farjam [29] and Naik [28], who both 
declared that gland shape/size features were linked 
with tumor grade and behaviors.

We further investigated the correlation between the 
manual cancer grading based off estimation of gland mor-
phologic heterogeneity and ECA prognosis. However, 

no significant correlation was found between manual 
cancer grading by N.Z and ECA prognosis for D1 and 
D2 (P > 0.05), demonstrated by Kaplan–Meier analysis 
results (Fig. 4a, b). Meanwhile, a strong significant rela-
tionship was found in human cancer grading by Z.Z and 
ECA tumor outcomes for D1 (P = 0.025, Fig. 4c), but not 
for D2 (P = 0.608, Fig. 4d). Additionally, for D1 and D2, 
a moderate inter-observer agreement between Z.Z and 
N.Z was observed (kappa = 0.51). The moderate agree-
ment could be elucidated by the following facts. First, the 
criteria for cancer grading and the prognostic value of the 
cancer grading in ECA have not been defined precisely. 
Therefore, each pathologist might emphasize on the dif-
ferent tissue regions during optical evaluation (e.g. gland 
roundness, solidity, major axis length, minor axis length 
or eccentricity). Finally, variations exist in perception of 
colors, shapes, roundness, eccentricity and relative min 
axis length/max axis length for different pathologists. On 
the contrary, a strong association was found between the 
image classifier based off the computer-extracted features 
and ECA survival outcomes (P < 0.05).

Additionally, we found that Ki67 and CEA were prog-
nostic biomarker for ECA (Additional file 1: Table S10). 
Interestingly, the high expression of Ki67 associated with 
the ECAHBC-positive cohort, whereas the ECAHBC-
negative patients always have low Ki67 expression. These 
interesting results showed that our image model could 
indicate the expression of Ki67, or reflect the cell prolif-
eration and thereby used to guide the prognostic evalua-
tion in patients with ECA. These findings were consistent 
with previous studies by Salminen et al. [12]. Meanwhile, 
we found that the ECAHBC overexpression was an inde-
pendent predictor of cancer recurrence and was associ-
ated with DSS in ECA. This is because the CEA aberrant 
expressions always fall within the ECAHBC-positive 
group, and the high serum CEA levels may be displayed 
by the image model potentially. And CEA overexpres-
sion is always linked with increased metastatic potential 
in many types of cancers [44]. These preliminary findings 
corroborate the researches of Thirunavukarasu [45] and 
Quah [46].

The main contributions of this paper are: (1) a quantita-
tive gland histomorphometric-based image classifier was 
constructed for predicting the ECA recurrence. This is a 
preliminary attempt for stratifying ECA patients into dif-
ferent recurrence risk groups based on gland morpholog-
ical features by using traditional digital H&E images. (2) 
The image classifier could identify as a clinic pathologi-
cal characteristic in patients with ECA in clinical routine. 
In this study, the new clinic pathological characteristics 
generated by the binary classifier outcomes along with 
the collected clinic pathological characteristic were 
analyzed. In multivariate analysis, ECAHBC-positive 
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patients showed statistically significantly poorer DSS 
independently (HR = 9.65, 95% CI 2.15–43.12, P = 0.003). 
With the help of the informatics model, we imagine 
pathologist could identify more aggressive tumors across 
H&E stained digital images from surgical specimen. Pro-
viding the accurate pathologic diagnosis, clinicians could 
make an individualized treatment, such as postoperative 
close chemotherapy and radiation therapy and follow-up. 
Furthermore, it tends to cost-effective and repeatable for 
patients. Certainly, ECAHBC needs to be tested in multi-
center study of large samples.

We acknowledge there are several limitations in our 
study. First, we utilized the TMAs, not WSIs, to extract 
the most representative gland morphological features 
for predicting recurrence in ECA. Comparatively, the 
TMAs contained much smaller snapshot of the overall 
tumor characteristics. While the additional studies on 
WSI from TCGA cohort showed our image model could 
be extensible to whole slide histopathology images. Next, 
all the enrolled patients were collected from a handful of 
institutions, as did the image data digitized by the lim-
ited facilities, which could affect the image analysis pro-
cedure. Independent large data cohorts need to validate 
our informatics model in the future work. Future work 
will also be extended to the utilization of integrating 
quantitative features from immunochemical stained digi-
tal images, immune scores [47, 48] or molecular data for 
predicting ECA recurrence.

Conclusion
Conclusively, ECAHBC can facilitate prognostic predic-
tion based off the collected H&E stained slides routinely, 
and thereby contributing to the precision oncology, 
personalized cancer management and advance care 
planning.
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