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Abstract 

Background:  The role of the human microbiome in human health and disease has been studied in various body 
sites. However, compared to the gut microbiome, where most of the research focus is, the salivary microbiome still 
bears a vast amount of information that needs to be revealed. This study aims to characterize the salivary microbiome 
composition in the Qatari population, and to explore specific microbial signatures that can be associated with various 
lifestyles and different oral conditions.

Materials and methods:  We characterized the salivary microbiome of 997 Qatari adults using high-throughput 
sequencing of the V1–V3 region of the 16S rRNA gene.

Results:  In this study, we have characterized the salivary microbiome of 997 Qatari participants. Our data show that 
Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria are the common phyla isolated from the saliva samples, 
with Bacteroidetes being the most predominant phylum. Bacteroidetes was also more predominant in males versus 
females in the study cohort, although differences in the microbial diversity were not statistically significant. We also 
show that, a lower diversity of the salivary microbiome is observed in the elderly participants, with Prevotella and 
Treponema being the most significant genera. In participants with oral conditions such as mouth ulcers, bleeding or 
painful gum, our data show that Prevotella and Capnocytophaga are the most dominant genera as compared to the 
controls. Similar patterns were observed in participants with various smoking habits as compared to the non-smoking 
participants. Our data show that Streptococcus and Neisseria are more dominant among denture users, as compared 
to the non-denture users. Our data also show that, abnormal oral conditions are associated with a reduced microbial 
diversity and microbial richness. Moreover, in this study we show that frequent coffee drinkers have higher microbial 
diversity compared to the non-drinkers, indicating that coffee may cause changes to the salivary microbiome. Fur-
thermore, tea drinkers show higher microbial richness as compared to the non-tea drinkers.

Conclusion:  This is the first study to assess the salivary microbiome in an Arab population, and one of the largest 
population-based studies aiming to the characterize the salivary microbiome composition and its association with 
age, oral health, denture use, smoking and coffee-tea consumption.
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Background
The human microbiota is the collection of a wide array 
of microorganisms such as bacteria, archaea, fungi and 
viruses that inhabit various body sites including skin, 
saliva and the gut [1]. The microbiome, defined as the col-
lection of microbiota and their genes, plays an important 
role in human health and disease [2]. The development in 
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the field of sequencing and bioinformatic tools in the last 
decade, has brought an unprecedented attraction to the 
microbiome field [3]. The microbiome composition var-
ies from one person to another, as well as across different 
body sites [4].

Saliva is a biofluid secreted by the major and minor 
salivary glands [5]. It contains several components such 
as electrolytes, proteins, immunoglobulins, enzymes and 
microbes [6]. The main role of the saliva is to protect the 
mucus from pathogens, to maintain tooth integrity in 
addition to its role in taste and digestion [7]. Being highly 
available, saliva is considered as an easy to collect sample 
that does not require hospitalization or special prepara-
tion [8, 9].

Located at the opening of the gastrointestinal tract, 
the oral cavity provides a convenient, accessible site for 
collecting and analyzing microbial samples in the saliva 
[10]. It is also worth noting that, the salivary microbiome 
mirrors the gut microbiome in terms of complexity and 
diversity [10]. The salivary microbiome exhibits long-
term stability and does not fluctuate according to the 
circadian rhythm, indicating that the time of the saliva 
sampling is not critical [11–16]. Collection of saliva 
can be achieved by several methods, including spitting, 
swabbing and draining [17], and the method of collec-
tion exerts a minimal effect on the extraction of micro-
bial DNA [18]. A healthy adult human mouth hosts a 
complex and resilient ecosystem of hundreds of differ-
ent microbial species [19]. These microbes reside in dif-
ferent sites of the oral cavity, which is mainly composed 
of a soft mucosa that is constantly shedding, and a hard 
surface which comprises the teeth [20]. The saliva is a 
representing constituent of both locations but more pro-
foundly of the soft mucosa [20]. According to many stud-
ies, the salivary microbiome consists of more than 700 
species mainly belonging to the Bacteroidetes, Firmicutes, 
Proteobacteria, Actinobacteria and Fusobacteria phyla 
[21–24]. Streptococcus, Prevotella, Neisseria, Haemophi-
lus, Porphyromonas and Rothia are the common genera 
members of salivary microbiome observed in healthy 
adults [25–27]. The salivary microbiome composition is 
influenced by several pre and post-natal factors including 
host genetics, the mode of delivery at birth; the method 
of infant feeding; teeth eruption, the use of medications, 
especially antibiotics; smoking, intraoral pH, oral hygiene 
and diet among others [28]. The salivary microbiome 
plays a major role in regulating the immune-inflamma-
tory balance in the host [29]. In a large American cohort 
study, Wu et  al. compared the salivary microbiome 
composition in current smokers and non-smokers [30]. 
They observed that the salivary microbiome of smokers 
reflected a decrease in the abundance of the phylum Pro-
teobacteria, and in Capnocytophaga, Peptostreptococcus 

and Leptotrichia genera; while the genera Atopobium and 
Streptococcus were found to be elevated in smokers com-
pared to non-smokers [30]. Another study examined the 
oral microbiome of smokers and non-smokers in addi-
tion to the levels of cytokines in saliva samples, where 
they found that smoking altered the cytokine levels and 
the salivary microbiome composition [31].

Dysbiosis of the oral microbiome has been implicated 
in various oral disorders such as periodontitis, tooth 
decay or loss of teeth, where it promotes pathogenic 
bacterial growth and enables the dissemination of the 
oral bacteria systemically [32]. Several studies were con-
ducted in order to assess the microbiome composition 
and its role in dental and periodontal health, and showed 
that, healthy individuals have a greater microbial diver-
sity and a greater abundance of Neisseria, Haemophilus, 
and Fusobacterium. This is in contrast to individuals who 
suffer from dental caries, where Streptococcus was the 
most abundant genus detected [33, 34]. In a comparative 
study of healthy Finnish adults with and without caries, 
Corynebacterium, Fusobacterium, Capnocytophaga, Por-
phyromonas, Prevotella, and Leptotrichia were signifi-
cantly more abundant in healthy volunteers as compared 
to those with dental caries [35].

Porphyromonas gingivalis, Tannerella forsythia, 
Treponema denticola, Prevotella intermedia and Aggre-
gatibacter actinomycetemcomitans were shown to be 
higher in Moroccan patients with periodontitis [36] and 
P. gingivalis, P. intermedia, T. forsythia and Fretibacte-
rium were higher in Japanese patients with periodonti-
tis [37, 38]. Moreover, oral microbial dysbiosis is usually 
observed in patients with systemic diseases such as obe-
sity, diabetes, cancer, rheumatoid arthritis, Parkinson’s 
disease, type 2 diabetes (T2D) and cardiovascular dis-
eases among others [39–45].

Based on its potential role in health and disease, the 
salivary microbiome harbors a great potential for being 
used as a health monitor or disease diagnostic tool. 
However, the degree of variation at the population level 
has been assessed in very few studies [12, 46, 47], none 
of them reflecting the Arab population. The aim of this 
study is to characterize the salivary microbiome of the 
Qatari population and to assess the role of gender, age, 
oral health, smoking and some dietary habits in the sali-
vary microbiome composition.

Results
Demographic and clinical parameters
We determined the bacterial compositions in the saliva 
samples of 997 Qatari adults aged ≥ 18  years using 16S 
rRNA gene sequencing. The subjects’ demographic and 
clinical characteristics including oral hygiene practices 
are summarized in Table 1.



Page 3 of 16Murugesan et al. J Transl Med          (2020) 18:127 	

The salivary microbiome of the Qatari population
From the analysis of 16S rRNA gene data, 10 different 
bacterial phyla and 112 genera were identified in the 
saliva samples collected form the Qatari participants 
included in this study. Bacteroidetes (65.9%), Firmicutes 
(15.8%), Proteobacteria (2.7%), Fusobacteria (0.7%) 
and Saccharibacteria (0.3%) were the top five phyla 
observed covering about 85% of the salivary micro-
biome composition (Additional file  1: Figure S1A). At 
the genus levels, our data show that a total of 13 genera 
(Prevotella, Porphyromonas, Streptococcus, Veillonella, 
Capnocytophaga, Haemophilus, Gemella, Alloprevo-
tella, Granulicatella, Camphylobacter, Leptotrichia, 
Megasphaera and Neisseria) were commonly repre-
sented in all participants covering 85% of the salivary 
microbiome profiles (Additional file 1: Figure S1B). We 

then compared the salivary microbiome composition of 
the Qatari population to the salivary microbial profiles 
in other populations. From NCBI/SRA bioprojects, we 
retrieved the available salivary microbiome sequences 
from populations such as Bangladesh, Brazil, Japan, 
South Korea Germany, UK, and USA. Comparison of 
the salivary microbial profiles of the above-mentioned 
populations and the salivary microbiome composition 
in the samples collected from Qataris, revealed differ-
ences in the composition at both the phylum (Addi-
tional file  2: Figure S2A, B and data not shown) and 
genus levels in addition to microbial diversity (Addi-
tional file 2: Figure S2C), indicating a population-based 
variability in the salivary microbial profiles [12, 46, 47]. 
Bacteroidetes was the predominant bacteria among 
Qatari and German populations with 72% and 33% of 
the total phyla composition respectively. On the other 
hand, UK (78.32%), Brazil (50.25%), USA (40.62%), 
Bangladesh (32.11%), Japan (42.48%) and South Korean 
(39.91%) populations showed higher abundance of Fir-
micutes (Additional file  2: Figure S2B). Beta diversity 
measures using Bray–Curtis distances showed a signifi-
cant clustering between different populations and this 
result was confirmed using Anosim test with a P value 
of 0.001 (Additional file 2: Figure S2C).

Gender and the salivary microbiome
We assessed whether specific differences in the bacterial 
taxa were observed between males and females. The rela-
tive abundance of the salivary microbiome at the phylum 
level showed that Bacteroidetes, Firmicutes, Proteobac-
teria and Fusobacterium were the most common phyla 
observed in the saliva samples (Fig.  1a). A significant 
increase of Bacteroidetes was observed in males (67.3%) 
as compared to females (64.8%) (Fig. 1a, c—upper panel). 
At the genus level, Prevotella, Porphyromonas, Strep-
tococcus and Veillonella were the top abundant mem-
bers of the salivary microbiome observed in both males 
and females. Bergeyella, Tannerella genera were signifi-
cantly higher in males while Treponema, Mycoplasma 
and Corynebacterium genera were significant higher 
in females (Fig.  1b, c—lower panel). The indices Chao1, 
observed OTUs, Shannon index, and Simpson were used 
to examine alpha diversity (Fig.  1d). Bacterial commu-
nity richness (Chao1) and diversity (Shannon and Simp-
son) of the microbiome showed no significant differences 
between males and females (Fig. 1d). On the other hand, 
the observed species richness index was significantly 
higher (P = 0.042) among Qatari males than females 
(Fig. 1d). Beta diversity measures using Bray–Curtis dis-
tances did not show any group specific clustering, this 
result was also confirmed using Anosim test (Fig. 1e).

Table 1  Demographic status of studied Qatari population

a  Age: (years, mean ± standard deviation)

Category Male Female Total

Gender 442 555 997

Agea 38.3 ± 11.9 39.3 ± 12.1 38.2 ± 12.0

Age group

 Adults (18 ≥ age ≤ 65) 434 (98.2%) 545 (98.2%) 979 (98.2%)

 Elderly (age > 65) 8 (1.8%) 10 (1.8%) 18 (1.8%)

Oral health status

 Bleeding gum

  No 398 (90.0%) 515 (92.8%) 913 (91.6%)

  Yes 44 (10%) 40 (7.20%) 84 (8.4%)

 Mouth ulcer

  No 419 (94.8%) 541 (97.5%) 960 (96.3%)

  Yes 23 (5.2%) 14 (2.5%) 37 (3.7%)

 Painful gum

  No 400 (90.5%) 516 (93.0%) 916 (91.9%)

  Yes 42 (9.5%) 39 (7.0%) 81 (8.1%)

 Loose teeth

  No 422 (95.5%) 537 (96.8%) 959 (96.2%)

  Yes 20 (4.5%) 18 (3.2%) 38 (3.8%)

 Denture

  No 387 (87.6%) 474 (85.4%) 861 (86.4%)

  Yes 55 (12.4%) 81 (14.6%) 136 (13.6%)

Smoking status

 Non-smokers 210 (47.5%) 523 (94.2%) 733 (73.5%)

 Smokers 232 (52.5%) 32 (5.8%) 264 (26.5%)

Coffee drinking

 Coffee 418 (94.6%) 469 (84.5%) 887 (89.0%)

 No coffee 24 (5.4%) 86 (15.5%) 110 (11.0%)

Tea drinking

 Tea 363 (82.1%) 405 (73.0%) 768 (77.0%)

 No tea 79 (17.9%) 150 (27.0%) 229 (23.0%)
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The salivary microbiome composition and aging
Analysis of the relative abundance of the salivary micro-
biome in older participants (defined as people older 
than 65  years of age) revealed that Bacteroidetes and 
Spirochaetes were significantly higher in the elderly par-
ticipants as compared to their adults’ counterparts (less 
than 65  years old) (Fig.  2a, c—upper panel). On the 
other hand, Actinobacteria, Firmicutes, Fusobacteria, 
Proteobacteria and Saccharibacteria were significantly 
higher in the adults (Fig.  2a, c—upper panel) compared 
to the older participants at the phylum level. Moreover, 
analysis at the genus level showed that the abundance 
of Prevotella and Treponema genera were significantly 
higher in the elderly participants, whereas, Veillonella, 
Streptococcus, Mogibacterium, Megasphaera, Rothia and 
Camphylobacter genera among others were significantly 
elevated in the adults participants (Fig.  2b, c—lower 
panel). Alpha-diversity measures indicated that the sali-
vary microbiome in the elderly participants has a lower 
bacterial richness and diversity as compared to the adults 
(P value < 0.001) (Fig.  2d). In Bray–Curtis based beta 

diversity, although the clustering of the adults’ salivary 
microbiome was not conclusive; the anosim analysis of 
distance matrices revealed that there is a significant dif-
ference among the adults and elderly participants with a 
P value of 0.007 (Fig. 2e).

The salivary microbiome composition and oral health
The study participants were stratified according to 
their answers recorded in the oral health section of the 
QBB baseline questionnaire. Those questions included 
whether the participant suffers from a bleeding gum, 
a mouth ulcer, painful gum, loose teeth, and where 
they have a denture or not (Table  1). Participants who 
answered No to all of the oral health-related questions 
were used as controls.

Bleeding gum and the salivary microbiome composition
A total of 84 participants reported suffering from a 
bleeding gum (Table  1). The salivary microbiome com-
position in those participants was compared to age and 
gender matching controls. Our analysis revealed that 

Fig. 1  Gender and the salivary microbiome. Y-axis shows % of relative abundance; X-axis indicates the microbial abundance in males and females; 
each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; c graphs of linear discriminant analysis (LDA) 
scores for differentially abundant bacterial phyla and genera; among the two groups. LDA scores indicate overrepresented bacteria in males (green) 
and females (red). Features with LDA scores ≥ 2 are presented. d Alpha diversity measures for the two groups. Alpha diversity was measured by the 
number of OTUs observed or by the Chao1, Shannon and Simpson diversity measures; e Principle Coordinates Analysis (PCoA) based on Bray–Curtis 
dissimilarities of salivary microbiome. Axes are scaled to the amount of variation explained; *P < 0.05
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participants who suffer from bleeding gum have signifi-
cantly higher Bacteroidetes at the phylum level and more 
Prevotella at the genus level (Fig. 3a, c—upper panel). On 
the other hand, a significant increase in Actinobacteria, 
Firmicutes, Proteobacteria and Saccharibacteria phyla 
was observed in the control participants. Streptococcus, 
Veillonella, Haemophilus, Granulicatella and Lautrophia 
genera among others were significantly more abundant 
in the control group (Fig. 3b, c—lower panel). All indices 

of alpha diversity indicated that the salivary microbiome 
in the participants suffering from a bleeding gum is less 
diverse compared to the controls (**P < 0.01, ***P < 0.001) 
(Fig.  3d). In the Bray–Curtis based beta diversity, the 
anosim analysis of distance matrices revealed that there 
is a significant difference among the two groups with a P 
value of 0.001 (Fig. 3e). Similar results were also observed 
in participants that reported having painful gum (a 
total of 81 participants) or loose teeth (a total of 38 

Fig. 2  The salivary microbiome composition and aging. Y-axis shows % of relative abundance; X-axis indicates the microbial abundance in males 
and females; each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; c graphs of linear discriminant 
analysis (LDA) scores for differentially abundant bacterial phyla and genera; among the two groups. LDA scores indicate overrepresented bacteria 
in Elderly (green) and Adults (red). Features with LDA scores ≥ 2 are presented. d Alpha diversity measures for the two groups. Alpha diversity was 
measured by the number of OTUs observed or by the Chao1, Shannon and Simpson diversity measures; e Principle Coordinates Analysis (PCoA) 
based on Bray–Curtis dissimilarities of salivary microbiome. Axes are scaled to the amount of variation explained; ***P < 0.001
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participants) (Additional file 3: Figure S3 and Additional 
file 4: Figure S4).

Mouth ulceration and the salivary microbiome composition
A total of 37 participants reported suffering from mouth 
ulcers (Table  1). The salivary microbiome composition 
in those participants was compared to age and gender-
matching controls. Our analysis revealed that Bacte-
roidetes were significantly higher at the phyla level in 
participants suffering from mouth ulcers (Fig.  4a, c—
upper panel), and significantly more Prevotella and Cap-
nocytophaga were observed at the genus level (Fig.  4b, 
c—lower panel). Similar to the group of participants 
suffering from bleeding gums, our data show that Act-
inobacteria, Firmicutes, Proteobacteria and Saccharib-
acteria at the phyla level and Streptococcus, Veillonella, 
Haemophilus, Gemella, Granulicatella, Megasphaera and 
Leptotrichia genera were significantly abundant in the 

control group (Fig. 4c—lower panel). All indices of alpha 
diversity indicated that the salivary microbiome in the 
participants suffering from mouth ulcers is less diverse 
compared to the controls (***P < 0.001) (Fig.  4d). In the 
Bray–Curtis based beta diversity, the anosim analysis of 
distance matrices revealed that there is a significant dif-
ference among the two groups with a P value of 0.001 
(Fig. 4e).

Denture use and the salivary microbiome composition
A total of 136 participants reported using dentures 
(Table  1). The salivary microbiome composition in those 
participants was compared to age and gender-matching 
controls. Our analysis revealed that Proteobacteria and 
Actinobacteria were significantly higher at the phylum level 
in participants using dentures (Fig.  5a, c—upper panel), 
whereas significantly more Streptococcus, Neisseria and 
Pseudoramibacter were observed at the genus level (Fig. 5b, 

Fig. 3  Bleeding gum and the salivary microbiome composition. Y-axis shows % of relative abundance; X-axis indicates the microbial 
abundance in males and females; each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; c graphs 
of linear discriminant analysis (LDA) scores for differentially abundant bacterial phyla and genera; among the two groups. LDA scores indicate 
overrepresented bacteria in individuals that did not report bleeding (green) and the participants that reported bleeding gums (red). Features with 
LDA scores ≥ 2 are presented. d Alpha diversity measures for the two groups. Alpha diversity was measured by the number of OTUs observed or 
by the Chao1, Shannon and Simpson diversity measures; e Principle Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarities of salivary 
microbiome. Axes are scaled to the amount of variation explained; **P < 0.01, ***P < 0.001
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c—lower panel). Moreover, our data show that Campy-
lobacter and Ruminococcaceae genera were significantly 
higher in the control group (Fig.  5c—lower panel). All 
indices of alpha diversity indicated that the salivary micro-
biome in the participants using dentures is less diverse 
compared to the controls (*P < 0.05, **P < 0.01, ***P < 0.001) 
(Fig. 5d). In the Bray–Curtis based beta diversity, the ano-
sim analysis of distance matrices revealed that there is a 
significant difference among the two groups with a P value 
of 0.001 (Fig. 5e).

The salivary microbiome composition is influenced 
by smoking habits
Based on their smoking habits, participants were classi-
fied into smokers (264 participants) and non-smokers 
(733 participants). By comparing the two groups, our 
analysis revealed that Bacteroidetes at the phylum level 
and Prevotella genus were significantly higher in the 
smokers’ group (Fig.  6a–c). On the other hand, Proteo-
bacteria and Synergistetes at the phylum level, Lactococ-
cus, Corynebacterium, Gemella, Capnocytophaga and 

Fig. 4  Mouth ulceration and the salivary microbiome composition. Y-axis shows % of relative abundance; X-axis indicates the microbial 
abundance in males and females; each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; c graphs 
of linear discriminant analysis (LDA) scores for differentially abundant bacterial phyla and genera; among the two groups. LDA scores indicate 
overrepresented bacteria in individuals that did not report any mouth ulcer (green) and the participants that reported having mouth ulcers (red). 
Features with LDA scores ≥ 2 are presented. d Alpha diversity measures for the two groups. Alpha diversity was measured by the number of OTUs 
observed or by the Chao1, Shannon and Simpson diversity measures; e Principle Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarities of 
salivary microbiome. Axes are scaled to the amount of variation explained; ***P < 0.001
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Streptococcus at the genus level were significantly higher 
in the non-smokers (Fig. 6a–c). The alpha diversity meas-
ures indicated that the salivary microbiome of the non-
smokers is significantly more diverse as compared to 
the smokers (*P < 0.05), but there was no significant dif-
ference observed in species richness between the two 
groups (Fig. 6d). On the other hand, beta diversity meas-
ures did not show any significant clustering or distance 
difference between the two groups (Fig. 6e).

Influence of coffee and tea consumption on the salivary 
microbiome composition
The frequency of coffee and tea intake including Ara-
bic coffee, instant coffee, filtered coffee, cappuccino, 
red tea, herbal tea and Karak (special type of tea mixed 
with milk, usually offered in the Arabian Gulf coun-
tries) were assessed using the dietary questionnaire. 
From the cohort, the participants were further derived 
into two groups of coffee/tea drinkers (consuming more 
than 1–3 cups per week) and non-drinkers (consuming 
less than 1–3 cups of tea/coffee per month). Among the 

participants, 110 were coffee drinkers, 887 were non-
coffee drinkers, 229 participants were tea drinkers and 
768 were non-tea drinkers. The salivary microbiome 
composition was analyzed in the coffee/tea drinkers and 
non-drinkers in order to assess the effect of tea and coffee 
consumption on the salivary microbiome composition.

Coffee consumption
Our data shows that Actinobacteria, Firmicutes, Proteo-
bacteria and Saccharibacteria phyla were significantly 
higher in the saliva samples collected from coffee drink-
ers as compared to the non-coffee drinkers, whereas, 
Bacteroidetes and Fusobacteria were the significant phyla 
in the non-coffee drinkers (Fig.  7a, c—upper panel). At 
the genus level, Streptococcus, Veillonella, Haemophilus, 
Gemella, Granulicatella and Lautrophia were signifi-
cantly abundant in the saliva samples collected from cof-
fee drinkers while Prevotella was the most significantly 
abundant genus observed in the non-coffee drinkers 
(Fig.  7b, c—lower panel). All indices of alpha diversity 
indicated that the salivary microbiome in the non-coffee 

Fig. 5  Denture use and the salivary microbiome composition. Y-axis shows % of relative abundance; X-axis indicates the microbial abundance 
in males and females; each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; c graphs of linear 
discriminant analysis (LDA) scores for differentially abundant bacterial phyla and genera; among the two groups. LDA scores indicate 
overrepresented bacteria in individuals that did not use dentures (green) and the participants that reported using dentures (red). Features with 
LDA scores ≥ 2 are presented. d Alpha diversity measures for the two groups. Alpha diversity was measured by the number of OTUs observed or 
by the Chao1, Shannon and Simpson diversity measures; e Principle Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarities of salivary 
microbiome. Axes are scaled to the amount of variation explained; *P < 0.05, **P < 0.01, ***P < 0.001
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drinkers is less diverse compared to the coffee drinkers 
(***P < 0.001) (Fig.  7d). In the Bray–Curtis based beta 
diversity measure, the anosim analysis of distance matri-
ces revealed that there is a significant difference among 
the two groups with a P value of 0.001 (Fig. 7e).

Tea consumption
Our data shows that although the abundance of Act-
inobacteria, Bacteroidetes, Firmicutes and Proteobacte-
ria was higher in the coffee drinkers (Fig.  7a, c—upper 
panel), no significant difference was observed in the tea 
drinkers (Fig. 8a, c). At the genus level Capnocytophaga 
was significantly higher in the non- tea drinkers’ group in 
comparison with the tea drinkers (Fig. 8b, c). The alpha 
diversity measures showed that a significant increase in 
the microbial richness was observed in the tea drink-
ing group, (*P < 0.05, **P < 0.01) but no changes were 
observed in the microbial diversity indices (Fig.  8d). In 
the Bray–Curtis based beta diversity measure, the anosim 

analysis of distance matrices revealed that there is a sig-
nificant difference among the two groups with a P value 
of 0.029 (Fig. 8e).

Discussion
The purpose of this study was to examine the salivary 
microbiome composition in the Qatari population, and 
assess its association with gender, age, oral health, smok-
ing coffee and tea consumption. We characterized the 
salivary microbiome of 997 Qatari participants including 
442 males and 555 females. To the best of our knowledge, 
this is one of the largest population-based studies assess-
ing the salivary microbiome and is the first study to char-
acterize the salivary microbiome in an Arab population 
like Qataris.

We show that the bacterial profile, in spite of its high 
diversity, was dominated by the phylum Bacteroidetes, 
which is different compared to other populations like 
Bangladesh, UK, Japan, South Korea and Brazil, where 

Fig. 6  The salivary microbiome composition is influenced by smoking habits. Y-axis shows % of relative abundance; X-axis indicates the microbial 
abundance in males and females; each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; c graphs 
of linear discriminant analysis (LDA) scores for differentially abundant bacterial phyla and genera; among the two groups. LDA scores indicate 
overrepresented bacteria in smokers (green) and non- smokers (red). Features with LDA scores ≥ 2 are presented. d Alpha diversity measures for the 
two groups. Alpha diversity was measured by the number of OTUs observed or by the Chao1, Shannon and Simpson diversity measures; e Principle 
Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarities of salivary microbiome. Axes are scaled to the amount of variation explained; 
*P < 0.05
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Firmicutes was the most predominant phylum. In 
this study, we show that Prevotella, Porphyromonas, 
Streptococcus, Veillonella, Haemophilus, Gemella, 
and Neisseria were the most common members of the 
Qatari salivary microbiome, with Prevotella being the 
most predominant genus. In contrast, Streptococcus 
is the most abundant genus in the UK, South Korea, 
Japan and US populations [46, 48–53]. The differences 
observed in the Qatari salivary microbiome compared 
to other populations, may be influenced by various fac-
tors, including host genetics, diet and environmental 
factors [49].

In this study, we show that the observed species rich-
ness index was significantly higher among Qatari males 
than females, with a significant shift in particular gen-
era like Bergeyella, Tannerella in males and Treponema, 
Mycoplasma and Corynebacterium in females. This may 
be influenced by many factors including hormones and 
body mass index as previously reported [50, 54–56].

Our data show that the salivary microbial composi-
tion is associated with age, which is in accordance to 
previously reported results [57]. The senior participants 
included in our cohort showed a reduced bacterial diver-
sity and significantly increased Prevotella, when com-
pared to the younger adults. Proteolytic bacteria such as 
Prevotella are known to degrade proteins and peptides 
and are associated with periodontitis [28, 58]. It is known 
that the saliva composition changes with age due to the 
slower salivary flow [59], inadequate oral care, increase 
of several inflammatory mediators [60], systemic diseases 
and other additional environmental factors that together 
will affect the microbial composition in the saliva [28, 
61]. The adult salivary microbial population this cohort 
was more diverse including microbes like Streptococcus, 
Haemophilus, Rothia and Veillonella and Lautrophia, 
some are known to degrade carbohydrates [50].

We also show that participants that suffer from vari-
ous oral conditions including bleeding or painful gum, 

Fig. 7  Influence of Coffee consumption on the salivary microbiome composition. Y-axis shows % of relative abundance; X-axis indicates the 
microbial abundance in males and females; each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; 
c graphs of linear discriminant analysis (LDA) scores for differentially abundant bacterial phyla and genera; among the two groups. LDA scores 
indicate overrepresented bacteria in individuals that do not drink coffee (green) and the participants that are considered coffee drinkers (red). 
Features with LDA scores ≥ 2 are presented. d Alpha diversity measures for the two groups. Alpha diversity was measured by the number of OTUs 
observed or by the Chao1, Shannon and Simpson diversity measures; e Principle Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarities of 
salivary microbiome. Axes are scaled to the amount of variation explained; ***P < 0.001
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loose teeth or mouth ulcers have lower salivary microbial 
diversity; with Prevotella being the most predominant 
member. Previous studies have shown an association 
between increased abundance of Prevotella, aphthous 
ulcers and periodontal disease (more specifically gingivi-
tis) [62, 63]. Our data indicates that the alpha diversity of 
the salivary microbiome in the control groups was signif-
icantly higher in comparison to those suffering from poor 
oral health, which is similar to previously reported results 
[64]. Our data show that usage of denture is positively 
correlated with age and is closely linked with the oral 
health status [65]. In this study, we show that using den-
ture reduces the diversity of the salivary microbiome with 
an enrichment of both Proteobacteria and Actinobacteria 
phyla while Streptococcus and Neisseria were enriched at 
the genus levels. This result is supported by other stud-
ies comparing biofilms forming on natural teeth against 
those forming on denture teeth [66, 67].

Smoking modulates the microbial composition of 
various body sites including upper gut, respiratory 
tract and the oral microbiome [68–71]. Prior stud-
ies had shown that smoking disrupts the microbial 

homeostasis leading to various oral disease such as gin-
givitis and dental loss [72]. Our analysis revealed that 
smoking reduced the salivary microbial diversity and 
Bacteroidetes was the most abundant phylum observed, 
which has been reported previously [31]. Moreover, 
the genus Prevotella was more abundant in the smok-
ers compared to non-smokers, suggesting therefore 
an increased vulnerability of the smokers to develop 
oral diseases such as gingivitis [31]. This suggests that 
smoking has to always be considered in the future when 
assessing the oral microbiome composition, as it clearly 
affects the salivary microbiome composition.

Coffee and tea are commonly consumed beverages in 
most populations, and both were heavily studied to assess 
their health benefits [73–75]. In our cohort, around 11% 
of the Qatari participants reported drinking coffee and 
23% reported drinking tea. While some papers reported 
that both coffee and tea affect the microbial composi-
tion of the saliva [73, 76, 77]; our data show that a signifi-
cant increase in Granulicatella, Gemella, Streptococcus 
and Lautrophia along with an increased microbial rich-
ness and diversity is observed in the coffee but not in the 

Fig. 8  Influence of tea consumption on the salivary microbiome composition. Y-axis shows % of relative abundance; X-axis indicates the microbial 
abundance in males and females; each taxonomic category is shown by a different color: a at the phylum level; b at the genus level; c Graphs of 
linear discriminant analysis (LDA) scores for differentially abundant bacterial phyla and genera; among the two groups. Features with LDA scores ≥ 2 
are presented. d Alpha diversity measures for the two groups. Alpha diversity was measured by the number of OTUs observed or by the Chao1, 
Shannon and Simpson diversity measures; e Principle Coordinates Analysis (PCoA) based on Bray–Curtis dissimilarities of salivary microbiome. Axes 
are scaled to the amount of variation explained; *P < 0.05, **P < 0.01
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tea drinkers. Higher abundance of Granulicatella in the 
saliva of coffee drinkers was previously reported [73].

Our data showed that Prevotella is the most abun-
dant bacteria observed in the salivary microbiome of the 
Qatari adult population. Prevotella is one of the com-
monly reported members of the oral microbiome [78] 
and it has been linked previously to various inflamma-
tory conditions such as rheumatoid arthritis, metabolic 
disorders and periodontal infections among others [79]. 
Based on gender, we did not observe any significant dif-
ference in the abundance of Prevotella between males 
(55%) and females (53.69%) in this cohort. We show that, 
Prevotella was more abundant in subjects with mouth 
ulcers (54.76%), bleeding gum (50.97%) as compared to 
the healthy individuals (41.04%, 41.10%). Prevotella is 
higher in the group of smokers (57.32%) as compared 
to non-smokers (46.82%). Various Prevotella species 
can play different roles in health and disease [79–81]. 
In a recent study of 161 healthy Italian participants, 
the salivary microbiome was classified into Prevotella-
dominant type, Streptococcus/Gemella-dominant type 
and Neisseria/Fusobacterium-dominant types [82]. 
The microbial co-occurrence/exclusion pattern was 
explained by the microorganisms need to nutrients that 
can be provided by a selective group of bacteria [83, 
84]. Our study divulges the decrease in Co-occurring 
Prevotella/Porphyromonas shifts in healthy controls and 
increase in diseased cases. In another study Prevotella 
histicola was shown to have a boosting effect of Copax-
one, used to treat patients with multiple sclerosis [85]. 
Most of the members of Prevotella remain to be consid-
ered as commensals in healthy participants, which then 
turn to pathogens in oral infections and immunocompro-
mised patients. Prevotella is a beneficial microbe that is 
associated with plant-rich diet and the diverse Prevotella 
species will have differences in responding to the diet 
and health status of hosts [86]. More research is needed 
in order to look further deeper into Prevotella’s potential 
and its interactions with its host and other bacteria for 
therapeutic use in clinical practice.

Conclusions
In summary, this large-scale population-based study 
described for the first time the salivary microbiome pro-
files in the Qatari population. Our data indicated popu-
lation-specific microbial composition, with major phyla 
differences between Qatari population and populations 
from Brazil, Japan, South Korea, Germany, UK and USA 
[12, 46, 47]. We also show that the salivary microbiome 
composition is associated with gender, age, oral health, 
smoking and coffee intake. The scope of this study is 
mainly to give a picture of the salivary microbiome and 
their changes related to various factors. However, due 

to the limitation of using 16S rRNA gene sequencing, 
we cannot conclude on the function of those microbial 
changes in relation to various conditions. Future work 
on the microbial transcriptomics and metabolomics is 
needed to provide deeper insights into the role of the sal-
ivary microbiome in health and disease.

Materials and methods
Ethics statement
The study was approved by the Institutional Review board 
(IRB) of Sidra Medicine under (protocol #1510001907) 
and by Qatar Biobank (QBB) under protocol (E/2017/
RES-ACC-0046/0003). All study participants signed an 
informed consent prior to sample collection. All experi-
ments were performed in accordance with the approved 
guidelines.

Clinical data
In this project, an agreement between QBB and Sidra 
Medicine was signed in order to collect de-identified sali-
vary samples, phenotypic and clinical data from a total of 
997 Qatari participants that were selected randomly. All 
participants were 18  years old and above. No exclusion 
criteria were applied in this studied cohort. The cohort 
consisted of 442 males and 555 females (Table 1). All par-
ticipants answered the baseline questionnaire to describe 
their oral hygiene, smoking and dietary habits.

Sample collection
Saliva samples were collected in QBB according to a 
standard technique. A total of 5  mL of spontaneous, 
whole, unstimulated saliva was collected into a 50  mL 
sterile DNA-free Falcon tube from each participant. The 
samples were divided into 0.4 mL aliquots and stored at 
− 80 °C until further analysis. The aliquots were received 
from QBB for total salivary DNA extraction.

DNA extraction and 16S rRNA gene sequencing
The total salivary DNA were extracted using automated 
QIAsymphony protocol (Qiagen, Hilden, Germany) fol-
lowing the manufacturer’s instructions. DNA purity 
was evaluated by the A260/A280 ratio using a Nan-
oDrop 7000 Spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA), and the DNA integrity was 
checked on a 1% agarose by gel electrophoresis.

The V1–V3 regions of the 16S rRNA gene were ampli-
fied using various forward primers: 27F with 12 bp golay 
barcodes containing a specific Illumina 5′ adapter for 
each sample and a common reverse primer 515 R [87, 88]. 
In brief, PCR was performed in triplicate in a 50 μL reac-
tion mixture containing 10  ng of template DNA and 2x 
Phusion HotStart Ready Mix (Thermo Scientific™). The 
following thermal cycling conditions were used: 5 min of 
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initial denaturation at 94 °C; 25 cycles of denaturation at 
94  °C for 30  s, annealing at 62  °C for 30  s, extension at 
72 °C for 30 s; and a final extension at 72 °C for 10 min. 
The amplified PCR products of approximately 650 bp in 
size from each sample were pooled in equimolar con-
centrations according to the manufacturer’s instruc-
tions (Illumina, Inc., San Diego, CA, USA). This pooled 
PCR product was purified using AgenCourt AMPure XP 
magnetic beads (Beckman Coulter). High throughput 
sequencing was performed on an Illumina MiSeq2×300 
platform in accordance with the Manufacturer’s instruc-
tions. Image analysis and base calling were carried out 
directly on the MiSeq.

Taxonomic classification of the salivary microbiome
Sequenced data were demultiplexed using MiSeq Control 
Software (MCS). Demultiplexed data were revised for 
quality control using FastQC [89]. Forward and reverse 
end sequences of respective samples were merged 
through PEAR tool [90] and sequence reads of qual-
ity score < 20 were discarded. All merged reads were 
trimmed to 160 bp > Reads < 500 bp using Trimmomatic 
tool [91]. Trimmed FASTQ files were converted into 
FASTA files. Demultiplexed FASTA files were analyzed 
using QIIME (Quantitative Insights Into Microbial Ecol-
ogy) v1.9.0 pipeline [92]. Operational taxonomic units 
(OTUs) were generated by aligning against the Human 
Oral Microbiome Database (HOMD RefSeq, Version 
15.1) with a confidence threshold of 97% [93]. For the 
comparison of salivary microbiome profiles, Sequence 
Read Archive (SRA) files from the bioprojects of other 
populations such as Brazil (PRJNA504439), Bangla-
desh (PRJEB23323), United States of America (USA) 
(PRJNA421776), South Korea (PRJDB2879), Germany 
(PRJNA387918), United Kingdom (UK) (PRJEB9010) 
and Japan (PRJDB4107) were retrieved. The Opera-
tional taxonomic units (OTUs) of different population 
were generated by aligning against Greengenes Database 
(Version:gg_13_8) with a confidence threshold of 97%.

Significant abundances of the salivary microbiome 
and diversity analyses
Linear Discriminant Analysis Effect Size (LEfSe) [94] 
was used to find differentially abundant taxa between 
the studied categories, with per-sample normalization to 
1 million, an alpha cut-off value of 0.05 for the Kruskal–
Wallis factorial test, and a threshold for discriminative 
features at a logarithmic LDA score > 2. Alpha diversity 
was measured by R software, using the phyloseq package 
[95]. Beta diversity was represented using Phylogenetic 
beta diversity metrics [96] and non-phylogenetic beta 
diversity metrics and the differences in the beta diversity 

were presented as principle coordinate analysis using 
QIIME.

Statistical analysis
Statistical significance of the alpha diversity measures 
such as Observed, Chao1, Shannon and Simpson indi-
ces were calculated using minitab 17 (Minitab statisti-
cal software). P-values lower than 0.05 were considered 
statistically significant. Analysis of similarities software 
(Anosim) was used to calculate the distance matrix dif-
ference between the categories included in this study 
(adult versus elderly, males versus females, etc.) using 
Bray–Curtis beta diversity parameters [92].

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1296​7-020-02291​-2.

Additional file 1: Figure S1. The salivary microbiome of the Qatari 
population Relative abundance of the total cohort. Y-axis shows  % of 
relative abundance; X-axis indicates the abundance for Qatari population; 
each taxonomic category is shown by a different color A) phylum level B) 
genus level. 

Additional file 2: Figure S2. The salivary microbiome of the other 
national population. A) Y-axis shows the percentage of relative abun-
dance; X-axis reflects various populations included. Colors in the bar graph 
reflect bacterial phyla. B) Relative abundance table of the salivary micro-
biome in various populations at phylum level C) Principle Coordinates 
Analysis (PCoA) based on Bray–Curtis dissimilarities of the salivary microbi-
ome. Axes are scaled to the amount of variation explained; ***P < 0.001. 

Additional file 3: Figure S3. Salivary microbiome of Participants with 
Painful gum. Y-axis shows  % of relative abundance; X-axis indicates the 
abundance; each taxonomic category is shown by a different color a) 
phylum level b) genus level c) Graphs of linear discriminant analysis (LDA) 
scores for differentially abundant bacterial phyla and genera; among the 
groups. LDA scores indicate overrepresented bacteria in each group. Fea-
tures with LDA scores ≥ 2 are presented. d) Alpha diversity measures were 
used to compare the two groups. Alpha diversity was measured by the 
number of OTUs observed, by the Chao1 index, in addition to Shannon 
and Simpson diversity measures, e) Principle Coordinates Analysis (PCoA) 
based on Bray–Curtis dissimilarities of the salivary microbiome. Axes are 
scaled to the amount of variation explained; ***P < 0.001. 

Additional file 4: Figure S4. Salivary microbiome of participants with 
Loose teeth. Y-axis shows  % of relative abundance; X-axis indicates the 
abundance; each taxonomic category is shown by a different color a) 
phylum level b) genus level c) Graphs of linear discriminant analysis (LDA) 
scores for differentially abundant bacterial phyla and genera; among 
the groups. LDA scores indicate overrepresented bacteria in each group. 
Features with LDA scores ≥ 2 are presented. d) Alpha diversity measures 
were used to compare the two groups. Alpha diversity was measured by 
the number of OTUs observed, by the Chao1 index, Shannon and Simp-
son diversity measures, e) Principle Coordinates Analysis (PCoA) based on 
Bray–Curtis dissimilarities of salivary microbiome. Axes are scaled to the 
amount of variation explained; **P < 0.01, ***P < 0.001.
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