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Abstract 

Background:  With the gradual unveiling of tumour heterogeneity, cancer stem cells (CSCs) are now being consid-
ered the initial component of tumour initiation. However, the mechanisms of the growth and maintenance of breast 
cancer (BRCA) stem cells are still unknown.

Methods:  To explore the crucial genes modulating BRCA stemness characteristics, we combined the gene expres-
sion value and mRNA expression-based stemness index (mRNAsi) of samples from The Cancer Genome Atlas (TCGA), 
and the mRNAsi was corrected using the tumour purity (corrected mRNAsi). mRNAsi and corrected mRNAsi were ana-
lysed and showed a close relationship with BRCA clinical characteristics, including tumour depth, pathological staging 
and survival status. Next, weighted gene co-expression network analysis (WGCNA) was applied to distinguish crucial 
gene modules and key genes. A series of functional analyses and expression validation of key genes were conducted 
using multiple databases, including Oncomine, Gene Expression Omnibus (GEO) and Gene Expression Profiling Inte-
grative Analysis (GEPIA).

Results:  This study found that mRNAsi and corrected mRNAsi scores were higher in BRCA tissues than that in normal 
tissues, and both of them increased with tumour stage. Higher corrected mRNAsi scores showed worse overall sur-
vival outcomes. We screened 3 modules and 32 key genes, and those key genes were found to be strongly correlated 
with each other. Functional analysis revealed that the key genes were related to cell fate decision events such as the 
cell cycle, cellular senescence, chromosome segregation and mitotic nuclear division. Among 32 key genes, we identi-
fied 12 genes that strongly correlated with BRCA survival.

Conclusions:  Thirty-two genes were found to be closely related to BRCA stem cell characteristics; among them, 
12 genes showed prognosis-oriented effects in BRCA patients. The most significant signalling pathway related to 
stemness in BRCA was the cell cycle pathway, which may support new ideas for screening therapeutic targets to 
inhibit BRCA stem characteristics. These findings may highlight some therapeutic targets for inhibiting BRCA stem 
cells.
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Background
Breast cancer is one of the most common and lethal can-
cers in women. According to the latest cancer statistics, 
the number of estimated new cases and deaths from 
breast cancer was 268,600 and 41,760, respectively, and 
the incidence and mortality rates of breast cancer were 
nearly 30% and 15%, respectively, among all cancers in 
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females worldwide [1]. The incidence rates of breast can-
cer increased slightly from 2006 to 2015 and this change 
is considered to be caused by the prevalence of obesity 
and decrease in parity in women [2]. The most crucial 
problem in the clinical treatment of breast cancer is that 
most people first diagnosed with breast cancer are often 
in an advanced stage because of the lack of access to sen-
sitive markers and effective therapy. Breast cancer is a 
complex process involving multiple cellular activities and 
signalling pathways. Hence, it is critical for us to precisely 
understand the molecular mechanism underlying this 
complicated malignancy, which could be beneficial for 
discovering valuable biomarkers to diagnose or predict 
clinical outcomes.

As a result of the development of single-cell DNA or 
RNA sequencing technology, tumour heterogeneity is 
broadly understood and unveils the fact that there are 
different cell populations in the same tumour tissues, 
one type of which is cancer stem cells (CSCs) [3, 4]. CSCs 
show a high degree of plasticity, which leads to distinct 
cellular phenotypes, functions and metabolic features. 
One of the reasons for plasticity caused by CSCs is that 
this cell population has the competence to transform 
between quiescent and proliferative states when they are 
stimulated in certain situations [5]. Breast cancer stem 
cells (BCSCs) were initially reported in 2003 and increas-
ing studies have revealed that BCSCs are closely related 
to breast carcinogenesis [6]. In addition, the presence of 
BCSCs was reported to correlate with tumour survival, 
metastasis and therapy resistance [7]. In addition, pro-
gressively increased genes were described to play a role 
in BCSC regulation in breast tissues, such as metallopro-
teases (MMPs) and insulin growth factor (IGF), and these 
genes were upregulated in conventional breast tumour 
cells [8]. Hence, scientists suspected that cancer cells 
might arise from a cell population with self-renewal abil-
ity, which was thought to be tumour stem cells. Although 
studies on BCSCs have been continuously conducted 
worldwide, the role of BCSCs in BRCA pathogenesis 
and progression is still unclear; identification of the key 
factors or vital pathways that initiate BCSCs from a qui-
escent state to a malignant state is urgently needed. To 
solve these issues, some researchers have used artificial 
intelligence and deep learning methods to summarize 
and analyse stem cell features. Malta et  al. [9] used a 
one-class logistic regression (OCLR) machine learning 
algorithm to extract the transcriptomic and epigenetic 
feature sets from normal tissue-derived pluripotent stem 
cells, including embryonic stem cells, induced pluripo-
tent stem cells, and their differentiated progeny, which 
have different degrees of stemness; in this way, they 
identified stem cell signatures and quantified stemness 
with a multi-part analysis containing transcriptomes 

and methylomes. Finally, two stemness indices, mRNAsi 
and mDNAsi, were proposed in this study: the former 
reflected gene expression, and the latter reflected epi-
genetic features. To verify the two stemness indices, 
the researchers further annotated and analysed cancer 
stemness in nearly 12,000 samples of 33 tumour types. 
Based on this study, we can obtain the stemness indices 
of each BRCA tissue in the TCGA database.

In the present study, we aimed to recognize key genes 
and pathways correlated with BRCA stemness by com-
bining mRNAsi in BRCA in TCGA via bioinformatic 
analysis. The WGCNA model was constructed, and gene 
modules that are closely related to the mRNAsi index 
are displayed. We identified three key gene modules and 
further selected key genes from one of them. Gene and 
module functional analyses were conducted to show 
their significance in BRCA. In summary, our study used 
a novel method to identify stemness-related genes and 
benefited us by identifying CSC-related genes and pre-
dicting their roles in cancer.

Methods
Data collection and pre‑processing
The RNA sequencing (RNA-Seq) expression data of 1222 
samples, including 113 normal samples and 1109 breast 
cancer samples, and the corresponding clinical informa-
tion of 1097 cases were downloaded from the TCGA data-
base on September 2019 (https​://porta​l.gdc.cance​r.gov). 
The mRNAsi indices and tumour purity of breast cancer 
cases in TCGA were obtained from previous studies [9, 
13]. We used the Perl language (http://www.perl.org/) 
to combine the RNA-Seq results of each sample and the 
Ensemble database (http://asia.ensem​bl.org/index​.html) 
to convert gene IDs to gene symbols in a matrix profile. 
After useful information filtering, we took 1097 cases and 
corresponding clinical information for the next analysis.

Clinical characteristic correlation analysis
The prognostic value of mRNAsi or corrected mRNAsi 
was investigated using the survival package in R. The 
correlation between mRNAsi or corrected mRNAsi and 
tumour stages or tumour grades was analysed with the 
beeswarm package in R.

Screening of differentially expressed genes (DEGs)
Raw expression data from the TCGA were transformed 
with log2, and identification of differentially expressed 
genes (DEGs) was conducted using the limma package 
in R language [10]. The cut-off criteria for DEG selection 
were as follows: |log2-fold change| > 1, p < 0.01, and false 
discovery rate (FDR) < 0.05. Volcano plots and heatmaps 
were drawn using the limma and pheatmap packages in R.

https://portal.gdc.cancer.gov
http://www.perl.org/
http://asia.ensembl.org/index.html
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WGCNA
Module establishment
The WGCNA package in R was utilized to build a co-
expression network targeting DEGs [11]. All paired genes 
adopted the average linkage method and Pearson’s corre-
lation matrices, and the co-expression similarity matrix 
was built using the absolute values of the correlations 
between transcription data. The function Amn = |Cmn|β 
(Cmn = Pearson’s correlation between gene m and gene 
n; Amn = adjacency between gene m and gene n) pro-
vided us with a method to establish a weighted adjacency 
matrix. β defined a correlation power (soft threshold-
ing parameter) showing strong relations between genes 
and penalizing the weak correlation. We first selected 
a β value to build a co-expression network, and then 
we converted the adjacency into a topological overlap 
matrix (TOM) to measure the network connectivity of 
genes, and the TOM summed up the adjacent genes for 
the network gene ratio and calculated the corresponding 
dissimilarity. We used average linkage hierarchical clus-
tering based on TOM dissimilarity measurement to clas-
sify genes showing similar expression profiles with gene 
modules. The minimum size of the gene group was 30 for 
the gene dendrogram.

Identifying key modules and genes
We chose mRNAsi and epigenetically regulated mRNAsi 
(EREG-mRNAsi), which is a stemness index generated 
using a set of stemness-related epigenetically regulated 
genes, as the sample traits to find CSC-related modules 
and genes. We selected modules related to the mRNAsi, 
and genes in these modules were thought to be co-
expressed CSC-related genes. First, we calculated the 
correlation between gene expression levels and sample 
traits, which was defined as the gene significance (GS). 
The module eigengenes (MEs) function was used as a key 
part of the principal component analysis (PCA) for each 
gene module. In a certain module, the expression model 
of each gene can be summarized as an expression pattern 
with a distinct expression feature. The calculation of GS 
was the log10 transformation of the p value (GS = lgp), 
which reflected a linear regression between the gene 
expression and mRNAsi or EREG-mRNAsi. Module sig-
nificance (MS) was the average GS in a specific module, 
which represented the correlation between the mod-
ule and sample traits. We merged some quite similar 
modules using a cut-off (< 0.25), and then the modules 
that had the largest MS were considered the most sam-
ple trait-related modules. After finding the modules 
of interest, we calculated GS and module membership 
(MM, correlation between genes in a certain module 
and gene expression profiles) for each gene. We defined 

the thresholds for the selection of key genes in a certain 
module as cor.gene MM > 0.8 and cor.gene GS > 0.5.

Functional annotation and pathway enrichment analysis
The cluster profiler package in R was selected to perform 
gene ontology (GO) functional annotation and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses 
to investigate and visualize the biological function behind 
key genes [12]. A p-value < 0.05 and an FDR < 0.05 were 
considered statistically significant.

Co‑expression analysis of key genes and protein–protein 
interaction (PPI) network analysis
To determine the co-expression relationship between key 
genes, we chose the corrplot package in R to calculate the 
Pearson correlations at the transcription level. We used 
an online tool, Search Tool for the Retrieval of Interact-
ing Genes (STRING), to evaluate the protein–protein 
interaction (PPI) among key genes.

Data validation
Oncomine (http://www.oncom​ine.org) and GEPIA 
(http://gepia​.cance​r-pku.cn/) were used to verify the 
mRNA expression of key genes between tumour and nor-
mal tissues in BRCA. The threshold of Oncomine screen-
ing was as follows: p-value, 1E−4; fold change, 2; gene 
level, top 10%. We selected three datasets, GSE29431, 
GSE10797, and GSE65194, from the Gene Expression 
Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo/). 
The online database (http://www.kmplo​t.com/) was used 
to examine the survival values of key genes.

Statistical analyses
All of the cut-offs used in this paper, including mRNAsi, 
corrected mRNAsi and key gene expression levels, were 
the median level of each item. The Wilcox test function 
in R was applied to evaluate the difference in mRNAsi 
scores or corrected mRNAsi scores between the nor-
mal group and the tumour group. A two-sided log-rank 
test in the survival package in R was employed to assess 
the survival difference between the two groups. The 
Kruskal test in R was used to test the correlation between 
mRNAsi scores or corrected mRNA scores and clinical 
characteristics. A p value < 0.05 was considered statisti-
cally significant.

Results
mRNAsi and corrected mRNAsi according to clinical 
characteristics of BRCA​
mRNAsi is a novel stemness index for evaluating the 
dedifferentiation potential of tumour cells and is thus 
considered a marker of CSCs. In our study, we found that 

http://www.oncomine.org
http://gepia.cancer-pku.cn/
http://www.ncbi.nlm.nih.gov/geo/
http://www.kmplot.com/
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the mRNAsi in BRCA tissues was significantly higher 
than that in normal tissues (Fig. 1a). The mRNAsi among 
different stages of BRCA showed obvious differences, 
and mRNAsi scores represented a gradually increasing 
trend with more aggressive clinical traits and tumour 
stages (Fig.  1b, c). The mRNAsi index was reported to 
be derived from normal cells and cells with different 
degrees of stemness via the OCLR algorithm and cal-
culated in TCGA transcriptomic datasets [9]. Tumour 
tissues were composed of thousands of different cells, 
including tumour cells and other types of cells, such as 
stromal and immune cells, which remind us that tumour 
purity was likely to be an interference factor affecting the 
evaluation of mRNAsi in clinical characteristics. Given 
the presence of tumour-associated cells and normal cells 
in transcriptomic studies, a previous study reported the 
ESTIMATE method to evaluate tumour purity; thus, the 
ESTIMATE score of BRCA in TCGA can be obtained 

[13]. The corrected mRNAsi (mRNAsi/tumour purity), 
calculated in the same way as a previous report, was used 
to remedy the influence of tumour purity in our study 
[14]. We re-analysed the corrected mRNAsi in normal 
and BRCA tissues and gained a similar result as that with 
mRNAsi: BRCA tissues had an evidently higher stemness 
index even after purity correction (Fig. 1d). In addition, 
the correlation between clinical characteristics and the 
corrected mRNAsi index was also similar to the correla-
tion with the mRNAsi index (Fig.  1e, f ). In the survival 
analysis, we observed a tendency, without statistical 
significance, that patients with a higher mRNAsi index 
had relatively poorer overall survival than those with a 
lower mRNAsi index (Fig.  1g). Nevertheless, patients 
with higher corrected mRNAsi values had an apparently 
poorer survival probability compared with patients who 
had lower corrected mRNAsi values, and the difference 
was statistically significant (Fig. 1h). These above results 

Fig. 1  Correlation between mRNAsi/corrected mRNAsi and clinical characteristics in BRCA. a Differences in mRNAsi between normal (113 samples) 
and BRCA (1109 samples) tissues. b, c Comparison of mRNAsi in different clinical stages (b) or tumour depths (c) in BRCA. d Differences in corrected 
mRNAsi (mRNAsi/ESTIMATE tumour purity) between normal (113 samples) and BRCA (720 samples) tissues. e, f Comparison of corrected mRNAsi in 
different clinical stages (e) or tumour depths (f) in BRCA. g, h Kaplan–Meier survival curves of mRNAsi (g) or corrected mRNAsi in BRCA (h). p < 0.05 
indicates statistical significance
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reflected that mRNAsi or corrected mRNAsi in BRCA 
were closely related to CSCs in terms of clinical charac-
teristics; these results were particularly apparent with the 
corrected mRNAsi, which may indicate a more accurate 
relation between CSCs and BRCA.

DEGs between BRCA tissues and normal tissues
The above results revealed that mRNAsi scores in BRCA 
tissues were higher than those in normal tissues; thus, 
we thought that there were some differentially expressed 
key genes that regulated the stemness of tumour cells. 
To identify these genes, we first downloaded the RNA-
Seq data from the public TCGA database and screened 
the DEGs between BRCA tissues and normal tissues. We 
identified 4575 DEGs, of which 2698 were upregulated 
and 1877 were downregulated (Fig.  2a and Additional 
file 1: Table S1).

WGCNA: identification of mRNAsi‑related modules 
and genes
WGCNA was applied to construct a DEG co-expression 
network to classify all DEGs into biological gene mod-
ules relying on average linkage hierarchical clustering 
and to further identify genes strongly associated with 
BRCA stemness. In this study, we selected β = 7 (scale-
free R2 = 0.95) as a soft threshold to establish the scale-
free network (Additional file  2: Figure  S1) and finally 
obtained 10 gene modules for the next analysis (Fig. 2b, 
c). To explore the relationship between the gene module 
and mRNAsi scores, we defined MS as the overall gene 
expression level of a certain module for the subsequent 
analysis. As shown in Fig. 2b, the first row of each mod-
ule was the R2 value, which indicated the degree of cor-
relation between gene expression and BRCA stemness; 
the closer the R2 was to 1, the stronger the correlation 
was. The second row of each module was the p value, and 
p < 0.01 was considered statistically significant. Here, we 
simultaneously analysed the correlation between gene 
expression and mRNAsi or EREG-mRNAsi. We noticed 
that there were three modules, including the turquoise 
module (R2 = 0.79, p = 8.0e−226) (Fig.  2d), green mod-
ule (R2 = − 0.67, p = 6.0e−141) (Fig. 2e) and brown mod-
ule (R2 = − 0.69, p = 3.0e−153) (Fig.  2f ), which showed 
very high R2 values and quite low p values; among these 

modules, the turquoise module reflected a positive cor-
relation between gene expression and stemness charac-
teristics, while the other two modules showed a negative 
correlation (Fig.  2b). Then, we selected the turquoise 
module to screen key genes in the mRNAsi group, and 
the selection criteria were defined as cor.MM > 0.8 and 
cor.GS > 0.5. Finally, we screened 32 key genes contain-
ing TPX2, HJURP, CDCA8, PLK1, KIFC1, CENPA, 
CCNB2, KIF2C, EXO1, TTK, KIF4A, CDC25A, MELK, 
NDC80, NCAPG, CEP55, NCAPH, RAD54L, KIF20A, 
KIF18B, ORC1, CDC45, KIF23, CDC20, BUB1, AURKB, 
SKA1, FOXM1, SGO1, DLGAP5, CDCA3, and BUB1B. 
We extracted the concrete expression value of each key 
gene and drew the heatmap and box plot, and the results 
reflected that those key genes were indeed evidently 
overexpressed in BRCA tissues (Fig. 3a, b).

Gene function annotation and pathway analysis
GO and KEGG analyses were employed to perform the 
functional enrichment analysis of significant modules 
and key genes. The results revealed that the major bio-
logical processes of the turquoise module were organelle 
fission, nuclear division and chromosome segregation, 
while the biological functions of the green and brown 
modules were enriched in extracellular structural organi-
zation and ameboid-type cell migration, respectively. 
In terms of signalling pathway enrichment analysis, we 
found those modules mainly focused on the cell cycle 
and PI3K-AKT signalling pathway (Additional file 3: Fig-
ure S2). These analyses also showed that the main func-
tions of key genes were chromosome segregation, mitotic 
nuclear division and microtubule cytoskeleton organiza-
tion, which are mostly related to the cell cycle pathway 
(Fig. 4a, b).

Correlation between key genes at transcription 
and protein levels
We identified the mutual correlation between key genes 
and their protein products using Pearson correlation 
and the STRING online tool. As shown in Fig.  5, we 
found strong and statistically significant correlations 
between key genes (p < 0.01). The relationship between 
KIF2C and CDCA8 had the highest correlation score of 
0.86, and the lowest correlation score of 0.58 was for the 

(See figure on next page.)
Fig. 2  Identification of DEGs and stemness-related key modules in BRCA. a Differentially expressed genes: red indicates upregulated genes; green 
indicates downregulated genes and black indicates genes excluded by DEG screening criteria. b, c Identification of a co-expression module in 
BRCA. Each piece of the leaves on the cluster dendrogram corresponded to a gene, and those genes with similar expression patterns compose a 
branch (c). Correlation between gene modules and mRNAsi scores or EREG-mRNAsi. The upper row in each cell indicates the correlation coefficient 
ranging from − 1 to 1 of the correlation between a certain gene module and mRNAsi or EREG-mRNAsi. The lower row in each cell indicates the 
p-value (b). d, e The scatter plot of the top three important gene modules: turquoise module (d), green module (e) and brown module (f). Each 
circle indicates a gene, and those circles located in the upper right indicate the key genes in these modules
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relationship between BUB1 and AURKB or SGO1 and 
CDC20 (Fig.  5). The protein interaction relationships 
between key genes were analysed using STRING, and a 
wide-ranging and strong relationship between key genes 
was shown (Fig.  6a). We analysed the edge number of 

each node gene in the PPI network, and the results dem-
onstrated an almost equal edge number for each gene, 
which indicated that those key genes composed a quite 
dense interaction network (Fig. 6b).

Fig. 3  Expression and functional annotation of key genes. a Heatmap of the expression level of all key genes. Samples were sorted into normal (N) 
and tumour (T) groups. Red indicates high expression, and green indicates low expression. b The specific expression value of all key genes
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Fig. 4  GO and KEGG pathway analysis of key genes
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Validation and analysis of key genes expression
To systematically understand the expression levels of 
these key genes, we used two databases, Oncomine and 
GEPIA, to analyse their expression in multiple cancer 
types. Through the results of analysis using Oncomine, 
we found that all key genes were obviously upregulated 
in more than one cancer type in addition to BRCA, and 
all of them were ranked in the top 10% of DEGs that 
were ranked with a relatively high number of datasets 
(Fig.  7a). Meanwhile, we utilized the other online data-
base GEPIA to verify their expression and acquired a 
similar result, as shown in Fig.  7b. For the expression 
verification of key genes in BRCA, we chose to examine 

the GEO data. We first confirmed the expression of key 
genes between tumour tissues (54 samples) and normal 
tissues (10 samples) in GSE29431, and all the genes were 
upregulated (Fig.  8a). Breast cancer is a heterogeneous 
neoplasm, and distinct subtypes of breast cancer con-
tribute to different clinical outcomes; thus, we evaluated 
the expression of key genes in different subtypes, includ-
ing luminal A, luminal B and triple negative breast can-
cer (TNBC), in BRCA. As shown in Fig.  8b, all 31 key 
genes (no expression data of SGO1 in GEO) were appar-
ently highly expressed in TNBC compared with normal 
tissues. Moreover, we found 29 key genes, not including 
CENPA, ORC1 and RAD54L, that had higher expression 

Fig. 5  Correlation between key genes at the transcriptional level



Page 10 of 15Pei et al. J Transl Med           (2020) 18:74 

levels in luminal B BRCA than that in luminal A BRCA 
(Fig.  8c). This result demonstrated that these key genes 
indeed participated in BRCA stemness maintenance. 
We further analysed the expression of key genes in two 
cell types containing stromal cells and epithelial cells in 
BRCA tissues, and the results revealed that only 8 genes 
(AURKB, BUB1, CENPA, KIF4A, KIFC1, NCAPG, PLK1, 
and RAD54L) showed distinct expression levels between 
these two cell types in BRCA tissues (Fig. 8d). To investi-
gate the role of those key genes in BRCA, we performed 
survival analysis of these genes using the Kaplan–Meier 

plotter online tool, and the results indicated that 12 genes 
of the 32 key genes had an effect on the prognosis of 
patients with BRCA (Fig. 9).  

Discussion
Although many studies have focused on BRCA diagno-
sis and treatment in recent years, therapeutic strategies 
to prevent and treat this malignancy are still inadequate 
and ineffective. With the emergence of the tumour CSC 
hypothesis, cancer cells are now considered likely to 
originate from a cell population called stem cells, which 
has self-renewal capacity; in addition, CSCs have been 
reported to be involved in tumour progression, thera-
peutic resistance and recurrence [15]. Thus, it is fairly 
important and urgent to identify the key genes driving 
the crucial cellular processes involved in the transforma-
tion from quiescent stem cells to non-renewing cancer 
cells with unlimited proliferative potential. In the present 
study, we first analysed the correlation between mRNAsi 
scores and clinical characteristics in BRCA samples and 
proved that tumour tissues always had higher stemness 
than normal tissues, which was consistent with previ-
ous findings [16]. Considering that the tumour tissues 
were composed of complex cell types, including cancer-
related cells and normal microenvironment cells, and 
mRNAsi was a stemness index for all cells in a certain 
sample, to eliminate the bias of mRNAsi caused by non-
cancer cells in tumour samples, we calculated corrected 
mRNAsi scores using the tumour purity. The corrected 
mRNAsi showed evidently higher levels in BRCA tissues 
than in normal tissues, and the corrected mRNAsi scores 
increased as the tumour pathological stage increased, 
with T4 stage tumours showing the highest stemness. 
The mRNAsi scores did not show a significant correla-
tion with patient survival unless they were corrected 
by tumour purity. As previously reported, CSCs medi-
ated tumour metastasis and treatment resistance, which 
finally predicted poor survival of patients [17].

WGCNA is a tool to analyse the gene expression pat-
tern in multiple samples; it can classify those genes with 
similar expression patterns into clusters and further ana-
lyse the correlations between different gene clusters and 
certain characteristics [11]. We used WGCNA to initially 
classify the DEGs into different gene clusters based on a 
weighted connection analysis of the DEG expression pro-
file between BRCA and normal tissues. Thus, those highly 
co-expressed genes constituted a gene module that could 
be used to evaluate the correlation strength between 
gene modules and the clinical features of interest. In this 
way, we discovered more than one gene module with 
strong connections to mRNAsi. Gene function annota-
tion and signalling pathway analysis revealed that these 

Fig. 6  The mutual protein–protein interactions of key genes. a and 
edge number of each key gene (b)
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Fig. 7  Expression validation of key genes. a The mRNA expression of key genes in multiple cancer types from the Oncomine database. The number 
in the cells represents the number of analyses meeting the thresholds. Red indicates a higher expression level of target genes in tumour tissues 
than in normal tissues, and blue indicates an opposite expression pattern. The colour depth of each cell indicates the gene rank, and the deeper the 
colour depth is, the higher the gene rank. b The mRNA expression of key genes in multiple cancer types from GEPIA
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gene modules may exert distinct functions in BRCA; for 
instance, genes in the green module were most enriched 
in focal adhesion and ECM-receptor interaction path-
ways; genes in the brown module were mainly focused on 
the PI3K-AKT signalling pathway, MAPK pathway and 
Ras signalling pathway; and genes in the turquoise mod-
ule were primarily concentrated on the cell cycle and cel-
lular senescence pathways. Given that the cell cycle and 
cellular senescence determine cell fate and self-renewal, 
we selected the turquoise module for the next analysis. 
Based on GS and MM, we selected 32 key genes from the 
turquoise module. These key genes were all upregulated 
in BRCA tissues, and gene functional enrichment was 
most focused on the cell cycle pathway. Some cell cycle 
regulators have been reported to be involved in not only 
breast cancer progression but also in the stem-like cell 
activity of breast cancer cells; for example, inhibition of 
cyclin D1 or CDK4/6 increases or decreases the migra-
tion capacity of stem cells in breast cancer [18]. Addition-
ally, BCSCs are considered to exist in a slow cycling state 
or a quiescence state, which is the direct consequence of 
cell cycle dysregulation [19].

The validation of the stemness-related key genes in 
multiple cancer tissues revealed that most of the key 

genes were overexpressed in various cancer tissues. In 
BRCA, the expression levels of these key genes were veri-
fied using several GEO datasets, including GSE29431, 
GSE65194 and GSE10797. As expected, key genes were 
all overexpressed in BRCA tissues, and the most impor-
tant was that we found that the expression of key genes 
in TNBC tissues was quite higher than that in normal 
tissues. TNBC has a poorer prognosis than other types 
of breast cancer because of its high degree of malignant 
phenotypes, which are similar to those of cancer stem 
cells [20]. We discovered differences in the expression 
levels of key genes in different subtypes of breast cancer, 
and 28 of 31 key genes were also upregulated in luminal 
B tissues compared with luminal A tissues. The expres-
sion differences of key genes between TNBC and normal 
tissues or luminal B and luminal A demonstrated their 
significance in the regulation of breast cancer stemness 
characteristics. Only 8 key genes showed expression dif-
ferences between stromal cells and epithelial cells in 
breast cancer tissues. We thought the metastasis com-
petence between stromal cells and epithelial cells in the 
same cancer tissues may not be enough to trigger long-
distance metastasis, thus these two cell types may not 
show evident differences in stemness characteristics. 

Fig. 8  Expression of key genes in the GEO database. The GSE29431 dataset includes normal and BRCA tissues (a). The GSE65194 dataset was 
divided into two pairs: TNBC vs normal tissues (b) and luminal B vs luminal A (c). GSE10797 includes stromal cells and epithelial cells in BRCA tissues 
(d)
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Among all key genes, 12 genes (TPX2, EXO1, CCNB2, 
CENPA, SGO1, RAD54L, SKA1, FOXM1, PLK1, CDC20, 
KIF4A and SGO1) were correlated with the survival of 
BRCA patients.

FOXM1, PLK1, and CENPA composed a cell cycle 
kinetics regulation pathway in a previous study, which 
reported that FOXM1 regulated the expression of 
CENPA and PLK1 to promote mitosis, further regu-
lating the proliferation of pancreatic β cells [21]. The 
investigation of pancreatic β cells mainly focused on 
the transition from a quiescent state to a normal cell 
cycle state, which was quite similar to the character-
istics of cancer stem cells. Furthermore, inhibition of 
PLK1 blocked the growth of CD44 high/CD24-/low 
tumour-initiating cells in TNBC [22]. CENPA is a criti-
cal component of the cell cycle signalling pathway and a 
necessary regulator of the mitotic spindle; it was found 

to be expressed in cardiac progenitor cells and to func-
tion as a promoter of the proliferation of cardiac pro-
genitor cells [23]. These key genes were mainly focused 
on the cell cycle signalling pathway, and a previous 
study reported that cell cycle genes involved in DNA 
replication and G2 phase progression showed an intrin-
sic propensity towards the pluripotent state, which sug-
gested that control of the pluripotent state is hardwired 
to the cell cycle pathway [24].

Conclusions
In conclusion, 32 genes were found to be closely related 
to BRCA stem cell characteristics; among them, 12 genes 
showed prognosis-oriented effects in BRCA patients. The 
most significant signalling pathway related to stemness 
in BRCA was the cell cycle pathway, which may support 
new ideas in therapeutic target screening for inhibitors 

Fig. 9  Prognosis-related genes among key genes. Survival analysis of key genes using the Kaplan–Meier plotter online tool
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of BRCA stem characteristics. Conclusions derived from 
bioinformatic analysis of retrospective data certainly 
need to be validated by further biological studies, and 
this is what we are going to do next.
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