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Oxidized low density lipoprotein receptor 
1 promotes lung metastases of osteosarcomas 
through regulating the epithelial‑mesenchymal 
transition
Long Jiang1,3,4,5†  , Shanshan Jiang2†, Wenjie Zhou3,4,5†, Jia Huang1†, Yongbin Lin3,4,5, Hao Long3,4,5 
and Qingquan Luo1*

Abstract 

Background:  Oxidized low density lipoprotein receptor 1 (OLR1), a type II membrane protein, has been identified 
as receptor for oxidized low-density lipoprotein. The current study firstly provided evidence that OLR1 regulated EMT 
and thus promoted lung metastases in osteosarcoma (OS).

Method:  All relevant experiments were conducted according to the manufacturer’s protocols. In vivo tumor xeno-
graft experiments were carried out in 6- to 16-week-old mice, then maintained in our animal facility under pathogen-
free conditions in accordance with the Institutional Guidelines and approval by local authorities. For the use of the 
clinical materials for research purposes, prior patient’s consent and approval from the Institute Research Ethics Com-
mittee were obtained. All statistical analyses were performed using IBM SPSS Statistics 22.0 for Windows.

Result:  Microarrays were adopted to explore the underlying epigenetic mechanisms related to metastasis. 11 genes 
were identified among total 26,890 differentially expressed genes. After validated in paired primary and metastatic tis-
sues, OLR1 was selected in the current study. The expression levels of OLR1 were tested in 4 widely used cell lines. Cell 
proliferation, migration and invasion could be enhanced when OLR1 was overexpressed. OLR1 overexpression also 
triggered G1 to S + G2 phases of cell cycle. Accordingly, cell proliferations, migration and invasion would be reduced 
when OLR1 was silenced. OLR1-silencing blocked G1 to S + G2 phases of cell cycle. Also, OLR1 silencing effectively 
suppressed local tumor carcinogenesis and lung metastases in vivo. Moreover, silencing OLR1 repressed the expres-
sion of mesenchymal markers (Snail, Twist, and N-cadherin), but induced an epithelial marker (E-cadherin).

Conclusion:  This study indicated a novel molecular mechanism involving the role of OLR1 in lung metastases of 
osteosarcoma, strengthened the correlation between OLR1 and lung metastases.
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Background
Osteosarcoma, the most prevalent primary malignant 
bone tumor, arisen frequently in children and adoles-
cents [1, 2]. Over the past 20  years, the outcomes of 

osteosarcoma patients with localized diseases have dras-
tically improved because of the dramatic progress in the 
neoadjuvant and adjuvant chemotherapy regimens [3, 4]. 
Nevertheless, due to the strong tendency to metastasize 
of osteosarcoma, the mortality remained high for most 
osteosarcoma patients after developing metastases [5, 6]. 
Despite multidisciplinary treatment, the prognoses were 
usually associated with fatal outcomes, due to resistance 
of salvage therapeutic approaches [7, 8]. Since metastasis 
was accounted for the major cause of death and critical 
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step of tumor progression in osteosarcoma patients, it 
was crucial need in these patients to identify the funda-
mental molecular and cellular mechanisms of metasta-
ses, a multistep process which mediated the migration 
and invasion of osteosarcoma cells from the primary sites 
to the distant sites [9, 10].

Oxidized low density lipoprotein receptor 1 (OLR1), a 
type II membrane protein with extracellular domain and 
a short cytoplasmic tail, has been identified as a lectin-
like 50-kD receptor for oxidized low-density lipoprotein 
(ox-LDL) initially in endothelial cells, and subsequently 
in monocytes, platelets, cardiomyocytes, and vascular 
smooth muscle cells, as well as in renal, pulmonary, and 
neuronal tissues [11, 12]. OLR1, a member of the C-type 
lectin family, was consisted of four subunits: a C-type 
lectin-like fold, a single transmembrane subunit, a short 
N-terminal cytoplasmic domain, and a short ‘‘neck’’ or 
stalk region. OLR1 over-expression was reported to be 
associated with obvious upregulation of several onco-
genes and significant increase in cell apoptosis, prolifera-
tion and migration [13–15]. Previous investigations have 
shown that increased serum ox-LDL levels were corre-
lated with increased risks of breast, ovarian, and colon 
cancer. OLR1 was also proved to be significant in cancer 
cells growth and transformed state maintenance [16]. In 
addition, xenografts experiments indicated that OLR1 
accounted for many reported oncogenic activities, such 
as transformation of epithelial cells, proliferation, migra-
tion, tumor growth and apoptosis [17].

Epithelial to mesenchymal transition (EMT), defined as 
the potential of losing epithelial characteristics followed 
by acquiring mesenchymal traits, which demonstrated as 
losing epithelial polarities and gaining mesenchymal phe-
notypes, was a well-studied essential procedure involv-
ing in tumorigeneses and metastases [18–20]. Previous 
evidence has indicated that the metastatic procedure in 
osteosarcoma exhibited EMT like states, exhibited by 
regulation of EMT-related transcription factors, such as 
TWIST-1, snail, and Smads, which are involved in the 
complex invasive and metastatic behavior of osteosar-
coma progression [21–23].

Previously, we described that high expression of OLR1 
was associated with short progression-free survival (PFS) 
in patients with squamous non-small cell lung cancer, 
and OLR1 could be applied in constructing a compre-
hensive predictive model involving patients with squa-
mous NCSLC according to their PFS [24]. On the basis 
of this phenomenon, our hypothesis was that OLR1 was 
involved in osteosarcoma metastatic potential. In this 
study, OLR1 expression was analyzed in osteosarcoma 
cell lines and human samples. The hypothesis was that 
the metastasis of osteosarcoma might, at least in part, be 
due to high or present OLR1 expression. The speculation 

was that if this was the case, silencing the cells to express 
OLR1 might inhibit their progression, migration, and 
invasion potential and thus decrease their metastatic 
potential, which might open novel therapeutic perspec-
tives. The silencing of OLR1 expression in osteosarcoma 
cell lines resulted in suppression of metastases. Moreo-
ver, high OLR1 expression in primary human osteo-
sarcoma samples was associated with poor prognoses. 
Integrally, the present findings illustrated a novel step 
forward in comprehending the effect of gene OLR1 in 
osteosarcoma metastases and provided a potential tar-
get for targeted osteosarcoma therapy. The current study 
firstly provided evidence that OLR1 regulated EMT and 
thus promoted lung metastasis in osteosarcoma.

Materials and methods
All relevant experiments were conducted according to 
the manufacturer’s protocols. Further details are pro-
vided in Additional file 1: Additional Methods.

Survival analysis
To analyze the prognostic role of OLR1 expression in 
osteosarcoma, the current study used the KM plotter 
database to study the association of OLR1 expression 
with OS (http://kmplo​t.com/analy​sis/index​.php?p=servi​
ce&start​=1). The database included the OLR1 expression 
and OS rates (with a 10  year follow-up) of 259 patients 
with osteosarcoma.

Study approval
For the use of the clinical materials for research purposes, 
prior patient’s consent and approval from the Institute 
Research Ethics Committee were obtained. All animal 
studies were approved by the IACUC of Second Affiliated 
Hospital, Zhejiang University School of Medicine.

Patients and specimens
Expression of OLR1 and internal control genes were 
evaluated by immunohistochemistry in 31 paired 
primary-metastatic osteosarcomas patients, and 30 
patients with metastatic osteosarcomas and 30 baseline 
characteristics matched patients with non-metastatic 
osteosarcomas. Basic information of those patients 
and tumor samples is listed in Table  1. All patients 
had been enrolled by the SYSUCC between 2004 and 
2013 and undergone surgical treatments. After surgi-
cal resection, tumor specimens and paired adjacent 
non-tumor specimens were collected and immediately 
stored in liquid nitrogen until use. All osteosarcoma 
specimens and matched non-metastatic specimens 
were confirmed by 2 senior pathologists (Shaoyan, Xi 
and Yong, Li).

http://kmplot.com/analysis/index.php?p=service&start=1
http://kmplot.com/analysis/index.php?p=service&start=1
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Statistical analysis
Data were indicated as the mean ± standard error of 
the mean (SEM). The Pearson χ2 test and Fisher’s exact 
test were used for categorical data, and an independent 
sample t-test, Mann–Whitney U test or one-way analy-
sis of variance (ANOVA) with Bonferroni’s post hoc test 
was used for numerical data. All the results were consid-
ered to be statistically significant at values of P < 0.05 (*, 
P < 0.05; **, P < 0.005; ***, P < 0.0005).

All cell culture experiments, western blot, and flow 
cytometry were done at least in triplicate and repeated 
at least three times. Data analysis was performed using 
IBM SPSS Statistics 22.0 for Windows (SPSS Inc, Chi-
cago, IL).

Results
Epigenetic screen for genes involving metastasis in OS
To explore the underlying epigenetic mechanisms 
related to metastasis, microarrays were adopted to ana-
lyze 4 patients with metastatic OSs, whose primary and 
metastatic tumors were available. Approximately 542 
genes were differentially expressed between the 4 pairs 
of primary and metastatic tumors tissues with a false 
discovery rate of 0.01 (Additional file 1: Figure S1). The 
subsequently statistical analysis revealed that 24 genes 
were upregulated in metastatic tumors when compared 
with primary tumors with P < 0.01 and greater than a 
twofold difference in expression levels among the above 

542 genes (Fig. 11-1). Some of these upregulated genes, 
including HTATIP2, PRG4, and HFE, were previously 
reported to be involved in cancer metastasis [25–27]. 
The identification of these known metastasis-related 
genes suggested that our high-throughput platform 
was effective for the discovery of genes that drive OS 
metastasis.

Subsequently, using real-time PCR, we determined 
the expression levels of 11 differentially expressed 
genes selected among the 24 genes (Fig. 11-2). Among 
these genes, our results demonstrated that the greatest 
difference in expression levels of OLR1 was observed 
between metastatic and primary tumors. The expres-
sion levels of OLR1 were examined in 31 pairs of 
human primary OS tissues and matched metastatic 
OS tissues. The data validated that the expression level 
of OLR1 was significantly upregulated in metastatic 
OS tissues in comparison to the primary OS tissues 
(P = 0.004, Fig. 11-3a). Furthermore, the expression lev-
els of OLR1 were also examined in 30 pairs of human 
primary OS tissues from metastatic and non-metastatic 
OS patients. Similar tendency was also observed as sig-
nificantly higher OLR1 expression level in the primary 
OS tissues from metastatic patients (P < 0.001, Fig. 11-
3b). All the above findings supported the notion that 
OLR1 might act as a tumor promotor in OS and play 
a key role in inducing OS metastasis. Taken together, 
OLR1 was selected in the current study, while other 
candidate genes, such as PRG4, would be investigated 
in separate studies.

Differential expression of OLR1 in OS cell lines
The expressions of OLR1 were investigated in four OS 
cell lines (U2-OS, SAOS-2, 143b, and MG63) by qRT-
PCR (Fig. 11-4a) and Western blotting (Fig. 11-4b). The 
results indicated that the expression levels of OLR1 
were low in U2-OS and SAOS-2 cell lines, but high in 
143b and MG63 cell lines (Fig. 11-4a, b).

Overexpression of the OLR1 gene in OS cells
From the present background, the speculation was that 
overexpression of the OLR1 gene in OS cells might enhance 
their metastatic abilities. To test this hypothesis, the full-
length OLR1 gene was overexpressed in U2-OS cells, which 
expressed low levels of OLR1. As shown in Fig.  11-5a, at 
the protein level, a high expression of the recombinant full-
length OLR1 in U2-OS cell lines was achieved.

OLR1 overexpression enhanced cell proliferation
When culturing equal numbers of OLR1-overexpress-
ing cells and vector controls for 48 h in proper medium, 

Table 1  Clinicopathologic characteristics of  patients 
with OS

a  Median values are listed

Characteristic Paired primary-
metastatic OS 
(n = 31)

Metastatic 
OS (n = 30)

Non-
metastatic 
OS (n = 30)

Age, years 12 (5–23)a 11 (5–21)a 14 (7–23)a

Gender (%)

 Male 21 20 20

 Female 10 10 10

Primary tumor size 
(cm)

3.2 (2–20)a 3 (2–20)a 4 (2–20)a

Grade (%)

 1 25 24 26

 2 1 1 0

 3 3 3 2

 4 2 2 2

Follow-up (months)

 Median 42.3 39.1 52.5

 Range 2.5–114.3 2.5–98.5 13.2–114.3

 Mean 62.9 46.7 70.4
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much higher cell densities for the OLR1-overexpressing 
cells were observed by colony formation assays when 
compared to the vector controls (Fig.  22-1a). Consist-
ently, cell proliferations of OLR1-overexpressing cells 
were found to be significantly enhanced by MTT assays 
(Fig. 22-2a).

OLR1 overexpression alternated cell cycles of OS cells
Cell cycle analysis were performed to determine whether 
OLR1 enhanced cell proliferation via alteration of the cell 
cycle. As expected, OLR1 overexpression triggered G1 to 
S + G2 phases of cell cycle (Fig. 22-3a). The results indicate 
the role for OLR1 in OS cells as a cell cycle priming factor.

Fig. 1  The expression levels of OLR1 in osteosarcoma. 1-1. Real-time PCR analysis to screen for activated metastasis-driving genes in osteosarcoma. 
Heatmap clustering of expression array data obtained from 12 pairs of primary and metastatic tumors tissues. 1-2. Real-time PCR analysis to 
screen for activated metastasis-driving genes in osteosarcoma. Heatmap clustering of expression array data obtained from 31 pairs of primary and 
metastatic tumors tissues. 1-3. The expression levels of OLR1 in osteosarcoma tissues. a The expression levels of OLR1 in 31 pairs of human primary 
osteosarcoma tissues and matched metastatic osteosarcoma tissues. The expression level of OLR1 was significantly upregulated in metastatic OS 
tissues in comparison to the primary OS tissues (P = 0.004). b The expression levels of OLR1 in 30 pairs of human primary osteosarcoma tissues 
from metastatic and non-metastatic osteosarcoma patients. Higher OLR1 expression level was observed in the primary osteosarcoma tissues from 
metastatic patients (P < 0.001). 1-4. The expressions of OLR1 in osteosarcoma cell lines. a It was shown by qRT-PCR that the expressions of OLR1 
were low in U2-OS and SAOS-2 cell lines, but high in 143b and MG63 cell lines. b It was validated by Western blotting that the expressions of OLR1 
were low in U2-OS and SAOS-2 cell lines, but high in 143b and MG63 cell lines. 1-5. The expressions of OLR1 in osteosarcoma cell lines after relevant 
treatment. a After the full-length OLR1 gene was overexpressed in U2-OS cells, a high expression was achieved. b Lentiviral constructs encoding 
OLR1-targeting shRNAs were transferred into MG63 and 143b cells. The expression levels of OLR1 were validated by Western blotting
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OLR1 overexpression promoted the migration 
and invasion of OS cells in vitro
The positive effect of OLR1 on migration and invasion 
was determined. As expected, the ectopic overexpres-
sion of OLR1 in U2-OS cells increased their migratory 
(Fig.  22-4a) and invasive (Fig.  22-5a) abilities. These 
results demonstrated that OLR1 positively regulated OS 
cells migration and invasion.

Effect of OLR1 gene silencing on tumor cell behaviors
Moreover, to explore whether silencing of OLR1 would 
influence cell proliferation, cell cycles, migration, and 
invasion, lentiviral constructs encoding OLR1-tar-
geting shRNAs were transferred into MG63 and 143b 
cells. Expression of OLR1 was confirmed by West-
ern blotting. (Figure  11-5b). As shown in Fig.  22-1b, 

c, when culturing equal numbers of OLR1-silencing 
cells and controls for 48  h in proper medium, much 
lower cell densities for the OLR1-silencing cells were 
observed by colony formation assays when compared 
to the controls. Cell growths of 143b and MG63 were 
clearly reduced. Next, cell proliferations of OLR1-
silencing cells were found to be significantly reduced 
when measured by MTT assays (Fig. 22-2b, c).

In addition, cell cycle analyses were performed to 
determine whether OLR1-silencing inhibited cell pro-
liferation via affecting cell-cycle distribution. In con-
trast to OLR1 overexpression, OLR1-silencing blocked 
G1 to S + G2 phases of cell cycle (Fig.  22-3b, c). The 
results added evidence of the role for OLR1 in OS cells 
as a cell cycle priming factor.

Fig. 2  The effect of OLR1 in osteosarcoma cells. 2-1. The effect of OLR1 on colony formation assays in osteosarcoma cell lines. a Culturing equal 
numbers of OLR1-overexpressing U2-OS cells and vector controls for 48 h, much higher cell densities for the OLR1-overexpressing U2-OS cells were 
observed. b Culturing equal numbers of OLR1-silencing 143b cells and controls for 48 h, much lower cell densities for the OLR1-silencing 143b cells 
were observed. c Culturing equal numbers of OLR1-silencing MG63 cells and controls for 48 h, much lower cell densities for the OLR1-silencing 
MG63 cells were observed. 2-2. The effect of OLR1 on cell proliferations in osteosarcoma cell lines. a Cell proliferations of OLR1-overexpressing 
U2-OS cells were enhanced. b Cell proliferations of OLR1-silencing 143b cells were reduced. c Cell proliferations of OLR1-silencing MG63 cells were 
reduced. 2-3. The effect of OLR1 on cell cycle in osteosarcoma cells. a OLR1 overexpression triggered G1 to S + G2 phases of cell cycle in U2-OS cells. 
b OLR1-silencing blocked G1 to S + G2 phases of cell cycle in 143b cells. C: OLR1-silencing blocked G1 to S + G2 phases of cell cycle in MG63 cells. 
2-4. The effect of OLR1 on migratory abilities in osteosarcoma cells. a The overexpression of OLR1 in U2-OS cells increased migratory abilities. b 143b 
cells migratory abilities were suppressed when OLR1 was silenced. c MG63 cells migratory abilities were suppressed when OLR1 was silenced. 2-5. 
The effect of OLR1 on invasive abilities in osteosarcoma cells. a The overexpression of OLR1 in U2-OS cells increased invasive abilities. b 143b cells 
invasive abilities were suppressed when OLR1 was silenced. c MG63 cells invasive abilities were suppressed when OLR1 was silenced
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Furthermore, the effect of OLR1-silencing on migra-
tion and invasion was determined. As expected, OS 
cells migratory (Fig. 22-4b, c) and invasive (Fig. 22-5b, 
c) abilities were significantly suppressed when OLR1 
was silenced. These results indicated the negative role 
of OLR1-silencing on OS cells migration and invasion.

Silencing OLR1 inhibited the tumorigenicities 
and metastases of OS cells in vivo
To examine whether the silence of OLR1 inhibits 
tumors tumorigenicities and metastases in vivo, female 
BALB/c immune-deficient mice were inoculated 

subcutaneously with stable OLR1-silencing 143b cells 
and respective controls. Five mice were analyzed per 
treatment group. The tumor sizes were measured 
every week. Five weeks later, the subcutaneous tumors 
were removed to make frozen specimens; along with 
the tumor volume and weight were measured. As 
shown in Fig.  3a, OLR1 silencing effectively sup-
pressed local tumor carcinogenesis of OS cells in vivo.

The lung is the most common site of OS metasta-
sis. Therefore, xenograft mice models were applied to 
determine whether OLR1 shRNA reduced lung metas-
tasis in 143b -injected mice in vivo. 143b-shOLR1, and 
its control cells were cultured and injected through the 

Fig. 3  The effect of OLR1 on local tumor carcinogenesis and lung metastases in osteosarcoma cells. a The effect of OLR1 on local tumor 
carcinogenesis in osteosarcoma cells. Female BALB/c immune-deficient mice were inoculated subcutaneously with stable OLR1-silencing 143b 
cells and respective controls. The subcutaneous tumors were removed to make frozen specimens; along with the tumor volume and weight 
were measured. OLR1 silencing suppressed local tumor carcinogenesis of osteosarcoma cells in vivo. b The effect of OLR1 on lung metastases in 
osteosarcoma cells 143b-shOLR1, and its control cells were cultured and injected through the tail vein into female BALB/c immune-deficient mice. 
OLR1 knockdown in 143b cells caused reduction in the number of lung metastases
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tail vein into female BALB/c immune-deficient mice. 
Eight mice were analyzed per treatment group. After 
8 weeks, lung metastases were checked. OLR1 knock-
down in 143b cells caused a significant reduction in 
the number of lung metastases (Fig.  3b). These find-
ings confirmed that the silencing of OLR1 expression 
inhibited lung metastases in vivo.

Silencing of OLR1 expression represses mesenchymal 
phenotype
Previous investigations have proposed that EMT was 
associated with cancer cell progression, invasion, migra-
tion, tumor metastases, and progression [28, 29]. Snail 
and Twist were proved to be transcription repressors 
who have a critical role in EMT both during the tumo-
rigenicities and metastases. Of note, as a repressor of 
E-cadherin, Snail leads to the loss of polarity and mor-
phologic change by repressing E-cadherin. To contribute 
to this phenomenon, whether the oncological function of 
OLR1 was regulated by the mesenchymal transformation 
of OS was investigated. The epithelial and mesenchymal 
cell markers were exploited in stable OLR1-silencing 
143b cells and respective negative controls (control shR-
NAs). Eventually, the results confirmed by qRT-PCR 
(Fig.  4a), and Western blotting (Fig.  4b) indicated that 
silencing OLR1 repressed the expression of mesenchy-
mal markers (Snail, Twist, and N-cadherin), but induced 
an epithelial marker (E-cadherin). These results revealed 
that silencing of OLR1 could suppress cell metastases by 
inhibit the mesenchymal transformation of OS.

OLR1 activates NF‑κB signaling pathway
Previous experiments considered that EMT is a com-
mon tumor metastasis mechanism, and NF-κB pathway 
plays an important regulatory role in the process of EMT 
[30]. The results showed that silencing OLR1 decreased 
NF-κB-dependent luciferase activity in OS cells via lucif-
erase assay (Fig. 5a). Furthermore, downregulating OLR1 
decreased nuclear translocation of NF-κB/p65 via cellu-
lar fractionation and western blotting analysis (Fig.  5b). 
These results indicate that OLR1 activates NF-κB signal-
ing in OS cells.

Prognostic value of OLR1 in human osteosarcoma patients
The current study used the KM plotter database and 
analysis tool to determine the prognostic value of OLR1 
for osteosarcoma. Survival curves were generated for 
patients with osteosarcoma (n = 259). Compared with 
high expression, low expression of OLR1 was associated 
with higher OS for patients with osteosarcoma (Fig.  6). 
The HR for OLR1 was 1.56 [95% confidence interval 
(CI) = 1.03–2.34] and P = 0.032 (Fig. 6).

Discussion
The approach of multidisciplinary treatment for osteo-
sarcoma had led to improved survival [31–33]. Neverthe-
less, patients with metastatic diseases continued to have 
poor prognoses [34, 35]. Therefore, identifying the fun-
damental molecular and cellular mechanisms of metas-
tases were warranted. Our previous work illustrated that 
high expression of OLR1 was associated with short PFS 

Fig. 4  The effect of OLR1 on mesenchymal transformation in osteosarcoma cells. The epithelial and mesenchymal cell markers were exploited in 
stable OLR1-silencing 143b cells and respective negative controls. Silencing OLR1 repressed the expression of mesenchymal markers (Snail, Twist, 
and N-cadherin), but induced an epithelial marker (E-cadherin), which were confirmed by qRT-PCR (a), and Western blotting (b)
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in patients with squamous non-small cell lung cancer, 
and OLR1 could be applied in constructing a comprehen-
sive predictive model involving patients with squamous 
NCSLC according to their PFS [24]. In the current study, 
we show that OLR1 could promote metastases of osteo-
sarcoma in vitro and in vivo.

Osteosarcomas, mainly occurred in adolescents and 
children, were high-grade malignant bone neoplasms 
characterized by early metastases into lungs [36, 37]. 
After comprehensive treatment, approximately 20% of 
mortalities might be attributed to lung metastases in 
patients with osteosarcomas [38, 39]. Therefore, identi-
fying effective tumor-related factors to prevent osteosar-
coma metastases would be critical. In this study, novel 
insights involved in the OLR1 function and its role in 
osteosarcoma metastases were gained. The OLR1 expres-
sion level was related to cell migratory potential in vitro, 
and its downregulation could inhibit EMT and tumor 

metastases in  vivo. The current observation provided a 
potential opportunity in osteosarcoma targeted therapy 
involved in OLR1 gene.

Cancer metastases were complex steps including cells 
detaching from primary sites and forming secondary 
tumors at distant sites [40–42]. Regulation of cell adhe-
sion and migration had been identified as a critical step 
of the metastatic process [43–45]. The complex and 
dynamic networks involving invasion, migration, which 
were mediated by numerous intracellular mediators, 
were significant for tumor metastases. Potential elements 
that could govern or control tumor cell migration and 
invasion would be important in the approach of metasta-
ses to distal organs [46–48].

As a potential paradigm of interpreting invasive and 
subsequently metastatic behavior in cancer progression, 
abundant attentions were attracted by EMT [49–51]. 
Here, we described that OLR1 induced EMT, thus subse-
quently promoted lung metastases in osteosarcomas.

Recent studies have indicated that OLR1 regulated the 
genes involved in cancer cell migration and invasion, thus 
played a crucial role in cancer progression. OLR1 had 
been implicated in the tumorigenesis or progression of 
several types of cancers by a series of studies [13, 16].

In the present study, we identified OLR1 as a highly-
overexpressed protein in osteosarcomas that seemed 
critically involved in the malignant behavior of this dis-
ease, presumably, in part, via the EMT approach. Our 
data support a role of OLR1 overexpression for the 

Fig. 5  OLR1 activates NF-κB signaling pathway in OS cells. NF-κB 
transcriptional activity was assessed by luciferase reporter constructs 
in the indicated OS cells. a. Error bars represent the mean ± S.D. of 
three independent experiments. *P < 0.05. Western blotting of nuclear 
NF-κB/p65 expression in the indicated OS cells (b)

Fig. 6  Prognostic value of OLR1 in patients with osteosarcoma. 
Survival curves are plotted for patients with osteosarcoma. HR hazard 
ratio
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maintenance of invasiveness and metastatic spread. Fur-
thermore, we showed that OLR1 is also important for 
colony formation and proliferation of osteosarcoma cells 
in vitro and for tumorigenicity and metastases in vivo.

In the current study, OLR1 was identified as a higher 
expressed gene in metastatic OS tissues than primary OS 
tissues, and in primary OS tissues from metastatic than 
non-metastatic OS patients. The silencing of OLR1 inhib-
ited osteosarcoma cell invasion and migration in vitro, as 
well as lung metastasis in mice in vivo. Furthermore, the 
promotive effect of OLR1 in osteosarcoma cell migra-
tion and lung metastasis was mediated by EMT. Silencing 
OLR1 remarkably repressed the expression of mesenchy-
mal markers (Snail, Twist, and N-cadherin), but induced 
an epithelial marker (E-cadherin) expression. This mech-
anism had been validated in MAPK family members, 
such as ERK, JNK, and p38 in terms of promoting EMT 
[52–54].

The process of metastasis was described as detached 
cancer cells escaped into the blood, then spreading to dis-
tant organs [55]. Previous studies indicated that upregu-
lation of OLR1 would promotes migration of breast 
cancer cells, which was the same as our current findings 
[56]. One of the ligands of OLR1, phosphatidylserine, 
would take potential responsibility of adhesion between 
endothelium and cancer cells, which would be the part 
of the reason of OLR1 promoting cancer metastasis 
through regulating EMT. In addition, studies showed that 
OLR1 was associate with E-cadherin expression medi-
ated by MT1-MMP metalloproteinases [57]. Moreover, 
as proved in the current study, OLR1 was indicated to 
activate NF-κB pathways, which are described to pro-
mote the expression of EMT markers, snail and slug [58].

Conclusions
This study indicated a novel molecular mechanism 
involving the role of OLR1 in osteosarcoma metastases, 
strengthened the correlation between OLR1 and osteo-
sarcoma progression, and examined the role of OLR1 in 
EMT. In the future, the molecular mechanism involving 
OLR1-modulating EMT will be investigated.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
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