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Abstract 

Background:  Prostate cancer (PCa) remains the second leading cause of deaths due to cancer in the United States in 
men. The aim of this study was to perform an integrative epigenetic analysis of prostate adenocarcinoma to explore 
the epigenetic abnormalities involved in the development and progression of prostate adenocarcinoma. The key DNA 
methylation-driven genes were also identified.

Methods:  Methylation and RNA-seq data were downloaded for The Cancer Genome Atlas (TCGA). Methylation and 
gene expression data from TCGA were incorporated and analyzed using MethylMix package. Methylation data from 
the Gene Expression Omnibus (GEO) were assessed by R package limma to obtain differentially methylated genes. 
Pathway analysis was performed on genes identified by MethylMix criteria using ConsensusPathDB. Gene Ontology 
(GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also 
applied for the identification of pathways in which DNA methylation-driven genes significantly enriched. The protein–
protein interaction (PPI) network and module analysis in Cytoscape software were used to find the hub genes. Two 
methylation profile (GSE112047 and GSE76938) datasets were utilized to validate screened hub genes. Immunohisto‑
chemistry of these hub genes were evaluated by the Human Protein Atlas.

Results:  A total of 553 samples in TCGA database, 32 samples in GSE112047 and 136 samples in GSE76938 were 
included in this study. There were a total of 266 differentially methylated genes were identified by MethylMix. Plus, a 
total of 369 differentially methylated genes and 594 differentially methylated genes were identified by the R package 
limma in GSE112047 and GSE76938, respectively. GO term enrichment analysis suggested that DNA methylation-
driven genes significantly enriched in oxidation–reduction process, extracellular exosome, electron carrier activity, 
response to reactive oxygen species, and aldehyde dehydrogenase [NAD(P)+] activity. KEGG pathway analysis found 
DNA methylation-driven genes significantly enriched in five pathways including drug metabolism—cytochrome 
P450, phenylalanine metabolism, histidine metabolism, glutathione metabolism, and tyrosine metabolism. The vali‑
dated hub genes were MAOB and RTP4.

Conclusions:  Methylated hub genes, including MAOB and RTP4, can be regarded as novel biomarkers for accurate 
PCa diagnosis and treatment. Further studies are needed to draw more attention to the roles of these hub genes in 
the occurrence and development of PCa.
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Background
Prostate cancer (PCa) remains the second leading cause 
of deaths due to cancer in the United States in men [1]. 
Siegel et al. [2] demonstrated that there will have 164,690 
newly diagnosed PCa patients and 29,430 deaths in 
2018 in the United States. Thus, the diagnosis of PCa in 
early stage is vitally important [3]. Currently, the serum 
prostate-specific antigen (PSA) screening remains the 
primary way for early diagnosis of PCa. However, the 
sensitivity and specificity of PSA test remains low [4]. 
Therefore, it is important to find notable biomarkers for 
the diagnosis of PCa.

Previous studies [5–7] have shown that DNA meth-
ylation plays a crucial role in the development and pro-
gression of prostate cancer. DNA methylation is treated 
as a promising investigative tool for the study of pro-
gressive prostate cancer because that DNA methylation 
is a reversible progress [8]. High-throughput screening 
has been widely used to identify the DNA methylation 
involved in the initiation and progression of the pros-
tate cancer [9–11]. Epigenetic modifications are crucial 
for diagnosis and prognosis of prostate cancer and prov-
ing additional options for prostate cancer diagnosis and 
treatment strategies [12, 13].

In this study, prostate cancer associated DNA methyl-
ation-driven genes between cancerous and normal sam-
ples were identified and GO term enrichment analysis, 
KEGG pathway analysis, PPI network analysis were also 
performed respectively.

Results
Identification of DNA methylation‑driven genes
Clinical data of prostate cancer patients extracted from 
TCGA were demonstrated in Table  1. A total of 266 
genes were differentially methylated when comparing 
tumor to normal by MethylMix criteria for all 553 sam-
ples. Representative differential methylation of tumor 
samples compared with normal samples was demon-
strated in Fig.  1 and Table  2. Of these genes, 209 genes 
(78.57%) were hypermethylated and the remainder of the 
57 genes (21.43%) were hypomethylated.

The entire matrix of methylation values was evaluated. 
In this study, the correlation between gene expression 
and DNA methylation data was calculated and 266 gene 
expression were found to be negatively correlated with 
DNA methylation (Fig.  2). Correlation between genes 
expression and DNA methylation of top 10 hypermethyl-
ated genes (Fig. 3) and top hypomethylated genes (Fig. 4) 
was also demonstrated. A Heatmap of the methylation 
values of all patients was demonstrated in Fig. 5.

A total of 369 differentially methylated genes and 
594 differentially methylated genes were identified by 

the R package limma in GSE112047 and GSE76938, 
respectively.

Gene ontology terms analysis of DNA methylation‑driven 
genes obtained from TCGA database
GO term enrichment analysis results varied from GO 
classification. As to biological process, the DNA meth-
ylation-driven genes enriched in oxidation–reduction 
process, response to reactive oxygen species, xenobiotic 
catabolic process, bone morphogenesis, hydrogen per-
oxide biosynthetic process, response to interferon-beta, 
negative regulation of ATPase activity, and limb mor-
phogenesis. For cellular component, the DNA methyl-
ation-driven genes enriched in extracellular exosome. 
For molecular function, the DNA methylation-driven 
genes enriched in electron carrier activity, aldehyde 
dehydrogenase [NAD(P)+] activity, glutathione per-
oxidase activity, structural molecule activity, and glu-
tathione binding (Fig. 6 and Table 3).

KEGG pathway analysis of DNA methylation‑driven genes 
obtained from TCGA​
KEGG pathway analysis found five significantly 
enriched pathways. Seven DNA methylation-driven 
genes enriched in drug metabolism—cytochrome P450. 
Four DNA methylation-driven genes enriched in Phe-
nylalanine metabolism. Four DNA methylation-driven 
genes enriched in Histidine metabolism. Five DNA 
methylation-driven genes enriched in Glutathione 
metabolism. Four DNA methylation-driven genes 
enriched in Tyrosine metabolism (Fig. 7 and Table 4).

Table 1  Clinical dada of  prostate cancer patients 
from TCGA​

a  Three clinical data of prostate cancer patients are not available

Characteristic Total

Cohort sizea 500

Mean age, years 61.01 ± 6.823

T stage

 pT2a 13 (2.6%)

 pT2b 10 (2%)

 pT2c 165 (33%)

 pT3a 159 (31.8%)

 pT3b 136 (27.2%)

 pT4 10 (2%)

 Unknown 7 (1.4%)

N stage

 N0 348 (69.6%)

 N1 79 (15.8%)

 Unknown 73 (14.6%)
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PPI network analysis of DNA methylation‑driven genes
PPI network of DNA methylation-driven genes, consisting 
of 75 nodes and 90 edges, was constructed by Cytoscape 
software, based on STRING database. The top 20 differ-
entially expressed DNA methylation-driven genes with 

high degree of connectivity were selected as the hub DNA 
methylation-driven genes. There hub genes were IFITM1, 
RTP4, ACSF2, GSTM2, GSTM1, ACOX2, COL4A6, 
ITGA2, AKR1B1, NPY, CFTR, GPX7, ALDH3A1, CRYZ, 
ALDH2, MAOB, GSTP1, GPX3, XAF1, and BST2 (Fig. 8), 

Fig. 1  Summary of top hypermethylated and top hypomethylated genes. The horizontal black bar demonstrates the distribution of methylation 
values in the normal samples (denoted as beta values where higher beta values demonstrate greater methylation). The histogram represents the 
distribution of methylation in tumor samples

Table 2  Top 10 hypomethylated genes and hypermethylated genes in patients with prostate cancer

Gene Normal mean Tumor mean Log FC p value Adjust p Cor Cor p value

Top 10 hypomethylated genes

 TAF1D 0.298851771 0.17046481 − 0.809956148 5.12E−22 1.61E−19 − 0.515133904 3.62E−35

 TMEM87A 0.36898334 0.219989007 − 0.746124244 2.40E−22 7.57E−20 − 0.415783216 2.80E−22

 KLK2 0.42230197 0.252663444 − 0.741058027 2.34E−25 7.36E−23 − 0.424469057 3.03E−23

 MARS 0.661117252 0.407190703 − 0.69920154 2.88E−18 9.08E−16 − 0.402813221 6.87E−21

 SLC10A5 0.682378547 0.421046571 -0.696592477 1.19E−16 3.76E−14 − 0.320114016 2.36E−13

 KLK3 0.528659515 0.348234132 − 0.602281232 2.38E−22 7.50E−20 − 0.352378214 4.92E−16

 MPC2 0.847716806 0.573604393 − 0.563526315 3.24E−22 1.02E−19 − 0.509873152 2.25E−34

 ALDH1A3 0.390659331 0.266302408 − 0.552845598 6.96E−20 2.19E−17 − 0.500862763 4.78E−33

 CLDN8 0.556942422 0.387056997 − 0.524982157 1.24E−14 3.91E−12 − 0.339347771 6.50E−15

 PMEPA1 0.427234317 0.301507194 − 0.50283511 1.93E−21 6.07E−19 − 0.559861766 1.65E−42

Top 10 hypermethylated genes

 HIST1H2BH 0.073047 0.264894 1.858512 1.40E−15 4.41E−13 − 0.37138 9.15E−18

 FAM200A 0.052277 0.163374 1.643934 1.78E−18 5.60E−16 − 0.32491 9.86E−14

 ZFP36L2 0.101664 0.293078 1.527482 1.59E−13 5.02E−11 − 0.47382 2.72E−29

 WFDC2 0.125846 0.347072 1.463575 2.89E−24 9.09E−22 − 0.46874 1.27E−28

 SMIM10 0.169555 0.460955 1.44287 1.29E−18 4.06E−16 − 0.52098 4.58E−36

 RIPPLY2 0.06161 0.166659 1.435669 4.35E−23 1.37E−20 − 0.33215 2.57E−14

 RTP4 0.102519 0.273692 1.416666 4.91E−19 1.55E−16 − 0.51074 1.67E−34

 FBXO27 0.048294 0.126663 1.391093 3.13E−12 9.85E−10 − 0.64419 7.67E−60

 ZNF492 0.057359 0.147069 1.358401 3.63E−20 1.14E−17 − 0.33472 1.58E−14

 HPDL 0.14249 0.356177 1.321732 5.48E−20 1.73E−17 − 0.54417 8.31E−40
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which might play important roles in DNA methylation in 
prostate cancer patients. CytoHubba was used to carry 

out the top 20 hub DNA methylation-driven genes in 
Cytoscape software (Fig.  9). Correlation between genes 

Fig. 2  Representative images demonstrated correlation between gene expression and DNA methylation. Gene expression were found to be 
negatively correlated with DNA methylation. Average β-values are presented on the x-axis, log2 FPKM gene expression values are presented on 
y-axis

Fig. 3  Correlation between genes expression and DNA methylation of top 10 hypermethylated genes. Average β-values are presented on the 
x-axis, log2 FPKM gene expression values are presented on y-axis
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Fig. 4  Correlation between genes expression and DNA methylation of top 10 hypomethylated genes. Average β-values are presented on the x-axis, 
log2 FPKM gene expression values are presented on y-axis

Fig. 5  Heatmap of methylation values for 266 genes uniquely methylated in prostate cancer patients
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expression and DNA methylation of top 10 hub genes was 
also demonstrated in Fig. 10.

Validation of candidate hub DNA methylation‑driven 
genes by the Gene Expression Omnibus (GEO) database
To further investigate the candidate hub DNA methyla-
tion-driven genes, GEO database was used to validate 
these selected genes. Two methylation profile datasets 
(GSE76938 and GSE112047) were extracted from the 
GEO for the validation. We then overlapped the differen-
tially methylated genes among 266 genes obtained from 
TCGA database (Additional file  1: Table  S1), 369 genes 
obtained from GSE112047 (Additional file  2: Table  S2), 

594 genes obtained from GSE 76938 (Additional file  2: 
Table S2), and top 20 hub genes obtained from PPI net-
work analysis and identified a common list of 6 methyl-
ated genes including AKR1B1, RTP4, MAOB, GSTM2, 
GPX3, and COL4A6. The outcome was demonstrated by 
a Venn diagram (Fig. 11).

Gene ontology terms analysis of DNA methylation‑driven 
genes obtained from GEO database
GO term enrichment analysis was perform based on 
DNA methylation-driven genes obtained from GEO 
database. The results of GO analyses demonstrated that 
DNA methylation-driven genes in GSE112047 were 

Fig. 6  Representative enriched GO terms of 266 DNA methylation driven genes in prostate cancer

Table 3  The top 8 GO terms enriched by the 266 DNA methylation driven genes in prostate cancer

Category Term Count p value Genes

BP GO:0055114 ~ oxidation–reduction process 25 2.13E−06 STEAP4, ME3, OXA1L, GLUD1, DUOX1, PAH, HPDL, 
ALDH3A1, ALDH1A3, GPX3, HAAO, FASN, GPX7, 
DHCR24, FAXDC2, MAOB, CRYZ, CDO1, RDH5, 
CYBA, CYP27A1, AKR1B1, TMLHE, AOX1, CYBRD1

CC GO:0070062 ~ extracellular exosome 66 6.38E−06 STEAP4, RARRES2, RPS2, SYNGR2, CANT1, GSTM2, 
DES, APOD, GPX3, LTF, PI15, ZDHHC1, BST2, CFTR, 
EEF2, CD40, CD38, KRT17, KRT15, TMEM106A, 
CYBRD1, HSPB1, SERPINB1, NEU1, CSTA, MFAP4, 
WFDC2, GSTP1, ACP5, PAH, CD74, B3GNT8, KRT5, 
ITGB8, KRT7, ALDH1A3, ENTPD5, FASN, RPL3, 
HAAO, ANGPTL1, RPL7A, MARS, BHMT2, S100A16, 
LGALS3, KLK2, KLK3, HIST1H2BH, MAOB, KLK1, 
CRYZ, ANXA2, PROM1, ORM1, ACSM1, C1ORF116, 
PKP1, PHB2, RAB34, AKR1B1, CAPG, AOX1, ALDH2, 
SLC46A3, PON3

MF GO:0009055 ~ electron carrier activity 7 0.001504105 ACOX2, CYBA, AOX1, AKR1B1, MAOB, ALDH2, HAAO

BP GO:0000302 ~ response to reactive oxygen species 5 0.0019364 CYBA, APOD, GPX3, GPX7, GSTP1

MF GO:0004030 ~ aldehyde dehydrogenase [NAD(P)+] activity 3 0.002720156 ALDH1A3, ALDH2, ALDH3A1

MF GO:0004602 ~ glutathione peroxidase activity 4 0.002838234 GSTM2, GPX3, GPX7, GSTP1

BP GO:0042178 ~ xenobiotic catabolic process 3 0.003748861 GSTM1, GSTM2, CRYZ

BP GO:0060349 ~ bone morphogenesis 4 0.005820424 SP5, LTF, ACP5, RIPPLY2
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mainly enriched in regulation of cell differentiation, 
extracellular matrix, cell adhesion, muscle structure 
development, and neuron differentiation (Fig.  12a and 
Table  5). DNA methylation-driven genes in GSE76938 
were mainly enriched in extracellular structure organiza-
tion, extracellular matrix, central nervous system neuron 
differentiation, regulation of neurotransmitter levels, and 
cell fate commitment (Fig. 12b and Table 5).

KEGG pathway analysis of DNA methylation‑driven genes 
obtained from GEO
KEGG enrichment analysis was perform based on DNA 
methylation-driven genes obtained from GEO database. 
The results of KEGG analyses demonstrated that DNA 
methylation-driven genes in GSE112047 were mainly 
enriched in Dopaminergic synapse, Nicotine addiction, 
and Amphetamine addiction pathways (Fig.  12c and 
Table  6). DNA methylation-driven genes in GSE76938 
were mainly enriched in Nicotine addiction, Morphine 

Fig. 7  Pathways enriched of 266 DNA methylation driven genes in prostate cancer

Table 4  Pathway enriched by the 266 DNA methylation driven genes

Pathway External_id Members_input_overlap p-value q-value Size

Drug metabolism—cytochrome P450 hsa00982 AOX1; GSTM1; GSTM2; ALDH3A1; MAOB; 
GSTP1; ALDH1A3

6.59E−05 0.003828899 70

Phenylalanine metabolism hsa00360 PAH; MAOB; ALDH3A1; ALDH1A3 9.23E−05 0.003828899 17

Histidine metabolism hsa00340 MAOB; ALDH3A1; ALDH2; ALDH1A3 0.000320403 0.008864472 23

Glutathione metabolism hsa00480 GSTM1; GSTM2; GPX3; GSTP1; GPX7 0.00114281 0.023713299 54

Tyrosine metabolism hsa00350 AOX1; ALDH3A1; ALDH1A3; MAOB 0.001836818 0.030491186 36

Tryptophan metabolism hsa00380 MAOB; HAAO; ALDH2; AOX1 0.002722806 0.037665486 40

Metabolism of xenobiotics by cytochrome P450 hsa00980 GSTM1; GSTM2; ALDH3A1; GSTP1; ALDH1A3 0.00433977 0.051457275 74

Chemical carcinogenesis hsa05204 GSTM1; GSTM2; ALDH3A1; GSTP1; ALDH1A3 0.007094498 0.073605418 82
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addiction, and Retrograde endocannabinoid signaling 
pathways (Fig. 12d and Table 6).

Validation of MAOB and RTP4 expression in the Human 
Protein Atlas and TCGA​
The results of stains on normal prostate tissues demon-
strated that the MAOB (Fig. 13a–c, patient id 1938, 2053, 
and 2098) and RTP4 were highly expressed in normal 
prostate tissues. With respect to MAOB, the staining was 
not detected and the intensity was negative in low grade 

prostate (Patient id 3910) adenocarcinoma (Fig.  13d). 
Also, the staining was not detected and the intensity was 
negative in high grade prostate (Patient id 3561) adeno-
carcinoma (Fig. 13e).

Plus, the results of stains on normal prostate tissues 
demonstrated that the RTP4 (Fig. 13f–h, patient id 1798, 
1984, and 3497) were highly expressed in normal prostate 
tissues. In terms of RTP4, the staining was low and the 
intensity was weak in low grade prostate (Patient id 4525) 
adenocarcinoma (Fig.  13i). The staining was low and 
the intensity was weak in high grade prostate (Patient id 
4347) adenocarcinoma (Fig. 13j). Methylation status and 
correlation between genes expression and DNA methyla-
tion of MAOB and RTP4 were demonstrated in Fig. 14a, 
b.

Discussion
Epigenetic changes and modifications are a crucial com-
ponent of initiation and progression of tumorigenesis 
[14]. DNA methylation has been most studied and hyper-
methylaiton is associated with a silencing effect on tumor 
suppressor genes. Previous studies [15–17] reported that 
the modification of the methylation status of specific 
genes has been associated with worse prognosis, which 
demonstrated that the modification of epigenetics may 
be involved in the progression of tumorigenesis.

Fig. 8  PPI network conducted by 266 DNA methylation driven genes

Fig. 9  A total of 20 hub genes were found by using the PPI network 
analysis in Cytoscape software
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Previous studies reveals that DNA methylation plays 
an important role in the development of prostate can-
cer and associates with adverse clinical outcomes. The 
methylation state of promoters of specific genes were 
also involved in the development of prostate cancer [11, 
18, 19]. Larsen et al. [20] reported that DNA-methylation 
analysis of urine cells captured by microfiltration pro-
vides a novel tool for noninvasive detection of high-grade 
prostate cancer.

The novel genes involved in the epigenetic regulation 
of prostate cancer could be identified by using high-
throughput arrays [7, 9, 18]. We aimed to elucidate the 
role and importance of DNA methylation in prostate 

cancer by analyzing The Cancer Genome Atlas Project. 
In this study, a model-based tool (MethyMix) was used 
to identify key genes with aberrant methylation and gene 
expression was linked to aberrant methylation. In this 
study, the top 3 hypermethylated genes were demon-
strated including HIST1H2BH, FAM200A, and ZFP36L2 
and the top 3 hypomethylated genes were also demon-
strated including TAF1D, TMEM87A, and KLK2.

The GO term analysis revealed that the differentially 
expressed DNA methylation driven genes were involved 
in oxidation–reduction process, extracellular exosome, 
electron carrier activity, response to reactive oxygen 
species, and aldehyde dehydrogenase [NAD(P)+] activ-
ity. Furthermore, the enriched KEGG pathway of the 
differentially expressed DNA methylation driven genes 
including drug metabolism—cytochrome P450, pheny-
lalanine metabolism, histidine metabolism, glutathione 
metabolism, and tyrosine metabolism. PPI analysis dem-
onstrated that hub genes were IFITM1, RTP4, ACSF2, 
GSTM2, GSTM1, ACOX2, COL4A6, ITGA2, AKR1B1, 
NPY, CFTR, GPX7, ALDH3A1, CRYZ, ALDH2, MAOB, 
GSTP1, GPX3, XAF1, and BST2, which might play 
important roles in DNA methylation in prostate cancer 
patients. We then overlapped the differentially methyl-
ated genes and identified a common list of 6 methylated 
genes including AKR1B1, RTP4, MAOB, GSTM2, GPX3, 
and COL4A6.

In terms of GSTM2, Angulo et  al. [21] revealed that 
GSTM2 hypermethylation could be used to predict 
biochemical recurrence after radical prostatectomy, 
which suggested that epigenetic silencing of GSTM2 
played an important role in involving biochemical 
recurrence. Plus, Ashour et  al. [22] demonstrated that 

Fig. 10  Correlation between genes expression and DNA methylation of top 10 hub genes. Average β-values are presented on the x-axis, log2 FPKM 
gene expression values are presented on y-axis

Fig. 11  A Venn diagram was used to demonstrate a common list of 
6 methylated genes including AKR1B1, RTP4, MAOB, GSTM2, GPX3, 
and COL4A6
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Fig. 12  Results of enriched GO terms and pathways in GSE112047 and GSE76938 datasets. Representative enriched GO terms in GSE112047 (a) and 
GSE76938 (b) datasets and representative pathways in GSE112047 (c) and GSE76938 (d) datasets

Table 5  GO terms enriched in GSE112047 and GSE76938 datasets

Gene set Description Size Expect Ratio p value FDR

GSE112047

 GO:0045595 Regulation of cell differentiation 1699 28.866 2.1479 5.48E−09 0.0001

 GO:0031012 Extracellular matrix 496 8.4271 3.3226 3.00E−08 0.0002

 GO:0007155 Cell adhesion 1369 23.259 2.1067 5.21E−07 0.0016

 GO:0061061 Muscle structure development 610 10.364 2.7982 6.40E−07 0.0016

 GO:0030182 Neuron differentiation 1313 22.308 2.1069 9.19E−07 0.0016

 GO:0005540 Hyaluronic acid binding 22 0.3738 16.052 1.3596E−06 0.0021

 GO:2000026 Regulation of multicellular organismal development 1908 32.417 1.82 3.8179E−06 0.0046

GSE76938

 GO:0043062 Extracellular structure organization 400 11.623 2.8392 7.43E−08 0

 GO:0031012 Extracellular matrix 496 14.412 3.1223 1.20E−11 1.56E−08

 GO:0021953 Central nervous system neuron differentiation 179 5.2012 4.2298 1.19E−08 7.73E−06

 GO:0001505 Regulation of neurotransmitter levels 335 9.7341 2.9792 1.70E−07 0.0001

 GO:0045165 Cell fate commitment 249 7.2352 3.3171 2.86E−07 0.0001

 GO:1990351 Transporter complex 332 9.6469 2.9025 4.73E−07 0.0001

 GO:0050769 Positive regulation of neurogenesis 447 12.989 2.5407 9.50E−07 0.0002

 GO:0043025 Neuronal cell body 486 14.122 2.4076 2.17E−06 0.0004

 GO:0005201 Extracellular matrix structural constituent 158 4.591 3.7029 3.55E−06 0.0005

 GO:0042391 Regulation of membrane potential 414 12.03 2.4938 4.34E−06 0.0005
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GSTM2 was hypermethylated in PCa and was simulta-
neously methylated in 40.9% if the PCa, which revealed 
that epigenetic silencing of GSTM2 is a common event 
in PCa. Maldonado et  al. [23] revealed that GPX3 was 

aberrantly methylated and silenced in PCa tissues and 
had tumor suppressor activity in PCa cell lines. Plus, Lin 
et  al. [24] revealed that GPX3, as a DNA methylation-
silenced tumor suppressor gene, was hypermethylated 

Table 6  Pathways enriched in GSE112047 and GSE76938 datasets

Gene set Description Size Expect Ratio p value FDR

GSE112047

 hsa04728 Dopaminergic synapse 131 2.3422 3.8426 0.0005 0.1734

 hsa05033 Nicotine addiction 40 0.7152 5.5931 0.0054 0.5917

 hsa05031 Amphetamine addiction 68 1.2158 4.1126 0.0072 0.5917

 hsa05146 Amoebiasis 96 1.7164 3.4957 0.0073 0.5917

 hsa04512 ECM-receptor interaction 82 1.4661 3.4104 0.0154 0.8913

 hsa05323 Rheumatoid arthritis 90 1.6091 3.1073 0.0222 0.8913

 hsa00604 Glycosphingolipid biosynthesis 15 0.2682 7.4574 0.0286 0.8913

 hsa04933 AGE-RAGE signaling pathway in diabetic complications 99 1.77 2.8248 0.0318 0.8913

 hsa00380 Tryptophan metabolism 40 0.7152 4.1948 0.0341 0.8913

 hsa00360 Phenylalanine metabolism 17 0.3039 6.5801 0.0362 0.8913

GSE76938

 hsa05033 Nicotine addiction 40 1.1993 9.1721 1.47E−08 4.8E−06

 hsa05032 Morphine addiction 91 2.7284 4.7647 2.68E−06 0.0004

 hsa04723 Retrograde endocannabinoid signaling 148 4.4374 3.3804 0 0.0029

 hsa04933 AGE-RAGE signaling pathway in diabetic complications 99 2.9682 4.0428 0 0.0029

 hsa04080 Neuroactive ligand-receptor interaction 277 8.305 2.5286 0.0001 0.0051

 hsa05146 Amoebiasis 96 2.8783 3.8217 0.0001 0.007

 hsa04727 GABAergic synapse 88 2.6384 3.7901 0.0003 0.013

 hsa04728 Dopaminergic synapse 131 3.9277 3.0553 0.0005 0.0191

 hsa05144 Malaria 49 1.4691 4.7647 0.0006 0.0191

 hsa04724 Glutamatergic synapse 114 3.418 3.2183 0.0006 0.0191

Fig. 13  Validation of MAOB and RTP4 expression in the Human Protein Atlas. With respect to MAOB, when compared with normal prostate tissues 
(a–c), the results demonstrated that the staining was not detected and the intensity was negative in low grade (d) and high grade (e) prostate 
adenocarcinoma, respectively. Also, in terms of RTP4, when compared with normal prostate tissues (f–h), the results demonstrated that the staining 
was low and the intensity was weak in low grade (i) and high grade (j) prostate adenocarcinoma
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in PCa. Strand et  al. [25] stated that hypermethylation 
of COL4A6 could be treated as a frequent target in PCa. 
Ikeda et  al. [26] demonstrated that hypermethylation of 
COL4A5 was one of the events that was responsible for 
the development of colorectal cancer.

With respect to AKR1B1, Theresa et  al. [27] stated 
that AKR1B1 promoter methylation proved to be com-
monly methylated in breast cancer. Also, Wei et al. [28] 
demonstrated that AKR1B1 could be potential screen-
ing markers of colorectal carcinoma. However, the rela-
tionship between AKR1B1 methylation and PCa has not 
been elucidated yet. To the best of our knowledge, RTP4 
and MAOB have not been reported to be associated with 
DNA methylation in the occurrence and development of 
cancer, which means RTP4 and MAOB could be regarded 
as potential targets for the new therapeutic managements 
in prostate cancer. The Human Protein Atlas validated 
the staining and intensity of RTP4 and MAOB in PCa tis-
sue, the results were consistent with bioinformatic anal-
ysis that MAOB and RTP4 may be novel biomarkers in 
PCa.

In this study, GO term enrichment analysis showed 
that extracellular exosome was associated with DNA 
methylation in prostate cancer. Huang et  al. [29] dem-
onstrated that extracellular exosomes, especially plasma 
exosomes, containing miR-1290 and miR-375 may serves 
as promising prognostic biomarkers for castration-resist-
ant prostate cancer (CRPC). Bryzgunova et  al. [30] also 
demonstrated that extracellular vesicles founded from 
urine showed a high specificity and sensitivity in distin-
guishing prostate cancer patients from healthy donors. 
GO term enrichment analysis also revealed that oxida-
tion–reduction process was also involved in DNA meth-
ylation of prostate cancer. Schlaepfer et al. [31] revealed 
that inhibition of lipid oxidation plays a crucial role in 
elevating glucose metabolism of PCa cells. Liu et al. [32] 
also demonstrated that oxidation–reduction reactions 
was associated with mitochondria and mitochondrial 
damage in DU145 and PC3 prostate cancer cell lines.

In this study, KEGG pathway enrichment analysis 
showed that cytochrome P450 pathway was involved 
in the methylation process in PCa. Chen et  al. [33] 

Fig. 14  Methylation status and correlation between genes expression and DNA methylation of MAOB (a) and RTP4 (b). Average β-values are 
presented on the x-axis, log2 FPKM gene expression values are presented on y-axis
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demonstrated that cytochrome P450 (CYP) enzymes 
including CYP2R1, CYP27B1 and CYP24A1 were 
involved in the development and progression of PCa and 
were treated as promising targets in the treatment of 
PCa. Mandić et  al. [34] also revealed that CYP1A1 can 
bind to DNA and induced the carcinogenesis of pros-
tate cancer via involving in the various endogenous and 
environmental reactive compounds. The phenylalanine 
metabolism was also found to be participant in the meth-
ylation process in PCa. Gueron et  al. [35] reported that 
the concomitant resistance (CR) phenomenon occurs in 
murine prostate cancer accompanied with ROS-damaged 
phenylalanine and the CR phenomenon was reversed 
when the phenylalanine were injected into mice. Lapek 
et  al. demonstrated that the histidine-phosphorylated 
proteins with diverse functions including metabolism, 
protein folding, and motility play important roles in the 
development and progression of PCa.

Conclusion
Methylated hub genes, including MAOB and RTP4, can 
be regarded as novel biomarkers for accurate PCa diag-
nosis and treatment. Further studies are needed to draw 
more attention to the roles of these hub genes in the 
occurrence and development of PCa.

Methods
Data source
Expressing profiles of gene-specific DNA methylation 
data and clinical information of patients with PCa were 
downloaded from The Cancer Genome Atlas (TCGA) 
database (https​://tcga-data.nci.nih.gov/tcga/) [36]. The 
clinicopathological information of the patients with 
prostate cancer were also extracted. Illumina Human 
Methylation 450 Beadchip (450  K array) was used to 
measure the DNA methylation data. A total of 482,421 
CpG sites throughout the genome would be assessed 
[37]. We downloaded level 3 methylation data and level 
3 RNA-seq data from the TCGA data portal by using 
the TCGA-Assembler [38]. Two gene methylation data-
sets (GSE112047 and GSE76938) were downloaded from 
the Gene Expression Omnibus (GEO, https​://www.ncbi.
nlm.nih.gov/geo/). The gene methylation microarray 
datasets were composed of 16 and 63 normal prostate 
tissues, respectively, and 16 and 73 PCa tumor tissues, 
respectively (GPL13534 Illumina HumanMethylation450 
BeadChip).

Identification of DNA methylation‑driven genes
The expression and methylation were analyzed with R 
3.4.4 software (https​://www.r-proje​ct.org/). For the data 

from TCGA, the R package MethylMix was applied to 
perform an analysis integrating gene expression data and 
methylation data. MethylMix was designed to identify 
gene expression that were correlated with methylation 
events. A total of three parts of MethylMix analysis were 
described as previous studies [39, 40]. For the data from 
GEO, the R package limma was applied to perform analy-
sis to identify the DMEs. Also, VennDiagram package in 
R software was used to identify overlapping DNA meth-
ylation-driven genes.

Gene ontology analysis
Gene ontology analysis (GO) (http://david​.abcc.ncifc​
rf.gov/) is used for annotating differentially methylated 
DNA methylation-driven genes [41]. The Database for 
Annotation, Visualization, and Integrated Discovery 
(DAVID) (http://david​.abcc.ncifc​rf.gov/) tool was used 
for obtaining the enriched GO terms of differentially 
methylated DNA methylation-driven genes based on the 
hypergeometric distribution to compute values, which 
was described as previous study [42]. FDR < 0.05 was set 
as the threshold value.

Pathway analysis
The gene lists found to be statistically significant by 
MethylMix were used to perform pathway analysis. The 
Kyoto Encyclopedia of Genes and Genomes (KEGG; 
http://www.kegg.jp/) was used to perform the path-
way enrichment analysis. Furthermore, the Consensus-
PathDB was also used to validate the enriched pathway 
results. ConsensusPathDB was used to performed path-
way analysis as previous studies described [40, 43]. The 
default settings were as follow: minimum overlap and p 
value cutoff of 0.01.

Integration of protein–protein interaction (PPI) network
Search Tool for the Retrieval of Interacting Genes 
(STRING) database (version 10.5) was used to evalu-
ated the PPI information. Differentially methylated DNA 
methylation-driven genes were mapped to STRING to 
evaluate the interactive relationships of these genes. 
Cytoscape software (version 3.6.1) was used to con-
structed the PPI networks.

Validation of the candidate hub genes screened from TCGA 
in GEO database and the Human Protein Atlas
To confirm the candidate hub genes we obtained, two 
datasets (GSE76938 and GSE112047) was downloaded 
from GEO database to validate the methylation levels of 
these candidate hub genes. To confirm the expression of 
these hub genes in PCa tissues, immunohistochemistry 

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://www.kegg.jp/
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of these hub genes were evaluated by the Human Protein 
Atlas (http://www.prote​inatl​as.org). The expressions of 
MAOB and RTP4 were validated in The Human Protein 
Atlas.
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