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Abstract 

Background:  Due to the phenotypic and molecular diversity of hepatocellular carcinomas (HCC), it is still a challenge 
to determine patients’ prognosis. We aim to identify new prognostic markers for resected HCC patients.

Methods:  274 patients were retrospectively identified and samples collected from Zhongshan hospital, Fudan Uni‑
versity. We analyzed the gene expression patterns of tumors and compared expression patterns with patient survival 
times. We identified a “9-gene signature” associated with survival by using the coefficient and regression formula of 
multivariate Cox model. This molecular signature was then validated in three patients cohorts from internal cohort 
(n = 69), TCGA (n = 369) and GEO dataset (n = 80).

Results:  We identified 9-gene signature consisting of ZC2HC1A, MARCKSL1, PTGS1, CDKN2B, CLEC10A, PRDX3, PRKCH, 
MPEG1 and LMO2. The 9-gene signature was used, combined with clinical parameters, to fit a multivariable Cox model 
to the training cohort (concordance index, ci = 0.85), which was successfully validated (ci = 0.86 for internal cohort; 
ci = 0.78 for in silico cohort). The signature showed improved performance compared with clinical parameters alone 
(ci = 0.70). Furthermore, the signature predicted patient prognosis than previous gene signatures more accurately. It 
was also used to stratify early-stage, HBV or HCV-infected patients into low and high-risk groups, leading to significant 
differences in survival in training and validation (P < 0.001).

Conclusions:  The 9-gene signature, in which four were upregulated (ZC2HC1A, MARCKSL1, PTGS1, CDKN2B) and five 
(CLEC10A, PRDX3, PRKCH, MPEG1, LMO2) were downregulated in HCC with poor prognosis, stratified HCC patients into 
low and high risk group significantly in different clinical settings, including receiving adjuvant transarterial chem‑
oembolization and especially in early stage disease. This new signature should be validated in prospective studies to 
stratify patients in clinical decisions.
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Background
Hepatocellular carcinoma (HCC) is the sixth most 
common carcinoma worldwide and the third leading 
cause of patient’s cancer-related mortality [1, 2]. Surgi-
cal resection is one of the most effective curative treat-
ments for HCC [3]. However, approximately 60–70% 
patients will still suffer from recurrence in 5  years for 
most patients undergoing liver resection and the clini-
cal outcomes is still dissatisfactory [3]. It is necessary 
to investigate patients at high risk for poor clinical out-
comes and employed effective therapies to avoid HCC 
recurrence. Hence, determination of novel prognostic 
biomarkers is vital for early diagnostic detection.

In clinical settings, prognosis assessment and deci-
sion making after surgery are based on the tumor stag-
ing systems (i.e., TNM [4], Japan Integrated Staging [5] 
and Barcelona Clinic liver cancer [BCLC] [6], cancer of 
the liver Italian program [7]). They are widely applied to 
guide treatment therapies or predict HCC clinical out-
comes. Some studies have raised to improve the above 
staging system by introducing tumor characteristics, 
such as serum alpha fetoprotein (AFP) and pathologic 
features such as microvascular invasion and tumor dif-
ferentiation [8, 9].

In order to optimize prognosis scoring, search-
ing for molecular biomarkers is an expanding domain 
[10–12]. However, the heterogeneity of the underlying 
liver disease and tumor stage in HCC has challenged 
the use of molecular classification in different clinical 
settings worldwide. Currently, array-based gene expres-
sion signatures obtained from HCC tumors have been 
assessed in many recent studies [12–20]. These studies 
have clarified gene signatures predicting HCC patient 
recurrence or mortality; howbeit, traditional screen-
ing methods focus on few genes and lack in systematic 
evaluation; furthermore, the sensitivity and specificity 
of a single prognostic biomarker may be scarce. Hence, 
the problems that lack of gene signatures applied in dif-
ferent clinical settings still exist.

Fortunately, it is great convenient that high-through-
put technologies provide real-time monitoring of dif-
ferent biological molecules and make it much easier to 
explore a great number of potential markers at once, 
resulting in an explosion of new biomarkers for HCC 
diagnostic and prognostic prediction. Recently, more 
than 20 various molecular signatures have been pub-
lished; however, few have been externally validated [8, 
14–23]. One of these externally or internally validated 
molecular signature is the five-gene score [16], which 
has been shown to be related with disease-specific sur-
vival in resected HCCs. Interestingly, the five-gene sig-
nature showed better performance than other different 

signatures [12, 13, 18, 22], but lacked validation in com-
parison to other types of curative treatments [16].

However, a more accurate and comprehensively vali-
dated method for various patient cohorts with different 
treatment options is still to be identified and applied in 
HCC clinical guidelines. In this study, we intent to iden-
tify a molecular signature to optimally predict clinical 
outcomes of HCC patients who underwent liver resec-
tion. We solved some important points to intensify the 
robustness of our molecular signatures: (1) identifica-
tion in a training HCC cohort and internal validation; (2) 
assessing the added value of molecular signature com-
pared with classical clinical parameters; and (3) exter-
nally validated by another cohort patients. Ultimately, 
we built a new nomogram combining clinical factors and 
gene signature to refine prognosis model assessment and 
overpass the dichotomy between molecular and clinical 
parameters.

Materials and methods
Patients and tissue samples
274 archived FFPE samples were collected from Zhong-
shan Hospital between January 2010 and January 2011 
(Fig.  1). Those samples were assigned to two phases in 
training, internal validation cohort in chronological 
order. Table  1 described the clinical parameters, which 
were retrospectively collected from our hospital’s medi-
cal records. Tumor stage was assigned for HCC patients 
whose tumors were staged before the publication of the 
seventh edition of the AJCC Cancer Staging Manual. 
The exclusion items (another 113 patients) were as fol-
lows: tumors has more than 80% of necrosis (34 patients), 
tumors’ RNA has poor quality or insufficient amount 
(30 patients), patients was performed with non-curative 
resection (R1 or R2 resection or extrahepatic metastasis 
at the time of the surgery) (25 patients), HCC patients 
were treated by liver transplantation (11 patients), and 
HCC patients were dying within the first month after 
liver resection due to surgical complications or decom-
pensated cirrhosis (13 patients). The HCC diagnosis was 
based on established histological criteria [3]. In the terms 
of multiple tumors, we have taken the largest nodule of 
HCC into account.

Gene expression profiling and data processing
We collected 274 HCC patient samples (including tumor 
and peri-tumoral tissues) from our hospital. Firstly, 
we removed every peri-tumoral tissue of HCC sam-
ples carefully on each FFPE sections by manual macro-
dissection using the H&E stained slides as the reference 
under the instruction of pathologist (Sun Chun), and 
then extracted tumoral tissue RNA using the RNeasy 
FFPE kit (Qiagen, Hilden, Germany) according to the 
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Fig. 1  Flow chart of the study

Table 1  Patient characteristics for the discover and validation cohort

Mean + SD/N (%)

TACE transarterial chemoembolization, AFP alpha-fetoprotein

Italic P values indicate P < 0.05

Characteristics Training set Internal validation set In silico validation set P value

No. of Patients 205 69 369

Age (y) 53.6 ± 10.8 52.6 ± 10.8 59.4 ± 13.6 < 0.001

Tumor diameter (cm) 5.6 ± 4.3 4.7 ± 3.0 NA 0.263

AFP (ng/ml) 4175.1 ± 12,911.6 4022.1 ± 10,942.1 13,833.6 ± 124,798.6 0.481

Gender < 0.001

Female 37 (18.0%) 7 (10.1%) 121 (32.8%)

Male 168 (82.0%) 62 (89.9%) 248 (67.2%)

HBV 0.731

Negative 25 (12.2%) 7 (10.1%) 22 (13.8%)

Positive 180 (87.8%) 62 (89.9%) 137 (86.2%)

Adjuvant TACE < 0.001

No 137 (66.8%) 40 (58.0%) 228 (94.6%)

Yes 68 (33.2%) 29 (42.0%) 13 (5.4%)

Stage < 0.001

I 107 (52.2%) 60 (86.9%) 172 (49.7%)

II 74 (36.1%) 8 (11.6%) 83 (24.0%)

III/IV 24 (11.7%) 1 (1.5%) 91 (24.9%)

Microvascular invasion < 0.001

No 168 (88.9%) 67 (97.1%) 208 (66.5%)

Yes 21 (11.1%) 2 (2.9%) 105 (33.5%)

Tumor differentiation < 0.001

I/II 136 (67.3%) 55 (79.7%) 54 (14.8%)

III/IV 66 (32.7%) 14 (20.3%) 310 (85.2%)

Tumor number < 0.001

Single 171 (83.4%) 64 (92.8%) 86 (49.7%)

Multiple 34 (16.6%) 5 (7.2%) 87 (50.3%)
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manufacturer’s protocol. NanoDrop (Thermo Scientific, 
Waltham, MA, USA) was used to measure the concen-
trations of extracted RNA samples. Samples with RNA 
concentrations no less than 40   ng/μL were subjected to 
further analysis. We used two NanoString gene panels in 
our study to quantify the expression of 1163 genes (Addi-
tional file  1: Table  S1), which were involved in multiple 
signaling pathways related to HCC oncogenesis, HCC 
progression and/or cancer immunology. We measured 
these 1163 genes rather than entire gene profile because 
the aim of study was to focus on analyzing those genes, 
which had been proved to be relevant to HCC. 200  ng 
RNA were hybridized overnight at 65  °C with probes 
according to the manufacturer’s protocol, followed by 
digital barcode counting using NanoString nCounter 
Digital Analyzer (NanoString Technologies, Seattle, WA, 
USA). The logarithm of raw counts was normalized by 
the expression of positive controls and then submitted to 
further statistical analysis.

Gene expression profiling of 274 HCC patients were 
detected. We processed the gene expression data using 
‘glmnet’ package of R software (version 3.3.1, R Foun-
dation for Statistical Computing Vienna, Austria). The 
following steps for this well-defined process: firstly, 
importing the ‘raw’ data in.CEL format and the associ-
ated clinical survival information; secondly, summariz-
ing the gene expression values for each probe set; the 
last step included background adjustment and z-score 
normalization.

Identification of the prognostic gene signature
Firstly, we constructed the gene signature from the gene 
expression matrix of 205 HCC patients. The ‘scipy’ pack-
age (scipy.stats.pearsonr) of Python was used to deter-
mine whether gene expression correlated with overall 
survival (OS). 527 genes with a P value ≤ 0.05 from 1163 
genes obtained from 205 HCC patients gene expres-
sion profiles were used for the subsequent regression 
model analysis. In general, we used Lasso (shrinkage and 
selection method for linear regression) to perform the 
regression analysis in the data matrix (274 * 470). Addi-
tionally, we used the penalized regression model with 
LASSO penalty to achieve shrinkage and variable selec-
tion simultaneously, and the optimal values of the pen-
alty parameter alpha were determined through 10-times 
cross-validations. Based on the optimal alpha value, nine 
prognostic genes with corresponding coefficients were 
screened out of 527 genes based on gene expression pro-
filing and OS data (Fig. 1). The Predicted OS information 
for each patient was then calculated based on the expres-
sion level of each prognostic gene and its corresponding 
coefficient. Then, R-squared values were calculated to 
evaluate concordance between predicted OS and real OS 

in two optimized algorithms, Lasso and LassoLars. Prog-
nostic models including the following parameters were 
compared: the identified gene signature alone, clinical 
parameters alone, and the combination of clinical param-
eters and the identified gene signature.

Experimental and in silico signature validation
We used three validation cohorts (one internal and two 
in silico datasets) of HCC in the prognostic study (Fig. 1): 
internal validation set (n = 69, HCC patients undergoing 
surgery from October 2010 to January 2010); and two 
independent cohorts in silico, TCGA set (n = 369, HCC 
patients undergoing surgery) and HCC GEO dataset 
(n = 80, GSE10143) [24].

End points
We designed the study following some recommendations 
for prognostic cancer biomarkers included in the Report-
ing Recommendations for Tumor Marker Prognostic 
Studies statement (REMARK) [7, 25] and the European 
Association for the Study of the Liver/European Organi-
zation for Research and Treatment of Cancer guide-
lines (EASLORTC) [25, 26]. Three steps were endorsed 
by these guidelines for HCC prognostic biomarkers: (1) 
identifying biomarkers need to follow a mode of training 
and validation form; (2) independent prognostic value 
of biomarkers should retain when meeting with known 
clinical or pathological parameters; and (3) biomarkers 
need to be validated in any in silico datasets of independ-
ent patients.

We followed patients and screened HCC recurrence 
by serum level of AFP and computed tomography scan 
or liver magnetic resonance imaging after liver resection. 
We determined the primary end point in our study was 
overall survival (OS), defined by the interval between the 
date of surgery and all-cause death (including tumor-spe-
cific death and other cause deaths) or the last follow-up. 
The last recorded follow-up was July 2015. The disease-
free survival (DFS) was also assessed, which was deter-
mined by analyzing patients death and censoring patients 
who suffered from first tumor relapse (When the level of 
postoperative serum AFP was > 20 ng/mL and new focus 
appeared in the ultrasonic/abdominal computed tomog-
raphy during follow up, we considered that they had 
tumor recurrence), tumor-related death or progression. 
Specifically, tumor-related death (which was defined 
when patient’s death occurred in HCC involving > 50% of 
the liver, HCC with extensive tumor portal thrombosis, 
or extrahepatic metastasis). Additionally, in order to limit 
the background noise due to the occurrence of a second 
independent HCC, we censored survival at 5 years after 
the initial resection surgery.
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Statistical analysis
We estimated the survival curves by the Kaplan–Meier 
analysis and compared by log-rank tests. Differences 
between the training and validation cohorts were evalu-
ated by the Mann–Whitney U test for continuous vari-
ables and the Chi squared test for categorical variables. 
We performed descriptive analyses and the described 
statistical tests using SPSS statistical software, version 23 
(IBM Corporation, New York, USA). A statistical frame-
work was constructed to identify potential gene signa-
tures and corresponding prognostic models to optimally 
predict the primary and secondary endpoints. In order 
to evaluate the prognostic performance of our developed 
models, the concordance index (ci) was calculated (31). 
While ci = 0.5 was obtained for a non-informative model, 
ci = 1.0 represents a perfectly predicting model. To com-
pare the performance between nested multivariable Cox 
models, the likelihood ratio test was applied. The model 
was validated using the independent validation cohort 
in silico (TCGA and GEO datasets). The 95% confidence 
interval (CI) of the ci was estimated from 1000 bootstrap 
samples of the training and validation cohort. Finally, the 
validation was declared successful if the 95% CI did not 
contain 0.5. In addition, interaction and stratified analy-
ses were conducted according to age (< 60 and > 60 years), 
gender (male and female), HBV status (positive and nega-
tive), receiving adjuvant transarterial chemoembolization 
(TACE) (yes and no), AFP (< 200 and > 200 ng/ml), tumor 
parameters (tumor diameters < 5 and > 5 cm, tumor dif-
ferentiation (I/II and III/IV), tumor numbers (single and 
multiple), and TNM stage (I/II and III/IV). The frame-
work to determine gene signatures and correspond-
ing prognostic models was implemented in R Statistics 
version 3.3.2 (R Foundation for Statistical Computing, 
Vienna, Austria (32, 33). For all analyses, two-sided tests 
were performed and P-values below 0.05 were considered 
statistically significant. We included the three most sig-
nificant clinical, pathological, and molecular parameters 
in the all cohorts of HCC patients to build a composite 
prognostic model by using the R package: rms (http://
www.R-proje​ct.org/).

Results
Patient cohorts
In this retrospective study, a training cohort of 205 
patients and an independent, monocenter internal valida-
tion cohort of 69 patients and in silico validation cohorts 
of 369 patients with resected HCC were available for the 
development of a gene signature to predict the clinical 
endpoints of DFS and OS. Patient data, treatment param-
eters, and tumor characteristics of both patient cohorts 
are summarized in Table 1. The entire cohort was mostly 
male (74%) with a mean age of greater than 50 years and 

with the following tumor parameters: single tumor num-
ber (50%), tumor diameter (5.3 ± 4.0 cm), tumor differen-
tiation (I/II: 38.5%; III/IV: 61.4%), TNM stage (I: 59.1%; 
II: 28.7%; III/IV: 18.0%) or receiving adjuvant TACE 
(yes: 35.4%; no: 64.6%). In addition, HBV DNA-positive 
patients in the entire cohort was 87.8% in the training set 
vs. 89.9% in the internal validation set vs. 37.1% in the 
TCGA and GEO dataset. A first cohort of 205 patients 
treated by liver surgery was used at Zhongshan Hospital 
of Fudan University to identify a gene signature and an 
internal, and two in silico validation cohorts of 69, 369, 
and 80 patients in the TCGA or GEO dataset (Table  1 
and Fig. 1).

A nine‑gene signature associated with prognosis 
in resected HCC training and validation cohorts
In the training cohort (205 HCC patients at Zhong-
shan Hospital), we found a panel of nine genes, includ-
ing Myristoylated alanine-rich C kinase substrate 
like-1 (MARCKSL1), zinc finger C2HC-type contain-
ing 1A (ZC2HC1A), prostaglandin-endoperoxide syn-
thase 1 (PTGS1), cyclin dependent kinase inhibitor 2B 
(CDKN2B), C-type lectin domain family 10 member A 
(CLEC10A), Peroxiredoxin2 (PRDX2), Protein kinase 
C eta (PRKCH), Macrophage expressed 1 (MPEG1), 
LIM domain only 2 (LMO2), which showed the strong-
est prognostic relevance (Fig.  2b). Among these genes, 
four were upregulated (ZC2HC1A, MARCKSL1, 
PTGS1, CDKN2B) and five (CLEC10A, PRDX3, PRKCH, 
MPEG1, LMO2) were downregulated in HCC with poor 
prognosis (Additional file  2: Table  S2). We then con-
structed a nine-gene signature using the coefficient for-
mulas of the multivariate Cox model from the training 
population. The formula as follows: 0.142772 *​ ZC2HC1A ​
+ 0.109389​ * MARCKSL​1 + 0.0975​17 * PT​GS1 + 0.00​1​
941​ * ​CDK​N2​B​-0.​003​75 ​* C​LEC10A-​0.03609 *​ ​PRD​X3 ​− 0​
.​06777 *​ PRKCH-0.​07912 * MPEG1 − 0.14638 * LMO2. 
The corresponding nine genes of heatmap are presented 
in Fig.  2a. Finally, we validated this nine-gene signature 
and clinical parameters selected by the multivariable Cox 
model in the independent internal or in silico validation 
cohorts. The dichotomized nine-gene score by median 
value was associated with OS significantly in the train-
ing and validation cohorts (P < 0.01, Additional file  3: 
Figures  S1IA–C). In addition, nine genes each dichoto-
mizing into low/high risk (according to median expres-
sion value) were significantly associated with OS in the 
training cohort, except for PRDX3 (P = 0.149, see Addi-
tional file 3: Figure S1II). In order to estimate the accu-
racy of the nine-gene signature to predict DFS and OS, 
the area under the curve (AUC) of the nine-gene sig-
nature in the training cohort was calculated, which we 
then computed in the internal or in silico validation 

http://www.R-project.org/
http://www.R-project.org/
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populations (Additional file 3: Figures S1ID, E). The AUC 
was also calculated at different time points of DFS and 
OS (1-year, 3-year, and 5-year, respectively); the sum-
mary measure of the AUC all reached over 0.70, showing 
good consistency performance of the nine-gene signature 
regardless of different time points for OS and DFS (Addi-
tional file 4: Figure S2I).

Among all 643 resected HCC patients, nine-gene signa-
ture classified 321 patients into the poor prognosis group. 
This molecular poor prognosis group was associated with 
previously important clinical parameters (tumor size and 
stage) significantly and pathological (microvascular inva-
sion and tumor differentiation) characteristics (Addi-
tional file 5: Table S3). In contrast, our gene signature was 
not related to age, gender, non-HBV liver disease, tumor 
number or receiving adjuvant TACE.

Inclusion of clinical parameters to the nine‑gene HCC 
signature
We next to evaluate the independent predictive prognos-
tic value of the nine-gene signature. The nine-gene signa-
ture was related to OS irrespective of some clinical and 
pathological factors, including staging, for the training 
and validation cohorts (Table 2). As our training cohort 
reflecting the diversity of HCC in term of stage, tumor 
etiology, or receiving adjuvant therapy, we evaluated the 
predictive performance of our nine-gene signature in 
each condition (Additional file  4: Figure S2II). Interest-
ingly, our nine-gene signature was associated with OS 

in each subgroup significantly, regardless of age, gender, 
serum levels of AFP, tumor number, tumor size, tumor 
differentiation, except for tumor stage III/IV and the 
presence of microvascular invasion (Additional file 4: Fig-
ure S2II). Similarly, the Kaplan–Meier analyses showed 
our molecular signature conferred significant survival 
benefits in terms of tumor characteristics, such as tumor 
stage (stage I or II; both P < 0.001), tumor differentiation 
(P < 0.001), and clinical parameter: presence of microvas-
cular invasion (P < 0.0001; see Additional file  6: Figure 
S3I). Interestingly, to explore the prognostic value of the 
nine-gene signature for other treatment options, receiv-
ing adjuvant TACE after curative resection accounted 
for 35.4% in the training and validation cohorts. Strati-
fied analyses showed that the nine-gene signature also 
enabled to predict prognosis for HCC patients receiving 
adjuvant TACE (HR = 3.2, P < 0.001; Additional file 4: Fig-
ure S2II, Additional file 6: Figure S3I).

Specifically, in our training and TCGA validation 
cohorts, 504 (81.3%) of HCC patients was classified 
into stage I/II disease (Table 1). Therefore, we measured 
predictive performance of our nine-gene signature in 
HCC patients with early (Stages I and II) disease. Firstly, 
we indicated that HCC patients in stage I (n = 339) 
and II (n = 165) (from training and validation popula-
tions) showed a wide range of survival times, from a 
few months to more than 10  years. The nine-gene sig-
nature accurately predicted OS of these patients in the 
Kaplan–Meier analyses (stage I, P = 0.0032, HR = 2.1; 

Fig. 2  The heatmap of selected 9-gene signature and the correlation map of gene expression for each genes. a The selected corresponding nine 
genes of heatmap by overall survival. b The correlation map of gene expression for each nine genes
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stage II, P < 0.0001, HR = 6.1) (Additional file  4: Figure 
S2II and Additional file 7: Figure S4II). The nine-gene sig-
nature was also evaluated in different subgroups of HCC 
patients (Additional file  4: Figure S2II). Interestingly, it 
did not predict survival of stage III or IV HCC patients 
(P = 0.1; Additional file 7: Figure S4II) and the interaction 
analyses showed that significant differences only existed 
in Stage I, II, and III/IV patients (P = 0.03; Additional 
file  4: Figure S2II). Therefore, the nine-gene signature 
may allow a reliable prediction of survival in early-stage 
HCC patients.

Then, we compared the AUC of the nine-gene signa-
ture with clinical parameters only in the entire cohort, 
showing that the nine-gene signature outperformed 
clinical parameters only (AUC: 0.842 vs 0.751, P < 0.001, 
Additional file 3: Figure S1IF). For the training cohort, 
it was shown that the established clinical parameters 

of tumor diameter (< 5  cm or > 5  cm) and tumor dif-
ferentiation (I/II or III/IV) significantly correlated with 
OS or DFS. For short term OS (Table  3), using only 
these two parameters resulted in a lower performance 
(Training: ci = 0.70 (0.46, 0.94), internal validation: 
ci = 0.68 (0.21, 0.98); in silico validation ci = 0.54 (0.42, 
0.78)) compared with the nine-gene signature (train-
ing: ci = 0.79 (0.62, 0.97); internal validation ci = 0.77 
(0.55, 0.99); in silico validation ci = 0.65 (0.57, 0.99)). 
Finally, both the clinical parameters of tumor diameter 
(< 5  cm vs. > 5  cm) and tumor differentiation (I/II vs. 
III/IV) as well as the nine-gene signature, increased the 
training ci to 0.85 (0.74, 0.99), the internal validation ci 
to 0.86 (0.58, 1.13), and the in silico validation to 0.78 
(0.61, 0.98). While in training, the clinical Cox model 
was significantly improved by adding clinical parame-
ters (P = 0.001), adding the nine-gene signature to the 

Table 2  Univariable and multivariable Cox regression of overall survival in training and validation cohort

TACE transarterial chemoembolization, AFP alpha-fetoprotein

Italic P values indicate P < 0.05

Statistics Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age

< 65 234 (85.4%) 1.0

> 65 40 (14.6%) 0.8 (0.4, 1.6) 0.458

Gender

Female 44 (16.1%) 1.0

Male 230 (83.9%) 1.5 (0.7, 3.1) 0.291

Tumor number

Single 235 (85.8%) 1.0

Multiple 39 (14.2%) 1.3 (0.7, 2.4) 0.486

Stage

I 167 (60.9%) 1.0

II 82 (29.9%) 2.0 (1.1, 3.7) 0.026

III/IV 25 (9.1%) 3.6 (1.7, 7.6) < 0.001

Adjuvant TACE

No 177 (64.6%) 1.0

Yes 97 (35.4%) 1.8 (1.1, 3.0) 0.015

HBV

Negative 32 (11.7%) 1.0

Positive 242 (88.3%) 1.7 (0.7, 4.2) 0.269

Tumor diameter 5.4 + 4.1 1.2 (1.1, 1.2) < 0.001 1.36 (1.24, 1.48) < 0.0001

AFP 4143.4 + 12,507.8 1.0 (1.0, 1.0) 0.071

Microvascular invasion

No 235 (91.1%) 1.0

Yes 23 (8.9%) 3.0 (1.5, 6.0) 0.002

Tumor differentiation

I/II 191 (70.5%) 1.0

III/IV 80 (29.5%) 2.3 (1.4, 3.8) 0.001 11.27 (1.85, 68.53) 0.008

9-gene signature − 0.1 + 0.4 7.5 (5.0, 11.2) < 0.001 2.94 (1.24, 6.99) 0.014
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clinical parameters resulted only in a small improve-
ment (P = 0.082).

For long term survival (Table  4), using only these 
two parameters resulted in lower performance (train-
ing: ci = 0.69 (0.49, 0.89), internal validation: ci = 0.73 
(0.24, 1.22); in silico validation ci = 0.56 (0.23, 0.89)) 

compared with the nine-gene signature [training: 
ci = 0.78 (0.61, 0.95); internal validation ci = 0.75 (0.52, 
0.96); in silico validation ci = 0.61 (0.50, 0.84)]. Finally, 
both the clinical parameters of tumor diameter (< 5 cm 
vs. > 5  cm) and tumor differentiation (I/II vs. III/IV) 
as well as the nine-gene signature, increased the train-
ing ci to 0.81 (0.71, 0.91), the internal validation ci to 

Table 3  Multivariable Cox regression of short-term overall survival

Three multivariable Cox regression models were built using the training cohort: a model consisting of only the 9-gene signature (top), a model consisting only of the 
clinical tumor diameter and tumor differentiation, and a model combining both the 9-gene signature and clinical parameters (bottom). HRs are given with their 95% 
CIs and the corresponding P values. For each model, the concordance index (ci) is given for the training and internal validation cohort as well as for the patients of 
the or in silico validation cohort. Its 95% CI is determined from 1000 bootstrap samples of the respective cohort. The improvement of the combined model, including 
the 9-gene signature and the clinical parameters, compared with the 9-gene signature and clinical parameters alone is shown (bottom) based on the difference in 
log-likelihood (dLL)

Parameter HR (95% CI) P value ci training (95% CI) ci internal validation 
(95% CI)

ci in silico 
validation 
(95% CI)

9-gene signature 3.37 (1.53, 7.49) < 0.0001 0.79 (0.62, 0.97) 0.77 (0.55, 0.99) 0.65 (0.57, 0.99)

Clinical parameters

Tumor diameter 1.10 (0.98, 1.16) 0.092

Tumor differentiation 1.84 (1.55, 6.09) 0.002 0.70 (0.46, 0.94) 0.68 (0.21, 0.98) 0.54 (0.42, 0.78)

9-gene signature and clinical parameters

9-gene signature 15.38 (5.02, 47.71) < 0.0001

Tumor diameter 1.07 (1.01, 1.20) 0.003

Tumor differentiation 1.39 (1.10, 3.30) < 0.01 0.85 (0.74, 0.99) 0.86 (0.58, 1.13) 0.78 (0.61, 0.98)

Improvement of combined 
model compared to

dLL Degrees of freedom P value

9-Gene signature only 7.24 2 < 0.001

Clinical parameters only 23.41 2 0.082

Table 4  Multivariable Cox regression of long-term overall survival

Three multivariable Cox regression models were built using the training cohort: a model consisting of only the 9-gene signature (top), a model consisting only of the 
clinical tumor diameter and tumor differentiation, and a model combining both the 9-gene signature and clinical parameters (bottom). HRs are given with their 95% 
CIs and the corresponding P values. For each model, the concordance index (ci) is given for the training and internal validation cohort as well as for the patients of 
the or in silico validation cohort. Its 95% CI is determined from 1000 bootstrap samples of the respective cohort. The improvement of the combined model, including 
the 9-gene signature and the clinical parameters, compared with the 9-gene signature and clinical parameters alone is shown (bottom) based on the difference in 
log-likelihood (dLL)

Parameter HR (95% CI) P value ci training (95% CI) ci internal validation 
(95% CI)

ci in silico 
validation 
(95% CI)

9-gene signature 5.36 (3.12, 9.21) < 0.0001 0.78 (0.61, 0.95) 0.75 (0.52, 0.96) 0.61 (0.50, 0.84)

Clinical parameters

Tumor diameter 1.12 (1.06, 1.18) 0.0001

Tumor differentiation 1.62 (0.75, 3.51) 0.222 0.69 (0.49, 0.89) 0.73 (0.24, 1.22) 0.56 (0.23, 0.89)

9-gene signature and clinical parameters

9-gene signature 5.02 (2.70, 9.36) < 0.0001

Tumor diameter 1.11 (1.03, 1.17) 0.002

Tumor differentiation 1.40 (1.03, 2.55) 0.003 0.81 (0.71, 0.91) 0.86 (0.53, 1.19) 0.74 (0.58, 0.98)

Improvement of combined 
model compared to

dLL Degrees of freedom P value

9-Gene signature only 11.21 2 < 0.001

Clinical parameters only 92.11 2 0.003
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0.86 (0.53, 1.19), and in silico validation ci to 0.74 (0.58, 
0.98). In terms of primary endpoint, DFS was consid-
ered. The nine-gene signature for resected HCC com-
bined with the clinical features of tumor diameter 
and tumor differentiation was trained and validated 
for DFS, yielding the same trending results with OS 
(Table 5).

Finally, our established composite nomogram included 
tumor diameter, tumor differentiation, and nine-gene sig-
nature. The contribution of each parameters to predict 
OS at 5 years was showed in the nomogram (Fig. 3a). The 
combined scoring model divided HCC patients into 33rd 
and 66th percentiles accurately according to low, inter-
mediate, and high risk categories (Fig. 3b).

Nine‑gene signature predicts prognosis of HBV‑DNA 
positive HCC patients
Because HCC patients were predominantly HBV infected 
(86%) in our training or validation cohort, we further 
measured the performance of identified nine-gene sig-
nature and clinical parameters in patients with HBV 
infected for OS (Additional file 8: Table S4).

First, we evaluated the clinical benefits of the nine-
gene signature only in patients with HBV-DNA positive 
tumors (Additional file 7: Figure S4I). The nine-gene sig-
nature predicted 3-year DFS (P < 0.019), DFS (P < 0.0001), 
3-year OS (P < 0.0001), and OS (P < 0.0001) in the train-
ing and internal validation set (Additional file  7: Figure 
S4I). In addition, for the in silico validation of the TCGA 
dataset, the nine-gene signature was also significantly 

associated with 3-year OS (P = 0.02) and 5-year OS 
(P = 0.021).

Using only these two parameters resulted in a lower 
performance (training: ci = 0.68 (0.31, 1.04), validation: 
ci = 0.69 (0.49, 0.89)) compared with the nine-gene sig-
nature [training: ci = 0.77 (0.65, 0.89); validation ci = 0.73 
(0.55, 0.85)]. Finally, both the clinical parameters of 
tumor diameter and tumor differentiation, as well as the 
nine-gene signature, increased the training ci to 0.85 
(0.75, 0.95) and validation ci to 0.82 (0.68, 0.96). The 
clinical Cox model was significantly improved by adding 
clinical parameters (P = 0.01) and adding the nine-gene 
signature to the clinical parameters also resulted in sig-
nificant improvement (P = 0.001).

In silico validation of nine‑gene signature 
in microarray‑based aHCC and comparison with other 
molecular biomarkers
The nine-gene signature was further evaluated in another 
cohort of 80 resected HCCs from HCC Genomic Con-
sortium (GSE10143) [24]. In this 80 HCC patient series, 
71% of patients had hepatitis C. Additional file 7: Figure 
S4I showed that the nine-gene signature also enabled to 
predict OS (P < 0.0001) for patients primarily with HCV 
affection.

As for many gene expression signatures derived 
from tumors, the prognostic value of the five-gene sig-
nature outperformed previous molecular signatures 
[16], such as the proliferative signature [27], metas-
tasis signature [22], and the hypoxia signature [18]. 

Table 5  Multivariable Cox regression of disease-free survival

Three multivariable Cox regression models were built using the training cohort: a model consisting of only the 9-gene signature (top), a model consisting only of the 
clinical tumor diameter and tumor differentiation, and a model combining both the 9-gene signature and clinical parameters (bottom). HRs are given with their 95% 
CIs and the corresponding P values. For each model, the concordance index (ci) is given for the training and internal validation cohort as well as for the patients of 
the or in silico validation cohort. Its 95% CI is determined from 1000 bootstrap samples of the respective cohort. The improvement of the combined model, including 
the 9-gene signature and the clinical parameters, compared with the 9-gene signature and clinical parameters alone is shown (bottom) based on the difference in 
log-likelihood (dLL)

Parameter HR (95% CI) P value ci training (95% CI) ci internal validation 
(95% CI)

ci in silico 
validation 
(95% CI)

9-gene signature 4.44 (2.36, 8.33) < 0.0001 0.70 (0.58, 0.82) 0.74 (0.53, 0.95) 0.65 (0.55, 0.83)

Clinical parameters

Tumor diameter 1.13 (1.06, 1.20) 0.0001

Tumor differentiation 1.58 (0.89, 2.80) 0.115 0.64 (0.50, 0.78) 0.67 (0.24, 0.99) 0.57 (0.41, 0.73)

9-gene signature and clinical parameters

9-gene signature 3.95 (0.68, 7.45) < 0.0001

Tumor diameter 1.08 (1.01, 1.12) 0.010

Tumor differentiation 1.29 (0.68, 2.50) 0.422 0.79 (0.55, 1.03) 0.83 (0.57, 1.36) 0.70 (0.58, 0.92)

Improvement of combined 
model compared to

dLL Degrees of freedom P value

9-Gene signature only 10.53 2 < 0.001

Clinical parameters only 83.21 3 0.01
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However, in this HCC cohort patients, the nine-gene 
signature (P = 0.0016) was better associated with OS 
than the five-gene signature (our 9-gene signature 
are not comprised these five genes; nonsignificant, 
P = 0.064; Additional file  6: Figure S3IIA-B). In addi-
tion, our bivariate analysis showed the nine-gene sig-
nature’s superiority to predict patients prognosis in 
the setting of surgically resected HCC patients [24] 
(n = 80, GSE10143, Additional file  9: Table  S5). Alto-
gether, these findings revealed that the superiority 

of our nine-gene signature to predict resected HCC 
patient prognosis when compared with other molecu-
lar biomarkers.

Discussion
In our study, we proposed the nine-gene signature asso-
ciated with HCC prognosis closely after liver surgery or 
adjuvant TACE. This 9-gene signature showed improved 
prognostic accuracy when compared with the previ-
ous five-gene signature [16]. In the Nault et al. study, an 
established five-gene signature (P < 0.00003 for overall 
survival) was shown to be better associated with survival 
than other proliferative [27], metastasis [22], and hypoxia 
signatures [18]. In addition, there’s another advantage 
for our gene signature to confer a continuous evaluation 
of OS rates for individual HCC patients. We presented 
to challenge the opposition between classical molecular 
and clinical or pathological biomarkers. Considering the 
above aim, we combined our nine-gene signature with 
clinical parameters in a new nomogram to refine model’s 
predictive performance.

Our nine identified genes contained genes ZC2HC1A, 
MARCKSL1, PTGS1, CDKN2B, CLEC10A, PRDX3, 
PRKCH, MPEG1, and LMO2. MARCKSL1 is a mem-
brane-bound protein that is associated with cell spread-
ing, integrin activation, and exocytosis [28]. In a 
prospective clinical study including 305 cancer patients 
[28], MARCKSL1 has a strong prognostic value in lymph 
node-negative cancer patients, especially in those with 
high proliferation. The final Cox model predicted that 
a high expression of MARCKSL1 was related to lower 
HCC survival, which may be due to its role in activating 
cell spreading and growth. However, to date, very little is 
known about ZC2HC1A and PTGS1 and their roles in 
cancer. PTGS1 (also known as COX1), is a critical lipid 
metabolism molecular protein, and has been shown 
to be a pro-inflammatory mediator associated with 
an increased risk of colon cancer [29]. CDKN2B (also 
named INK4B), a key cell cycle inhibitor, is related to the 
cell cycle and TGF-beta signaling pathway in cancer [30, 
31]. A recent study [32] showed that loss of STAT5 from 
hepatocytes in liver tissue lead to enhanced proliferation, 
which was linked to reduced levels of cell cycle inhibitors 
p15 (INK4B) and p21 (CIP1). In a clinical study, a genetic 
variant of CDKN2B had an increased risk of cancer sus-
ceptibility [33]. CLEC10A induces both the production 
and secretion of interleukin (IL)-10 [34], while decreasing 
the levels of TGF-β. IL-10 triggers anticancer immunity 
in the tumor microenvironment [35]. Hence, downregu-
lated expression of CLEC10A is associated with poor 
prognosis in HCC, which is in line with our findings.

PRDX2 is a member of the peroxiredoxin family of anti-
oxidant enzymes. One previous study has showed that 

Fig. 3  Development and Kaplan–Meier analyses of a composite 
nomogram to predict survival. The clinic-molecular nomogram 
integrated the 9-gene signature. Each component gives points and 
the sum of the points calculated a linear predictor and overall survival 
(a). The whole population was divided in 3 subgroups according to 
the total number of points given by the nomogram: patients at low 
risk, intermediate risk, and high risk of survival (b)
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PRDX2 acted as a cell type-dependent role in tumorigen-
esis [36]. The new target of miR-122a has been proved to 
be PRDX2 [37], revealing downregulated in HCC, which 
is similar to our results. PRKCH is one of the members 
of the protein kinase C family [38]. Several studies have 
showed that the role of PRKCH played an important part 
in apoptosis and anti-apoptosis [39, 40]. The low expres-
sion of PRKCH could inhibit the growth of breast can-
cer cells, which is conversely upregulated expression in 
breast cancer. In addition, PRKCH could contribute to 
resistance against the breast cancer cell death by inhib-
iting JNK activity [41]. Aberrant signal transduction via 
protein kinases such as PKC may occur during liver can-
cer development [42]. MPEG1 is overexpressed in sev-
eral human cancer tissues, including pancreas, breast, 
lung, liver, and thyroid [43]. Some studies revealed that 
the depletion of MPEG1 could impact cell mitosis [44]. 
A lack of MPEG1 disturbs centrosome duplication, and 
induces chromosome misalignment and mis-segregation 
[44]. Additionally, depletion of MPEG1 restrains HCC 
cells uncontrollable growth [42, 45]. LMO2 is a member 
of a transcription factor family of proteins and is a deter-
minant of vascular development in the zebrafish because 
of an effect on embryonic angiogenesis, which seems to 
be on endothelial cell migration, rather than proliferation 
[46, 47].

The identified nine-gene signature showed good 
prognostic ability for endpoint DFS or OS in the vali-
dation cohort (ci = 0.70 for DFS, ci = 0.78 for OS). The 
predictive performance of the signature was testified 
in different HCC patient subgroups (Additional file  7: 
Figure S4II). This consistency across different sub-
groups of patients reveals that the nine-gene signature 
determining disease progression and survival are con-
served regardless of HCC heterogeneity. This is nota-
ble, since HCC is known to be derived from various cell 
types, including hepatocytes, adult stem or progenitor 
cells [48] and is led by several etiologies. When com-
bined with the clinical parameters of tumor diameter 
and tumor differentiation, its performance could be 
further improved (ci = 0.79 for DFS; ci = 0.85 for OS). 
This indicates that the combination of well-established 
clinical parameters and prognostic biomarkers may 
lead to a more accurate prognosis than each of them 
alone. The model including only clinical parameters 
showed the lowest validation performance (ci = 0.68 
for OS; ci = 0.67 for DFS). In the Cox model combin-
ing clinical parameters with the nine-gene signature, 
most signature genes were significantly associated 
with patient survival. The final Cox model showed bet-
ter performance in the training cohort (ci = 0.83) than 
in the validation cohort (ci = 0.77 for internal valida-
tion; ci = 0.65 for in silico validation). This difference is 

expected, since the final Cox model is adjusted to the 
training cohort and potential overfitting might occur. 
In addition, the validation of the proposed nine-gene 
signature might be impeded by the significant differ-
ences between both patient cohorts. In the valida-
tion cohorts, patients were clinically characterized by 
a higher percentage of HCV-infection, higher tumor 
numbers, and higher tumor stage. On the other hand, 
the in silico validation cohort had a higher percentage 
of unfavorable tumor differentiation (III/IV: 84.9%) 
than the training cohort (III/IV: 32.6%). These nega-
tive prognostic factors outbalanced the positive ones, 
resulting in differences in outcomes.

Our validation HCC cohort is characterized by dif-
ferent etiologies (e.g., hepatitis C, and hepatitis B virus) 
and by various tumor stages from early to advanced 
HCC. In comparison to other studies that mainly 
focused on HBV-related HCC, we validated our gene 
signature in another two in silico HCC cohorts, mainly 
related to HCV infection in Western patients and HBV 
infection in Eastern patients, all revealing its good pre-
dictive performance in different clinical settings. In 
all, we validated our nine-gene signature in 723 HCC 
patients undergoing liver resection worldwide and in 
different settings (Additional file 6: Figure S3I).

In the future, the values of our nine-gene signature 
also need to be validated in clinical guidelines. Firstly, 
we could use the nine-gene signature to stratify the 
risk of HCC patient survival before the decision for 
liver surgery is made. Particularly, the 9-gene signa-
ture, in the presence of MVI and advanced stage HCC, 
could identify HCC patients with a good prognosis that 
would benefit from therapy, and patients with a poor 
prognosis who could avoid unnecessary surgery [49, 
50]. Evidently, we need to validate the gene signature in 
prospective studies and in other kinds of curative ther-
apies. Even though the finite treatment options after 
curative resection in our routine clinical practice, the 
nine-gene signature could also classify death risk after 
liver surgery combined with adjuvant TACE (Addi-
tional file 7: Figures S4I, II).

Conclusions
Overall, we have proposed a nine-gene signature in 
HBV/HCV-included HCC patients who underwent 
resection in one independent hospital and further 
validated its predictive accuracy in three cohort pop-
ulations. In addition, our nine-gene signature obeys 
REMARK guidelines and the EASLORTC for a prog-
nostic biomarker in HCC patients undergoing curative 
resection [25, 26]. However, we still need to evaluate 
the nine-gene signature and validate its application 
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in clinical and therapeutic decision making for HCC 
patients (Additional file 6: Figure S3II).
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patients; C. stage III/IV HCC patients.

Additional file 8: Table S4. Multivariable Cox regression of overall survival 
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Additional file 9: Table S5. Comparison of the 9-gene signature and the 
5-genes signature to predict overall survival using bivariate analysis in 
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