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Integrated analysis of 34 microarray datasets 
reveals CBX3 as a diagnostic and prognostic 
biomarker in glioblastoma
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Abstract 

Background:  Glioblastomas have a high degree of malignancy, high recurrence rate, high mortality rate, and low 
cure rate. Searching for new markers of glioblastomas is of great significance for improving the diagnosis, prognosis 
and treatment of glioma.

Methods:  Using the GEO public database, we combined 34 glioma microarray datasets containing 1893 glioma 
samples and conducted genetic data mining through statistical analysis, bioclustering, and pathway analysis. The 
results were validated in TCGA, CGGA, and internal cohorts. We further selected a gene for subsequent experiments 
and conducted cell proliferation and cell cycle analyses to verify the biological function of this gene.

Results:  Eight glioblastoma-specific differentially expressed genes were screened using GEO. In the TCGA and CGGA 
cohorts, patients with high CBX3, BARD1, EGFR, or IFRD1 expression had significantly shorter survival but patients 
with high GUCY1A3 or MOBP expression had significantly longer survival than patients with lower expression of these 
genes. After reviewing the literature, we selected the CBX3 gene for further experiments. We confirmed that CBX3 was 
overexpressed in glioblastoma by immunohistochemical analysis of tissue microarrays and qPCR analysis of surgical 
specimens. The functional assay results showed that silencing CBX3 arrests the cell cycle in the G2/M phase, thereby 
weakening the cell proliferation ability.

Conclusions:  We used a multidisciplinary approach to analyze glioblastoma samples in 34 microarray datasets, 
revealing novel diagnostic and prognostic biomarkers in patients with glioblastoma and providing a new direction for 
screening tumor markers.
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Background
Gliomas are the most common primary tumors in the 
central nervous system. According to the WHO cri-
teria published in 2007 [1] and 2016 [2], gliomas are 
graded from I to IV, mainly including grade I–IV astro-
cytomas and grade II–IV oligodendrogliomas. Grade IV 

astrocytomas are known as glioblastoma (GBM), which 
is the most malignant and lethal glioma. GBM is charac-
terized by high proliferation, infiltrative growth behav-
ior, intratumoral heterogeneity and tumor recurrence. 
Despite improvements in GBM therapy that involve sur-
gical resection, radiation and chemotherapy, a cure for 
GBM appears elusive. Additionally, the median survival 
is only 12–15 months for patients with glioblastomas [3]. 
The emergence of genomic and proteomic profiling has 
provided more insight into the oncogenesis, characteri-
zation, and therapy of gliomas.

The integration of molecular biomarkers with histo-
logical assessment has yielded new insights into gliomas 
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[4–6]. Some molecular biological markers are impor-
tant for determining molecular subtypes, individualized 
treatment, and predicting prognosis, such as MGMT 
[7], EGFR [8], IDH [9], 1p19q [10], ATRX [11], MGMT 
promoter methylation levels, 1p/19q-codeleted and 
IDH1 mutations can predict the prognosis of GBM, oli-
godendroglioma (OD) and low grade glioma [12]. IDH1 
or IDH2 mutations can exist in glioblastomas, espe-
cially evolved from lower-grade gliomas, and patients 
with such tumors had a better outcome than those with 
wild-type IDH genes [13, 14]. G-CIMP-positive status 
appears in most WHO grade II and III gliomas and sec-
ondary glioblastomas and is correlated with improved 
patient survival [15]. Other studies used EGFR, NF1, and 
PDGFRA/IDH1 to classify GBM into pro-neural, neural, 
classical, and mesenchymal subtypes [16, 17]. Although 
emerging evidence supports mRNAs as potential bio-
markers of glioblastomas, gene expression studies ana-
lyzed in isolation usually have inconsistent or discrepant 
results. Various factors, such as limited sample sizes, dif-
ferent profiling platforms, and diverse methods for data 
collection and analysis, lead to these discrepancies. Fur-
thermore, approximately half of all patients do not har-
bor known “driver” genes and cannot be treated with 
targeted agents. The NCBI Gene Expression Omnibus 
(GEO) contains numerous human microarray datasets 
from various types of tissue biopsies, which can be used 
to discover disease-associated biomarkers. These datasets 
represent a large and incompletely exploited resource for 
discovering novel biomarkers. However, the existence 
of biological (cohort selection) and technical (treatment 
protocol and microarray technology) differences in indi-
vidual studies hindered the broader application of these 
findings and ultimately limited their translation into clin-
ical practice. Thus, new approaches for the identification 
of novel biomarkers of gliomas are needed.

To overcome these limitations, we need an integrated 
and unbiased method of analyzing results and obtain-
ing mRNAs with greater statistical significance. Through 
integrated analysis approaches, such confounding factors 
can be controlled by increasing the statistical power, thus 
allowing the detection of consistent biomarkers across 
multiple studies; such methods have been applied in 
analyses in breast cancer [18], prostate cancer [19], dif-
fuse low-grade glioma [20], and lung cancer [21].

Among the gene expression signatures identified in 
our study, chromobox homolog 3 (CBX3/heterochro-
matin protein 1γ [HP1γ]), a member of the heterochro-
matin protein 1 (HP1) family, has the ability to regulate 
the structure of both heterochromatin and euchroma-
tin, suggesting that it may participate in both transcrip-
tional repression and activation [22]. CBX3 is associated 
with the epigenetic regulation of cell differentiation and 

cancer development [23]. Recently, CBX3 was revealed to 
be associated with lung cancer [24], osteosarcoma [25], 
gastric cardia adenocarcinoma [26] and colorectal can-
cer [27]. However, the precise role of CBX3 in glioma 
remains unclear, although Holmberg et al. [28] reported 
that HP1γ is associated with NPM1, which functions in 
the spatial organization of nucleolus-associated hetero-
chromatin in glioma.

We performed integrated analyses of 34 gene expres-
sion datasets consisting of 1893 glioma samples, which 
enabled the discovery and validation of eight differentially 
expressed genes (DEGs) consistently and specifically 
expressed in GBM. We further validated aberrant expres-
sion patterns of eight DEGs in datasets from The Cancer 
Genome Atlas (TCGA) and the Chinese Glioma Genome 
Atlas (CGGA) and revealed that six DEGs are prognos-
tic biomarkers of glioma. CBX3 was distinguished as 
a novel and clinically noteworthy mRNA in GBM. Fur-
ther experiments showed that CBX3 was overexpressed 
in glioblastoma tissues and is a potential diagnostic and 
prognostic biomarker. Silencing CBX3 can arrest the cell 
cycle in the G2/M phase in U373 cells, thereby weaken-
ing the cell proliferation ability. We attempt to provide 
novel and critical biomarkers that might be beneficial for 
the precise diagnosis and prognostic prediction of GBM 
and have broader application for translation into clinical 
practice.

Materials and methods
Data sources
We searched the NCBI database (http://www.ncbi.nlm.
nih.gov/geo/) for glioma gene expression profiling stud-
ies published through December 2016. The inclusion 
criteria were as follows: human case/control studies, 
studies with untreated samples, studies with available 
raw or processed data, studies including GBM, and stud-
ies including at least one type of nonglioma (NG), astro-
cytoma (A), and OD sample. Figure  1a shows the 
workflow for identifying eligible datasets. Gene expres-
sion data for 31 human glioma studies were downloaded 
(GSE4058, GSE2223, GSE4290, GSE4271, GSE4412, 
GSE9885, GSE1993, GSE12657, GSE13276, GSE19728, 
GSE16011, GSE24072, GSE30563, GSE15824, GSE22866, 
GSE38330, GSE50161, GSE43289, GSE45921, GSE52009, 
GSE43911, GSE54004, GSE62802, GSE68848, GSE68015, 
GSE66354, GSE70231, GSE68928, GSE74462, GSE43378, 
and GSE82009; see Table  1). The histological subtypes 
were defined according to the original publications. 
The datasets were curated to include only GBM, A, OD 
and NG. Oligoastrocytoma (OA) was excluded because 
it is not recognized as a separate tumor entity in the 
2016 CNS tumor classification system [2]. All datasets 
were normalized individually using robust multiarray 
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averaging [29]. The microarray probes in each dataset 
were mapped to gene symbols to facilitate meta-analysis.

The transcriptome and methylation expression pro-
files, corresponding clinical parameters, and follow-
up information for the patients with glioma were also 
downloaded from TCGA (https​://tcga-data.nci.Nih.
gov/tcga/) and the CGGA (http://www.cgcg.org.cn/) 
[30]. From the TCGA-GBMLGG dataset, we collected 
RNAseq data from 674 glioma samples, including 158 
GBM, 193 A, 188 OD, 130 OA, and 5 NG samples. In 
the CGGA, transcriptome data for 225 samples, includ-
ing 89 GBM, 66 A, 28 OD, 37 OA, and 5 NG samples, 
were available.

Integrated analysis procedures
For the integrated analysis, the microarray datasets were 
subjected to quality control using the MetaQC package 
of R software (version 3.4.0). The mean and standard 
deviation filter thresholds were set at 10%. The datasets 
were analyzed using two different meta-analyses with 
the MetaDE package of R software (http://www.pitt.
edu/~tseng​web/MetaO​micsH​ome.htm) [31]: (1) combin-
ing p-values and (2) combining effect sizes.

Four different meta-analysis methods in the package 
were used for combining p-values: fisher, maxP, roP, and 
AW. Using detection competency curves, the numbers 
of detected DEGs from four methods were compared to 

Fig. 1  Study workflow. a Workflow of the process for identifying microarray datasets for integrated analysis. b Overall steps in the integrated 
microarray analysis. GBM: glioblastoma; A: astrocytoma; OD: oligodendroglioma; NG: nonglioma; GEO: Gene Expression Omnibus; TCGA: The Cancer 
Genome Atlas; CGGA: the Chinese Glioma Genome Atlas; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes

https://tcga-data.nci.Nih.gov/tcga/
https://tcga-data.nci.Nih.gov/tcga/
http://www.cgcg.org.cn/
http://www.pitt.edu/%7etsengweb/MetaOmicsHome.htm
http://www.pitt.edu/%7etsengweb/MetaOmicsHome.htm
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find the optimal methods. Fisher’s sum of logs method 
was performed in the meta-analysis, and the modified t 
test and permutation method were used [32]. Briefly, for 
each gene, we summed the logarithms of the p-values 
for one-sided hypothesis testing across all datasets. The 
study-specific effect sizes were combined to obtain the 
pooled effect size and the associated standard error using 

the random effects inverse variance model. After com-
puting the meta-effect size, significant genes were identi-
fied using the z-statistic, and p-values were corrected for 
multiple hypothesis testing using the Benjamini–Hoch-
berg false discovery rate (FDR) correction [33]. Con-
sidering the heterogeneity of gene expression across all 
samples and datasets, we used a very stringent threshold 

Table 1  Characteristics of datasets included in the integrated analysis

GSE: gene expression omnibus; GPL: gene platform

Year Source 
accession

First author Country Assay type Platform PMID

2006 GSE4058 Diehn M USA SHV GPL182 15827123

2006 GSE2223 Bredel M USA SHFK GPL1833 16204036

2006 GSE4290 Fine HA USA Affymetrix Human Genome U133 Plus 2.0 Array GPL570 16616334

2006 GSE4271 Phillips HS USA Affymetrix Human Genome U133A Array; Affymetrix 
Human Genome U133B Array

GPL96; GPL97 16530701

2006 GSE4412 Nelson SF USA Affymetrix Human Genome U133A Array; Affymetrix 
Human Genome U133B Array

GPL96; GPL97 15374961

2007 GSE9885 Marucci G Italy Agilent-011521 Human 1A Microarray G4110A; Agi-
lent-012097 Human 1A Microarray (V2) G4110B

GPL885; GPL887 18953566

2007 GSE1993 Petalidis L United Kingdom Affymetrix Human Genome U133A Array GPL96 18445660

2008 GSE12657 Moran LB United Kingdom Affymetrix Human Genome U95 Version 2 Array GPL8300 NA

2009 GSE13276 Saulnier N Italy Affymetrix Human Genome U133A Array GPL96 23472076

2010 GSE19728 Liu Z China Affymetrix Human Genome U133 Plus 2.0 Array GPL570 21836821

2010 GSE16011 Gravendeel LA Netherlands Affymetrix GeneChip Human Genome U133 Plus 2.0 Arra GPL8542 19920198

2010 GSE24072 Garcia JL Spain Affymetrix Human Genome U133A Array GPL96 NA

2011 GSE30563 Lee M South Korea Affymetrix Human Genome U133 Plus 2.0 Array GPL570 NA

2011 GSE15824 Morin PJ Switzerland Affymetrix Human Genome U133 Plus 2.0 Array GPL570 21406405

2011 GSE22866 Etcheverry A France Agilent-014850 Whole Human Genome Microarray 4x44K 
G4112F

GPL4133 21156036

2012 GSE38330 Engler JR USA Agilent-014850 Whole Human Genome Microarray 4x44K 
G4112F; Agilent-020087 human whole genome 4x44K

GPL4133 22937035

2013 GSE50161 Donson AM USA Affymetrix Human Genome U133 Plus 2.0 Array GPL570 24078694

2013 GSE43289 Tabernero MD Spain Affymetrix Human Genome U133 Plus 2.0 Array GPL570 20484145

2013 GSE45921 Lu Y China Affymetrix Human Genome U133 Plus 2.0 Array GPL570 23869222

2013 GSE52009 Jiang T China Agilent-014850 Whole Human Genome Microarray 4x44K GPL6480 NA

2014 GSE43911 Hackermüller J Germany Agilent-021412 nONCOchip_1.0 021253 GPL13648 24594072

2014 GSE54004 deGroot J USA Illumina HumanHT-12 WG-DASL V4.0 R2 expression 
beadchip

GPL18281 NA

2015 GSE62802 Marc Remke Canada Affymetrix Human Genome U133 Plus 2.0 Array GPL570 NA

2015 GSE68848 Fine H USA Affymetrix Human Genome U133 Plus 2.0 Array GPL570 19208739

2015 GSE68015 Donson AM USA Affymetrix Human Genome U133 Plus 2.0 Array GPL570 25990246

2015 GSE66354 Donson AM USA Affymetrix Human Genome U133 Plus 2.0 Array GPL570 25968456

2015 GSE70231 Mervi Heiskanen USA Affymetrix Human Full Length HuGeneFL Array GPL80 11559565

2015 GSE68928 Mervi Heiskanen USA Affymetrix Human Full Length HuGeneFL Array; Affymetrix 
Human 35 K SubA Array

GPL80; GPL98 11742071

2015 GSE74462 Fan X China Affymetrix Human Gene 1.0 ST Array [transcript (gene) 
version]

GPL6244 NA

2016 GSE43378 Ryuya yamanaka Japan Affymetrix Human Genome U133 Plus 2.0 Array GPL570 23745793

2016 GSE82009 Mervi Heiskanen USA Affymetrix Human Genome U95 Version 2 Array GPL8300 12670911
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(FDR < 1 × 10−19) for both integrated analysis methods to 
identify DEGs in GBM vs. NG tissues. Figure  1b shows 
the overall steps in the integrated microarray analysis and 
functional validation pipeline.

Functional analysis
To interpret the biological functions of the DEGs, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analyses were performed 
using Enrichr tool [34]. The GO analyses covered three 
domains: biological process (BP), cellular component 
(CC) and molecular function (MF). Finally, the signifi-
cant GO terms and KEGG pathways were filtered at a 
threshold of FDR < 0.05.

Survival analysis
Log-rank tests for significance were conducted and 
Kaplan–Meier curves were plotted using GraphPad 
Prism 5. According to the median expression level of 
each DEG, patients with glioma were divided into low 
and high DEG expression groups; p < 0.05 was considered 
statistically significant. Considering GBM patients char-
acterized by G-CIMP signature have a better survival. We 
conducted survival analysis excluding the G-CIMP posi-
tive patients.

Tissue microarray analysis
We performed immunohistochemical staining for CBX3 
on two tissue microarrays, namely, a glioblastoma tissue 
microarray (GLC-1601; Servicebio, consisting of 60 GBM 
and 10 NG tissues) and an astrocytoma tissue microar-
ray (ASC-1501; Servicebio, consisting of 36 A and 27 
matched adjacent normal tissues; see Additional file  1: 
Table S1).

Immunohistochemical staining
Immunohistochemistry was performed as previously 
described [35] with a mouse antibody against CBX3 
(1:100; Santa Cruz; sc-398562). CBX3 staining was evalu-
ated by two pathologists who were blinded to the sample 
types. CBX3 staining in the tissue sections was assessed 
using a widely accepted German semiquantitative scoring 
system [36]. Each sample was assigned a score according 
to the nuclear staining intensity (no staining = 0; weak 
staining = 1, moderate staining = 2, and strong stain-
ing = 3) and the extent of positive-stained cells (0–5% = 0, 
5–25% = 1, 26–50% = 2, 51–75% = 3, and 76–100% = 4). 
The final immunoreactivity score was obtained by multi-
plying the intensity score by the extent score and ranged 
from 0 to 12. The samples were divided into three expres-
sion groups based on the final immunoreactivity score, as 
follows: low (0–7), medium (8–10), and high (11, 12).

Cell culture
The human glioblastoma cell lines A172, U-118MG, and 
U-87MG were purchased from the cell bank of the Chi-
nese Academy of Sciences in Shanghai, and SF-268 was 
purchased from American Tissue Culture Collection. 
U373 and U251 were obtained as gifts from Prof. Yip-
ing Li (Institute of Human Virology, Zhongshan School 
of Medicine, Sun Yat-sen University North Campus). 
All cell lines were maintained in DMEM supplemented 
with 10% FBS, 100  μg/ml penicillin, and 100  μg/ml 
streptomycin, except SF-268, which was maintained in 
RPMI 1640 medium. Cells were incubated in a humidi-
fied atmosphere containing 5% CO2 at 37 °C.

Tissue collection
A total of 45 glioma surgical specimens and 3 NG tis-
sues (from brain trauma decompression) were col-
lected from patients undergoing surgical procedures at 
the Union Hospital of Tongji Medical College, China 
(Additional file 1: Table S1).

Quantitative polymerase chain reaction (qPCR) of tissues 
and cell lines
Total RNA was extracted by Trizol reagent (Aidlab) 
according to the manufacturer’s instructions. cDNA 
samples were reverse transcribed from total RNA of 
glioma surgical specimens and glioblastoma cell lines. 
The amplification program used was as follows: 50  °C 
for 2  min, 95  °C for 10  min, followed by 40 cycles at 
95 °C for 30 s and 60 °C for 30 s. The relative expression 
of CBX3 was determined by the 2−ΔΔCt method with 
GAPDH as an internal control. The primer sequences 
are listed in Additional file 1: Table S2.

Small interfering RNA transfection
The lentiviral vector containing CBX3 siRNA was syn-
thesized by Genechem (Shanghai, China). siRNA tar-
get sequences (shCBX3-1, 5′-ACG​TGT​AGT​GAA​TGG​
GAA​A-3′ and shCBX3-2, 5′-TGA​AGA​ATT​TGT​CGT​
GGA​A-3′) for the CBX3 gene (NM_016587) were 
designed, and a nonsilencing siRNA sequence (5′-TTC​
TCC​GAA​CGT​GTC​ACG​T-3′) was adopted as a nega-
tive control (NC, shCtrl).

U373 cells were seeded in six-well culture plates and 
transfected with lentivirus according to the manufac-
turer’s instructions (MOI = 5). The culture medium 
was replaced after 10  h, and mCherry expression was 
observed under a fluorescence microscope (Olympus) 
3 days after infection.
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Western blot analysis
Western blotting was performed as previously 
described [37]. Blots were probed with anti-CBX3 
(Santa Cruz, USA) and anti-β-actin (Servicebio, China) 
antibodies.

CCK8 assay
U373 cells were seeded in 96-well plates at a density 
of 3000 cells/well and incubated overnight. Cell pro-
liferation was determined at 24, 48, 96, and 120  h by 
measuring the absorbance at 450  nm according to the 
manufacturer’s protocol.

Cell cycle assay
Cells were fixed in precooled 70% ethanol for 4  h and 
then resuspended by adding 400 µl 7-amino-actinomycin 
D (7-AAD) (50 μg/ml) and 100 μl RNase (50 μg/ml). The 
DNA content was analyzed by flow cytometry using a 
FACSCalibur (BD Biosciences). The percentage of cells 
in each phase of the cell cycle was determined using the 
ModFit LT program (Verity Software House, USA).

Statistical analysis
The significance of the differences between the groups 
was determined with a Kruskal–Wallis H test or Stu-
dent’s t test, and p-values less than 0.05 were consid-
ered statistically significant. The measurement data 
are expressed as the means ± standard deviations. The 
results were repeated in at least three independent 
experiments. The Kaplan–Meier survival curves were 
plotted using GraphPad Prism 5, which enables the 
interactive exploration of survival correlations using a 
log-rank test. Receiver operating characteristic (ROC) 
curve analysis was performed to evaluate the diagnostic 
efficiency. SPSS v19.0 was used for statistical analysis.

Results
Dataset characteristics
A total of 31 studies satisfying the inclusion criteria 
and containing 1277 GBM, 427 A, 189 OD, and 150 
NG samples were analyzed. The detailed characteris-
tics of the four comparison groups (GBM vs. NG train-
ing set, GBM vs. NG validation set, GBM vs. A set, and 
GBM vs. OD set) are summarized in Table  1. Since 
GSE68928, GSE4271, and GSE4412 datasets have two 
different platforms, we devided each dataset into two 
datasets respectively.

Integrated analysis of nine training datasets identifies 322 
DEGs in GBM vs. NG
We applied two meta-analysis methods to iden-
tify DEGs in GBM as described in “Materials and 

methods” section. By combining p-values, 437 DEGs 
were detected using Fisher’s sum of logs method 
(Fig. 2a, b). To further refine the list of DEGs in GBM, 
we conducted a random effects model to estimate the 
differences in gene expression across all datasets by 
combining the individual effect sizes into a meta-effect 
size [38, 39].

This method identified 393 DEGs at an FDR thresh-
old of 1 × 10−19. Finally, the DEGs obtained from both 
methods were plotted in a Venn diagram, revealing 322 
overlapping DEGs when combining both p-values and 
effect sizes. This overlapped group contained genes that 
not only had an overall large effect size across all data-
sets but also were significantly differentially expressed. 
To reveal biological functions differentially regulated 
in GBM, all 322 DEGs were analyzed by using Enrichr. 
Results for enriched biological pathways and gene ontol-
ogy are shown in Additional file 1: Table S3. Pathways in 
cancer, MAPK signaling pathway, Wnt signaling pathway, 
apoptosis, and cell cycle were enriched pathway terms in 
GBM vs. NG.

Integrated analysis of the training and validation datasets 
identifies 33 DEGs in GBM vs. NG
A total of 471 DEGs were detected by combining p-val-
ues using Fisher’s sum of logs method (Additional file 2: 
Figure S1A). By using a random effects model to combine 
effect sizes, 285 DEGs were identified. Finally, the DEGs 
obtained from both methods were plotted in a Venn dia-
gram, revealing 188 overlapping DEG when combining 
p-values and effect sizes.

In our study, we adopted the training-validation 
approach [10], using the larger dataset (nine datasets) as 
the training set and the smaller dataset (seven datasets) 
as the validation set. Venn diagram analysis showed that 
33 DEGs, including 28 upregulated DEGs and 5 down-
regulated DEGs, were significantly expressed in both the 
training and validation datasets.

However, because only GBM samples were included in 
this meta-analysis, these 33 genes possibly also abnor-
mally expressed in other subtypes of glioma relative to 
their expression in normal tissue. Therefore, we sought 
to determine whether this 33-DEG signature was specific 
for GBM or whether this set of genes was also signifi-
cantly differentially expressed in other glioma subtypes.

Integrated analysis of GBM vs. NG, GBM vs. A, and GBM 
vs. OD sets identifies 8 DEGs significantly and specifically 
expressed in GBM
We analyzed additional validation datasets, includ-
ing 21 datasets containing a total of 852 GBM and 
427 A samples (Additional file  2: Figure S1B). Finally, 
we found that a total of 920 genes were significantly 
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differentially expressed as assessed by Fisher’s sum of 
logs method (FDR < 0.05).

We analyzed additional validation datasets, includ-
ing 12 datasets containing a total of 590 GBM and 189 
OD samples (Additional file 2: Figure S1C). Finally, we 
found that a total of 482 genes were significantly dif-
ferentially expressed as assessed by Fisher’s sum of logs 
method (FDR < 0.05).

In summary, the Venn diagrams of the three inte-
grated analyses revealed eight genes that are signifi-
cantly and consistently differentially expressed in GBM 
(six upregulated and two downregulated) and could 
distinguish GBM samples from NG tissues or tissues 
of other glioma subtypes (Fig.  2c, Additional file  1: 
Table S4). Thus, these genes may be potential diagnos-
tic and therapeutic targets in GBM.

Validation in the TCGA‑GBMLGG and CGGA cohorts
We further validated the eight DEGs in the TCGA-GBM-
LGG (158 GBM, 193 A, 188 OD, and 5 NG) and CGGA 
cohorts (89 GBM, 66 A, 28 OD, and 5 NG). In these two 
validation cohorts, all eight DEGs, including six upregu-
lated and two downregulated genes, were significantly 
differentially expressed in GBM vs. NG (Fig. 3, Additional 
file 1: Tables S5 and S6). BRCA1 associated RING domain 
1 (BARD1), CBX3, cathepsin S (CTSS), interferon-related 
developmental regulator 1 (IFRD1), signal transducer and 
activator of transcription 1 (STAT1), and myelin-associ-
ated oligodendrocytic basic protein (MOBP) were signifi-
cantly and specifically differentially expressed in GBM.

Further ROC curve analysis based on the upregulated 
DEGs in the TCGA-GBMLGG cohort revealed that 
BARD1, CBX3, CTSS, IFRD1, and STAT1 had high accu-
racy in differentiating GBM samples from NG, A, and 

Fig. 2  Identification of DEGs specifically expressed in GBM. a Clustering analyses were initially performed with the nine datasets in GBM vs. NG 
tissues. Each row represents the expression level of a mRNA, and each column represents a sample. “1” = glioblastoma, “0” = NG tissues. b The 
number of DEGs with the four different meta-analysis algorithms (maxP, fisher, roP and AW). c Venn diagram depicting the number of mRNAs that 
overlapped in GBM vs. NG, GBM vs. A, and GBM vs. NG tissues. GBM: glioblastoma; A: astrocytoma; OD: oligodendroglioma; NG: nonglioma; DEG: 
differentially expressed gene



Page 8 of 14Wang et al. J Transl Med          (2019) 17:179 

OD samples. In the CGGA cohort, BARD1, CBX3, CTSS, 
IFRD1, and STAT1 were similarly shown to have high 
accuracy in differentiating GBM samples from NG, A, 
and OD samples (Additional file 3: Figure S2).

Survival analysis
Further, to investigate the clinical relevance of CBX3 
expression in glioma, Kaplan–Meier analysis was con-
ducted to explore whether these eight genes play roles in 
the survival of patients with glioma. In the TCGA-GBM-
LGG cohort, the results showed that patients with high 
CBX3, BARD1, CTSS, epidermal growth factor receptor 

(EGFR), IFRD1, or STAT1 expression had significantly 
shorter survival but patients with high guanylate cyclase 
1 soluble subunit alpha 3 (GUCY1A3) or MOBP expres-
sion had significantly longer survival than patients with 
lower expression of these genes. In the CGGA cohort, 
the results showed that patients with high CBX3, BARD1, 
EGFR, or IFRD1 expression had significantly shorter sur-
vival but patients with high GUCY1A3 or MOBP expres-
sion had significantly longer survival than patients with 
lower expression of these genes (Fig. 4). After excluding 
G-CIMP positive patients in TCGA-GBMLGG, survival 
analysis showed that patients with high CBX3, BARD1, 

Fig. 3  Validation of the TCGA-GBMLGG and CGGA datasets. Expression levels of the eight DEGs in GBM, A, OD, and NG tissues in the TCGA-GBMLGG 
(a) and CGGA (b) cohorts. GBM: glioblastoma; A: astrocytoma; OD: oligodendroglioma; NG: nonglioma; DEG: differentially expressed gene; TCGA: 
The Cancer Genome Atlas; CGGA: the Chinese Glioma Genome Atlas. ****Indicates a p-value of < 0.0001; **indicates a p-value of < 0.01; *indicates a 
p-value of < 0.05
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CTSS, STAT1, or IFRD1 expression had significantly 
shorter survival but patients with high GUCY1A3 or 
MOBP expression had significantly longer survival than 
patients with lower expression of these genes we con-
ducted Kaplan–Meier analysis (Additional file  4: Figure 
S3).

CBX3 overexpression in human GBM samples was shown 
by immunohistochemical staining and qPCR
Among these eight DEGs, CBX3 has been revealed to be 
linked with cancers; however, the precise role of CBX3 
in glioma remains unclear, so we focused further inves-
tigation on CBX3. CBX3 expression was assessed by 
immunohistochemical staining. Two tissue microarrays 
consisting of 60 GBM, 36 A, and 10 NG samples were 

used to determine CBX3 expression. Immunohistochem-
ical analysis revealed that CBX3 expression was signifi-
cantly upregulated in the nuclei in GBM and A tissues 
compared with that in normal brain tissue. However, no 
significant difference was observed between GBM and 
A samples, possibly due to the limited sample size. The 
samples were divided into three groups according to the 
CBX3 expression score, representing low (0–7), medium 
(8–10), and high (11, 12) expression levels of CBX3 
(Fig. 5a, b).

Furthermore, the expression of CBX3 mRNA in surgi-
cal specimens was detected by qPCR. The qPCR results 
in the surgical specimens showed that CBX3 mRNA 
expression was highest in GBM tissue and that CBX3 
mRNA expression in GBM tissue was different from that 

Fig. 4  Survival analysis of patients with glioma. Kaplan–Meier analyses were performed based on the median expression levels of the eight DEGs 
in the TCGA-GBMLGG (a) and CGGA (b) cohorts. The tick marks on the Kaplan–Meier survival curves represent the censored subjects. TCGA: The 
Cancer Genome Atlas; CGGA: the Chinese Glioma Genome Atlas
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in A or NG brain tissue. However, no statistically signifi-
cant difference was observed between GBM and OD tis-
sues (Fig. 5c).

CBX3 mRNA expression was evaluated by qPCR in 
glioblastoma cell lines, including SF268, U373, U251, 
U87MG, U118, and A172 cells (Fig.  6a). Among these 
cell lines, U373 cells displayed the highest expression of 
CBX3 and were thus selected for the following studies.

Knockdown of CBX3 inhibits U373 cell growth
To explore the role of CBX3 in glioblastoma, either 
siRNA targeting CBX3 or nonsilencing RNA sequences 
were transfected into U373 cells. Approximately 72  h 
after virus transfection, 90% of the U373 cells exhibited 
red fluorescence under fluorescence microscopy, indi-
cating CBX3 expression. qPCR analysis showed that the 
expression of CBX3 mRNA was reduced by approxi-
mately 77% in the shCBX3-1 group compared with that in 
the shCtrl group (Fig. 6b). Moreover, Western blot analy-
sis suggested that the expression of the CBX3 protein was 
downregulated in the shCBX3-1 group compared to that 
in cells transfected with the control lentivirus (Fig. 6c).

To determine the effects of CBX3 on glioblastoma cell 
growth, we monitored proliferation using the CCK8 
assay. The proliferation rate of U373 cells transfected 

with shCBX3-1 was markedly lower than that of cells 
transfected with shCtrl (Fig. 6d).

Knockdown of CBX3 induced G2/M cell cycle arrest in U373 
cells
The cell cycle distribution in cells infected with either 
shCBX3 or shCtrl lentivirus was explored in an attempt 
to explain the CBX3-mediated suppression of prolif-
eration. The number of CBX3 knockdown U373 cells in 
the G0/G1 phase was significantly lower than the num-
ber of control cells in the G0/G1 phase, while the num-
ber of CBX3 knockdown U373 cells in the G2/M phase 
was markedly higher than the corresponding number of 
control cells. Thus, U373 cells exhibited G2/M cell cycle 
arrest after transfection with shCBX3-1 (Fig. 6e).

Discussion
Many transcriptional studies in glioma have been per-
formed; however, most used limited sample sizes, 
variable platforms and different sample types (cell or 
tissue), making it challenging to characterize stable 
and reliable molecular biomarkers of glioma. To our 
knowledge, our study is a very large integrated analysis 
to date of gene expression in glioblastoma. Eight genes 
were consistently expressed between GBM tissues and 

Fig. 5  CBX3 is overexpressed in GBM tissues. a Representative images of CBX3 staining in NG, A, and GBM tissues (Magnification bar = 100 μm). b 
CBX3 scores for GBM, A, and NG in tissue microarrays and the distribution of high, medium, and low CBX3 expression in the three tissues. c CBX3 
mRNA expression in GBM, A, and NG tissues from surgical specimens. GBM: glioblastoma; A: astrocytoma; OD: oligodendroglioma; NG: nonglioma
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NG, A or OD tissues with high significance, a finding 
that may ultimately translate into clinical practice. To 
further assess our results, we investigated the role of 
these eight genes in the survival of patients with glioma 
using TCGA-GBMLGG and CGGA cohorts. Patients 
with high CBX3, BARD1, EGFR, or IFRD1 expression 
had significantly shorter survival and patients with high 
GUCY1A3 or MOBP expression had significantly longer 
survival than patients with lower expression of these 
genes.

Some of these eight genes, such as EGFR, STAT1, and 
BARD1, have been confirmed to be involved in can-
cer by numerous studies. Furthermore, some of these 
genes, such as MOBP and CTSS, have been confirmed 

to be related to glioma. CBX3, GUCY1A3, and IFRD1 
have been reported in relation to some tumors but have 
been studied little in glioma.

MOBP is specifically overexpressed in oligodendro-
cytes [40]. Our study found that in the GBM vs. OD 
comparison, MOBP was overexpressed in OD, consist-
ent with the literature. Thomas et  al. [41] showed by 
an ELISA that CTSS was highly expressed in glioblas-
toma but was expressed at relatively low levels in grade 
I-III astrocytoma. In addition, high CTSS expression in 
glioblastoma shows a poor prognosis. This conclusion 
is completely consistent with our findings. GUCY1A3 
is an upstream regulatory gene of VEGF and may be a 
molecular target for antiangiogenic therapy in glioma 

Fig. 6  Knockdown of CBX3 inhibits cell growth and leads to G2/M cell cycle arrest in U373 cells. a qPCR analysis of CBX3 mRNA levels in SF268, 
U373, U251, U87MG, U118, and A172 cells. qPCR (b) and Western blot (c) validation of CBX3 expression in U373 cells transfected with shCBX3-1, 
shCBX3-2, and shCtrl. d CCK8 proliferation curve of U373 cells transfected with shCBX3-1, shCBX3-2, and shCtrl. e The cell cycle was analyzed by 
flow cytometry in U373 cells transfected with shCtrl, shCBX3-1, and shCBX3-2. **Indicates a p-value of < 0.01; *indicates a p-value of < 0.05
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[42]. IFRD1 is expressed in various cells and may play 
a role in promoting tissue proliferation or regeneration 
[43].

However, research on IFRD1 in glioma has not been 
reported. Studies by Lewis and others showed that IFRD1 
is highly expressed in colon cancer and is negatively cor-
related with the 5-year survival time. In our study, IFRD1 
is specifically overexpressed in glioblastoma and suggests 
a poor prognosis in glioma.

In our study, CBX3 was upregulated in glioblastoma, 
and patients with high CBX3 expression had shorter 
survival. Considering that there is little research about 
CBX3 in gliomas, we selected CBX3 for further study. 
The mammalian HP1 family contains three isoforms, 
HP1a (CBX5), HP1b (CBX1), and HP1γ (CBX3). The 
CBX3-encoded protein HP1γ, a member of the hetero-
chromatin family, is a highly conserved nonhistone chro-
matin protein containing two highly conserved domains. 
Current studies have confirmed that CBX3 is involved in 
transcriptional silencing, DNA repair, and RNA splicing. 
Moreover, the mechanisms of action of CBX3 in cancer 
remain obscure.

Han et  al. [24] found that CBX3 was positively 
expressed in 90.3% of non-small cell lung cancer tissues, 
whereas only 2 of 7 normal lung tissues were positive for 
CBX3 expression. Saini et  al. [25] identified that CBX3 
can be used as a marker for tumor stem cells in osteosar-
coma and that CBX3 was overexpressed in osteosarcoma 
and osteosarcoma metastases to the lung compared with 
its expression in primary osteoblasts. Liu et al. [27] found 
that CBX3 is overexpressed in colorectal cancer, while 
miR-30a is downregulated and inversely correlated with 
high CBX3 expression. Furthermore, CBX3 promotes 
colorectal cancer cell proliferation and tumorigenesis. 
p21 is a cyclin-dependent kinase inhibitor that can inter-
rupt cell cycle progression, leading to cell cycle arrest 
[44, 45]. Knockdown of CBX3 increased p21 expression, 
resulting in slower proliferation of colorectal cancer cells. 
The miR-30a/CBX3/p21 axis is proposed to regulate the 
development of colorectal cancer and to be a prognostic 
and therapeutic target. Fan et al. [46] demonstrated that 
CBX3 can promote proliferation and cell cycle progres-
sion both in vivo and in vitro in colon cancer cells. CBX3 
can promote the formation of colon cancer by inhibit-
ing the expression of CDK6/p21, which are cell cycle (G1 
phase to S phase) related genes. Several studies have also 
found that HP1 proteins interact with transcriptional 
regulators of key cell cycle genes, including cyclin E, 
E2F1, and p53 [47–49]. In our study, CBX3 knockdown 
inhibited the proliferation of glioblastoma cells and led 
to cell cycle arrest at the G2/M phase to G0/G1 phase 
boundary, partly in accordance with the findings in the 
above studies.

However, there were also some limitations that should 
be strengthened in this study. First, since datasets in this 
study were from 15 different platforms, the batch effect is 
large, but we did quality control before DEG analysis to 
reduce the effect. Second, the functional analysis in wet 
experiment only explored CBX3, and further analysis in 
other gene were still needed.

Conclusions
In summary, this study is a global analysis identifying 
glioblastoma-specific mRNAs in such a large sample size 
through integrated analysis. Our analysis uses a “prevali-
dation” integrated analysis to identify signatures and wet 
lab experiments to validate the identified CBX3 gene, 
which may accelerate translational research and will pro-
vide insight into new strategies to seek tumor biomarkers 
for precision oncology.
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