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Abstract 

Background:  Kidney renal clear cell carcinoma (KIRC) is the most common type of kidney cancer in adults, and it is 
responsible for approximately 90–95% of cases. Although extensive evidence has suggested that many immune- and 
inflammation-related genes could serve as effective biomarkers in KIRC, the potential associations among immune-, 
inflammation- and KIRC-related genes has not been sufficiently understood.

Methods:  Here, we integrated multiple levels of data to construct an immune-, inflammation- or KIRC-directed 
neighbour network (IIKDN network) and a KIRC-related gene-directed network (KIRCD network).

Results:  Our analysis suggested that immune- and inflammation-related genes in the network have special topo-
logical characteristics and expression patterns related to KIRC. We further identified five core clusters that showed a 
tighter network structure and stronger correlation of expression from the KIRCD network. Specifically, multiple-level 
molecular characteristics were systematically portrayed, including somatic mutation, copy-number variant and DNA 
methylation for the genes in five core clusters. We discovered that the genes showed strong correlation with respect 
to the expression and methylation levels in these five core clusters. These five core clusters could become special 
prognostic biomarkers for KIRC, and functional analysis showed that they were associated with activation of the 
immune and inflammation systems and cancer progression.

Conclusions:  Our findings highlighted the novel role of the immune and inflammation genes in KIRC.
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Background
Renal cell carcinoma (RCC) is a type of kidney cancer 
and is the leading cause of cancer-related death, with an 
annual incidence of more than 270,000 new cases glob-
ally [1]. RCC is the most common type of kidney cancer 
in adults and is responsible for approximately 90–95% 
of cases. Clear cell renal cell carcinoma (ccRCC), also 
known as kidney renal clear cell carcinoma (KIRC), is 

the most common (~ 80%) subtype [2]. Genetic changes 
including alterations in genes that control cellular oxy-
gen sensing and the maintenance of chromatin states will 
induce underlying KIRC [3]. In recent years, there has 
been significant progress in the survival of KIRC patients 
as a result of the evolution of the frontline treatment 
paradigm for KIRC, particularly for intermediate-risk 
and poor-risk patients [4]. However, the effectiveness and 
safety of the current treatment strategy should be further 
discussed and improved. Thus, there is a need to develop 
strategies that combine immunotherapy and molecular 
biomarkers as novel treatments in the clinic.
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In the development, growth, and progression of cancer, 
the tumour microenvironment is essential and important 
[5]. Immune disorder and chronic inflammation are two 
classic and prevalent examples of ongoing perturbation 
within the microenvironment [6]. In addition, evading 
immune destruction and tumour-promoting inflamma-
tion are two essential hallmarks of cancer [7]. In recent 
years, studies have uncovered the basic principles and 
process of inflammation and inflammatory signalling 
that promote cancer and the response of cancer to ther-
apy [8]. Chevrier et  al. constructed an immune atlas of 
KIRC and revealed potential biomarkers and targets for 
immunotherapy development in KIRC [9]. Chang et  al. 
used a systemic inflammation score to predict postopera-
tive prognosis of patients with KIRC [10]. Inflammation 
is a fundamental innate immune response to perturbed 
tissue homeostasis [11]. The relevance among the 
immune response, inflammation and KIRC is complex 
and important. Characterizing the mechanistic relation-
ship between KIRC and its inflammation and immune 
microenvironment could lead to the identification of 
novel biomarkers or therapeutic targets for KIRC treat-
ment. Although KIRC is closely related to the immune 
response and inflammation, the global characteristics 
of the immune response and inflammation in KIRC are 
unknown.

The Cancer Genome Atlas (TCGA) is a comprehensive 
and coordinated effort to accelerate our understanding of 
the molecular basis of cancer, and it has generated com-
prehensive, multi-dimensional maps of the key genomic 
changes in 33 types of cancer. The comprehensive molec-
ular characterization for KIRC has been depicted [12]. 
Sato et  al. have integrated multiple molecular analysis 
and uncovered novel associations among DNA methyla-
tion, gene mutation and/or gene expression and copy-
number profiles, enabling the stratification of clinical 
risks for KIRC patients [13]. These findings demonstrate 
that integration of multiple omics data could help in 
evaluating the mechanism and developing the therapy 
of KIRC. However, the integrated molecular analysis 
regarding immune and inflammation genes in KIRC is 
insufficient.

In this study, we constructed an immune-, inflamma-
tion- or KIRC-directed neighbour network (IIKDN net-
work) and a KIRC-related gene-directed network (KIRCD 
network) to address the role of the immune response and 
inflammation in KIRC. We also analysed the topological 
features and expression pattern of the IIKDN and KIRCD 
networks. We identified five modules from the KIRCD 
network, and the genes in these five modules were mostly 
differentially expressed and indicated that the five mod-
ules play important roles in KIRC. In addition, we discov-
ered some hub modules related to the immune response 

and inflammation that were strongly co-expressed in 
these five modules. These modules all included several 
key immune-related, inflammation-related and KIRC-
related genes, which demonstrated the functional signifi-
cance of the immune- and inflammation-related genes 
to KIRC. Specially, we systematically portrayed multiple 
level molecular characteristics including somatic muta-
tion, copy-number variant and DNA methylation for the 
genes in the five modules. These modules could serve as 
prognostic biomarkers for KIRC, and functional analysis 
showed that they were associated with activation of the 
immune system and cancer process. Our findings high-
lighted the novel role of the immune and inflammation 
genes in KIRC. These comprehensive analyses can serve 
as important resources for future experimental dissection 
of biomarkers in KIRC.

Methods
Human immune and inflammation‑related gene datasets
All the genes related to the immune response and inflam-
mation from AmiGO 2 version: 2.4.26 in Homo sapiens 
species were downloaded [14]. Finally, we collected 3068 
immune-related genes from 651 records and 604 inflam-
mation-related genes from 91 records.

KIRC‑related gene datasets
DisGeNET is the largest publicly available database that 
collects genes and variants associated with human dis-
eases [15]. Finally, we extracted 585 KIRC-related genes.

Human protein–protein interaction data
We downloaded protein–protein interaction (PPI) data 
from the Human Protein Reference Database (HPRD) 
database and constructed the human protein interaction 
network [16].

Construction of network and analysis of topological 
characteristics
First, we constructed a sub-network of IIKDN network 
from the PPI network, and the IIKDN network included 
immune-, inflammation-, and KIRC-related genes and 
their direct interacting genes in the network (referred to 
as neighbour genes). Next, we extracted all KIRC-related 
genes from the IIKDN network to construct a KIRC-
related gene-directed network (KIRCD network). Finally, 
the Cytoscape software was used to construct the net-
work and analyse the topological properties of nodes in 
both IIKDN and KIRCD networks [17].

Identification of core clusters from KIRCD network
We used the MCODE tool of Cytoscape, following the 
default parameters, to identify all the network modules 
from the KIRCD network (http://apps.cytos​cape.org/

http://apps.cytoscape.org/apps/mcode
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apps/mcode​). MCODE could cluster a network follow 
topology to obtain densely connected regions. We identi-
fied several clusters and extracted five clusters with the 
highest MCODE scores.

Characteristics of gene expression pattern of KIRCD 
network and core clusters
The gene expression profile of KIRC was obtained from 
The Cancer Genome Atlas (TCGA) (https​://cance​rgeno​
me.nih.gov/). The KIRC gene expression profile con-
tains 536 KIRC patients and 72 matched normal samples. 
Pearson correlation coefficients (PCCs) values between 
two nodes, either in the KIRCD network or core clusters, 
were calculated via the gene expression data of KIRC 
patients. The relationship was considered as significantly 
co-expressed if the p values and false discovery rate 
(FDR) values were lower than 0.05 and 0.1. We also iden-
tified differentially expressed genes between the KIRC 
and matched control samples via the unpaired t-test for 
all the genes in the five core clusters (P < 0.05, FDR < 0.1).

Integrated multiple level molecular analysis of genes 
in core clusters
Somatic mutation, copy-number variant (CNV), and 
DNA methylation data on KIRC were acquired from 
the TCGA Pan-Cancer project. GENCODE (Release 28, 
GRCh38) annotation files, including comprehensive gene 
annotations in a GTF format, were used for mapping the 
somatic mutations, CNVs and DNA methylation site-
specific genes. We extracted the score < − 0.2 as copy-
number deletion and > 0.2 as copy-number amplification. 
We also used the unpaired t-test to identify differential 
DNA methylation sites. PCC values were calculated to 
estimate the co-expression pattern of the most significant 
differential DNA methylation sites for each gene.

Survival analysis for the core clusters in KIRC
We used the regression coefficient of each gene in the 
core cluster related to patient survival based on gene 
expression data to verify if these core clusters were asso-
ciated with survival. First, the KIRC samples were ran-
domly divided into two groups and the samples in these 
two groups are independent. Next, a multivariate Cox 
regression model was used for each gene in the cluster 
to obtain a standardized Cox regression coefficient for 
the first group. Age, cancer stage and sex also become 
confounders in this process. We established a risk score 
formula for each KIRC patient based on the expres-
sion values of each selected gene for the held-out group 
weighed by their estimated regression coefficients, fol-
lowing the above multivariate Cox regression analysis. In 
other words, to avoid the overfitting, the risk scores were 
constructed by holding back a part of the KIRC dataset 

during the Cox regression analysis and using the held-
out samples to validate the model. Second, we used the 
median of the risk score as the threshold value to divide 
the KIRC patients into high-risk and low-risk groups. 
Finally, Kaplan–Meier survival analysis was performed 
for the high- and low-risk groups, and statistical signifi-
cance was assessed using the log-rank test. The survival 
results were considered significant when P < 0.05 and 
FDR < 0.1. All analyses were performed within the R 3.3.3 
framework.

Functional enrichment analysis for the core clusters
With the Enrichr tool online web server using default 
parameters, functional enrichment was performed for 
genes across core clusters [18]. We obtained enriched 
GO terms (P < 0.05, FDR < 0.1), KEGG pathways (P < 0.05, 
FDR < 0. 1).

Results
Immune and inflammation‑related genes play crucial roles 
in KIRC
We constructed an immune, inflammation or KIRC-
directed neighbour network (IIKDN network), which is 
a sub-network of the PPI network (Fig.  1a). The IIKDN 
network contained 5391 nodes and 15,411 edges. The 
degree of all the nodes in the IIKDN network showed a 
scale-free distribution (R-square = 0.900) (Fig.  1b). We 
also divided the genes in the IIKDN network into four 
types. We defined the gene as “three types” if the gene 
was immune-related, inflammation-related gene and 
KIRC-related. We defined the gene as “two types” if the 
gene was both immune- and inflammation-related or 
immune- and KIRC-related or inflammation- and KIRC-
related. We defined the gene as “one type” if the gene was 
only immune-related or inflammation-related or KIRC-
related. We defined the gene as “other type” if the gene 
belonged to none of the above mentioned gene types. In 
the IIKDN network, there were 36 “three types” genes, 
272 “two types” genes and 1056 “one type” gene (Fig. 1c, 
d). We found that the “three types” genes had the high-
est degree (average degree = 21.9), and the average 
degree of the “other type” genes was far lower than that 
for the immune-, inflammation- and KIRC-related genes 
(Fig.  1e). The result suggested immune- and inflamma-
tion-related genes play more essential roles than other 
genes in KIRC. The result also indicated complex links 
among the immune-related, inflammation-related and 
KIRC-related genes. We also discovered that the aver-
age degree of KIRC-related genes was the highest and 
showed that KIRC-related genes still play essential 
roles in the IIKDN network (Fig. 1f ). The top five genes 
including TP53, SRC, GRB2, ESR1 and SMAD3 exhibit a 
direct connection and the highest degree in the network 

http://apps.cytoscape.org/apps/mcode
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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(Fig. 1g). Notably, SRC and GRB2 were immune-related 
genes. SMAD3 was a “three type” gene, and ESR1 was an 
inflammation-related and KIRC-related gene, which indi-
cated that immune- and inflammation-related genes play 
hub roles in the IIKDN network. More than half of the 
interactions of KIRC-related genes were associated with 
immune- and inflammation-related genes (Fig.  1h). The 
number of other gene neighbours was smaller than that 
of immune- and inflammation-related gene neighbours 
for KIRC-related genes. All the above results indicated 

that immune- and inflammation-related genes play cru-
cial roles in KIRC.

Immune‑ and inflammation‑related genes directly interact 
with KIRC‑related genes and identification of core clusters
We extracted a KIRC-related gene-directed network 
(KIRCD network) from the IIKDN network to further 
explore the association among immune-related, inflam-
mation-related and KIRC-related genes (Fig.  2a). The 
KIRCD network only contained the KIRC-related genes 

Fig. 1  The properties of immune, inflammation or KIRC-directed neighbour network (IIKDN network). a The global IIKDN network. b The degree 
distribution of nodes. c The bar plot shows the number of diverse genes. d The Venn diagram shows the number of immune-, inflammation- and 
KIRC-related genes. e The bar plot shows the average degree of diverse kinds of genes. f The bar plot showed the average degree of immune-, 
inflammation- and KIRC-related genes. g The top five genes ranked by gene degrees including TP53, SRC, GRB2, ESR1 and SMAD3. The bar plot 
shows the degree of the five genes. h The pie chart shows the percent of immune- and inflammation-related genes associated with KIRC genes
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and genes directly connected to them. There were 3360 
nodes and 12,058 edges in the KIRCD network. We 
found 853 immune- and inflammation-related genes in 
the KIRCD network (Fig.  2b). Specially, we discovered 
that the nodes in the KIRCD network exhibited a higher 
network clustering, average degree and clustering coeffi-
cient than the nodes in the IIKDN network (Fig. 2c1–c3). 
This result of comparing topological features indicated 
that the KIRCD network is closer in structure.

Next, we further explored the associations among 
immune-, inflammation- and KIRC-related genes on 
the expression level based on the gene expression pro-
file of KIRC patients. In the KIRCD network, there were 
64.9% significant co-expressed interactions and 72.2% 
positive co-expressed interactions (Fig. 2d). We observed 
that the density curves for the PCC values showed clas-
sical bimodal distribution (Fig.  2e). The above results 
that we analysed in the KIRCD network indicated that 
the association among immune-related, inflammation-
related and KIRC-related genes not only showed on the 
topological structure but also showed on the expression 
pattern. Next, we revealed the communications among 
immune-related, inflammation-related and KIRC-related 
genes by performing a module analysis. We extracted five 
core clusters with top scores (Fig.  2f1–f5). We discov-
ered that the immune-, inflammation- and KIRC-related 
genes interacted in each cluster. These core clusters dem-
onstrated the close relationships among the immune 
response, inflammation and KIRC.

Characteristics of expression pattern for core clusters 
to reveal the associations among immune‑, inflammation‑ 
and KIRC‑related genes
The core clusters showed close structure features, and we 
further considered if they also hold close communica-
tions on the expression level. First, we characterized the 
co-expression pattern of all genes in five core clusters. 
Most interactions in all five core clusters were significant 
co-expressed, and they indicated that most genes showed 
strong correlations (Fig.  3a). We also discovered that 
immune-, inflammation- and KIRC-related genes had 
higher PCC values when other genes were removed in 
the five clusters (Fig. 3b). We also identified differentially 
expressed genes in each core cluster based on the expres-
sion profile of KIRC and control samples after describ-
ing the co-expression pattern. We discovered that more 

than 80% genes in the core clusters showed significant 
differential expressions (Fig. 3c). In all five core clusters, 
there were more up-regulated genes than down-regu-
lated genes (Fig. 3d). We further analysed the core clus-
ters and found some strongly correlated gene pairs and 
functional modules. For example, in the first core cluster, 
there were 8 up-regulated and 1 down-regulated genes, 
and 81.8% genes were differentially expressed (Fig.  3e). 
The immune- and inflammation-related gene LAT and 
the immune-related gene ZAP70 showed significant dif-
ferential expression in KIRC patients (P = 4.79e−55, 
4.08e−65). LAT and ZAP70 showed strong positive cor-
relation (PCC = 0.7, P < 0.001) and indicated that some 
immune- and inflammation-related genes play their 
roles by interacting in KIRC. In the second core clus-
ter, most genes were differentially expressed (Fig.  3f ). 
We also found a functional module including four 
immune-related genes, an inflammation-related and 
KIRC-related gene EGFR and an inflammation-related 
and immune-related gene LAT (Fig.  3f ). Most of these 
six genes showed strong positive correlation, and this 
close interacting functional module may play an impor-
tant role in KIRC. A similar phenomenon was observed 
in the fourth and fifth core clusters (Fig.  3g, h). In the 
fourth core cluster, three immune-related genes encoded 
complement C1q subcomponent subunit family genes 
including C1QA, C1QB and C1QC. The three genes all 
showed strong positive correlation (PCC = 0.98, 0.90 and 
0.93) and formed a functional immune-related module in 
KIRC. All the above results revealed that the immune-, 
inflammation- and KIRC-related genes play their roles in 
KIRC by interacting within these five core clusters.

Core clusters showed complex genomic characteristics 
including somatic mutation, CNV and DNA methylation
Multi-dimensional genomic analysis promoted the depth 
of understanding for the associations among immune-, 
inflammation- and KIRC-related genes in core clusters. 
First, we discovered that most genes contained a cer-
tain number of somatic mutations in all core clusters 
(Fig. 4a1–a5). However, the numbers of somatic mutation 
in different genes were diverse. In addition, we found that 
the average number of somatic mutations in all clusters 
were almost similar (Fig. 4b). In all core clusters, the gene 
ERBB4 contained the highest number of somatic muta-
tions, and other genes in the second cluster contained 

(See figure on previous page.)
Fig. 2  The characteristics of KIRC-related gene-directed network (KIRCD network) and identification of core clusters. a The global KIRCD network. 
b The number of diverse genes. c1–c3) The bar plots show the comparison of topological characteristics between KIRCD and IIKND. d The first 
pie chart shows the percent of significantly correlated interactions. The second pie chart shows the percent of positive and negative correlated 
interactions. e The density distribution curve of PCC values in the KIRCD network. f1–f5) The five core modules identified from the KIRCD network
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Fig. 3  The expression patterns of five core clusters. a The pie charts show the percent of differentially expressed genes. b The bar plot shows the 
number of up- and down-regulated genes. c The bar plot shows the average PCC values of all interactions and interactions without other genes. 
d The pie charts show the percent of significantly correlated interactions. e–h The core clusters. The bar plots show the number of up-regulated 
genes and down-regulated genes for each core cluster. The point plots show the expression pattern between two significant gene interactions. The 
heat maps show the differential expression between KIRC patients and matched normal samples for all differentially expressed genes
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Fig. 4  Complex genomic characteristics including somatic mutation, CNV and DNA methylation. a1–a5 The rose diagrams show the number of 
somatic mutations for each gene in the five core clusters. b The bar plot shows the average number of mutations in the five core clusters. c An 
example, ERBB4, is shown. d The CNV pattern in the first core cluster. Red and blue represent amplification and deletion. e The point plot shows 
the number of differential methylation sites in the first core cluster. f The co-methylation pattern of each core cluster; the larger circle represents 
stronger correlation, red represents positive correlation, and blue represents negative correlation
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less somatic mutations. The mutation types on ERBB4 
were complex, including missense mutation, intron 
mutation, silent mutation, frame shift insert and non-
sense mutation (Fig.  4c). Specifically, ERBB4 interacted 
with the KIRC-related genes ERBB2, ERBB3 and MUC1 
and the immune-related gene GRB2. Next, we discovered 
that certain genes contained CNV in the core clusters. 
For example, all genes in the first core cluster contained 
CNVs including amplification and deletion (Fig.  4d). 
PIK3R1 was a famous KIRC-related gene, and more 
than 120 samples exhibited CNV alterations in this gene. 
Other immune-related genes such as PTPN6 also con-
tained some CNV alterations. Through somatic mutation 
and CNV analysis, we found that cancer genes usually 
contained more genomic alterations than immune- and 
inflammation-related genes. It could be inferred that 
immune- and inflammation-related genes could play a 
synergistic role with KIRC-related genes in KIRC.

Next, we also analysed the DNA methylation pattern 
for the genes in core clusters and found that most genes 
exhibited differential DNA methylation. For example, all 
genes in the first cluster had differential DNA methyla-
tion sites (Fig. 4e). Similar to somatic mutation and CNV, 
the KIRC-related gene ERBB2 exhibited the most dif-
ferential DNA methylation sites. Notably, we discovered 
that the genes showed strong correlations with respect to 
the methylation level, similar to gene expression, and this 
indicated the interactions between immune, inflamma-
tion and KIRC-related genes and DNA methylation level 
(Fig.  4f ). The network structure, expression pattern and 
DNA methylation pattern showed coincident correlation 
among immune-, inflammation- and KIRC-related genes 
in core clusters.

Core clusters in KIRC has prognostic potential
To evaluate the potential value of core clusters as prog-
nostic biomarkers in KIRC, we created a risk-score for-
mula according to the expression of all the genes in each 
core cluster to generate OS (overall survival) prediction 
(see “Methods” section). We used median risk score as 
the cut-off point to test the survival of the KIRC patients. 
We calculated the risk scores of all the genes in each clus-
ter for each patient and then ranked the patients accord-
ing to their risk score. Next, the KIRC patients would be 
divided into high-risk or low-risk groups. All five core 
clusters were significantly associated with survival, and 
they could serve as prognostic biomarkers (Fig.  5a1–
a5). In addition, KIRC patients in the high-risk group 
exhibited a significantly shorter median OS than those 
in the low-risk group. KIRC patients could be grouped 
based on the risk score of these genes in the core clusters 
(Fig. 5c1–c5, d1–d5). The results indicated that immune-, 
inflammation- and KIRC-related genes could collectively 

influence KIRC patient survival and serve as specific 
prognostic biomarkers.

Core clusters associated with critical biological functions 
and the JAK/SAT signalling pathway
We performed GO enrichment analysis based on all the 
genes in five core clusters, respectively. We found that 
these genes were enriched in different GO terms (Fig. 6a, 
Additional file  1: Table  S1). We found that the genes in 
the second, fourth and fifth core clusters were associated 
with certain immune-related GO terms such as regu-
lation of the innate immune response, innate immune 
response activating cell-surface receptor signalling and 
negative regulation of immune system system. In addi-
tion, some protein modification related GO terms includ-
ing protein phosphorylation and activation of protein 
kinase activity were discovered. Studies have reported 
the important role played by aberrant phosphorylation in 
oncogenesis and immune disorders [19].

Notably, we discovered that the genes in these five 
core clusters were all related to the JAK/SAT signalling 
pathway (Fig.  5b). The JAK/SAT signalling pathway is 
now recognized as an evolutionarily conserved signal-
ling pathway employed by diverse cytokines, interferons, 
growth factors, and related molecules [20]. The changes 
in the pathway are functionally relevant in various human 
diseases, especially cancer and immune-related condi-
tions [21]. Not only have genome-wide association stud-
ies demonstrated that the JAK/SAT signalling pathway is 
highly related to human autoimmunity but also target-
ing JAKs is now a reality in immune-mediated disease. 
Cytokine–cytokine receptor interaction is an important 
part of this pathway, and these cytokines are essential for 
immune and inflammatory responses [22]. In our analy-
sis, we found that several genes in the five core clusters 
play essential roles in this pathway, which indicated that 
these key genes identified by us were highly associated 
with the immune response and inflammation.

Discussion
Our analyses provide novel insights into the study and 
treatment of KIRC by exploring the functional sig-
nificance and molecular mechanism of immune and 
inflammation-related genes and following the interaction 
network, expression pattern, somatic mutation, CNV 
and DNA methylation data. Although some effective bio-
markers in KIRC have been identified by previous stud-
ies, there has been no focus on global and system analysis 
of the roles of immune and inflammation-related genes 
in KIRC [23, 24]. In our analysis, we performed a net-
work-based strategy to identify the KIRC-related PPI net-
work and core clusters. The network-based strategy could 
not only consider the associations among immune-, 
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Fig. 5  Core clusters are associated with survival for KIRC patients. a1–a5 The Kaplan–Meier curve for the overall survival of two patient groups with 
high- and low-risk scores in the KIRC patient set. The difference between the two curves was evaluated by a two-sided log-rank test. b1–b5 The 
gene-based risk score distribution of the genes in each cluster. c1–c5 The patient survival status of the genes
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inflammation- and KIRC-related genes but also provide 
global interactions between genes. The identification and 
characteristics of core clusters, which were identified 
from the network, provide novel and specific biomark-
ers for KIRC. Notably, the core clusters could serve as 

prognostic biomarkers and predict the survival for KIRC 
patients in the clinic. In addition, these core clusters were 
enriched in the JAK/STAR signalling pathway, and they 
provided novel insights regarding immunotherapy for 
KIRC.
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We integrated multiple omics data including interac-
tion network, expression, somatic mutation, CNV and 
DNA methylation data to globally depict core clusters. 
We found that the immune-, inflammation- and KIRC-
related genes in the five core clusters were strongly cor-
related with respect to expression and methylation level. 
This result indicated that the consistency changed at 
multiple levels of the genome and transcriptome for the 
genes in core clusters. A similar phenomenon has been 
observed in other diseases [25, 26]. We also found that 
immune- and inflammation-related genes contained 
fewer somatic mutations compared with KIRC-related 
genes. We inferred that although immune- and inflam-
mation-related genes could not directly cause KIRC, 
they played a role by cooperating with cancer oncogenes. 
Although the immune response and inflammation were 
related, the immune-related genes played more essential 
roles because they were higher in number in the five core 
clusters in KIRC. The functional analyses showed that 
there were distinctions and connections between the five 
core clusters. For example, we found that the genes in 
the second, fourth and fifth core clusters were associated 
with certain immune-related GO terms. However, other 
differences and detailed connections should be explored 
in future works. In addition, the GO term enrichment 
analysis could generate more accurate results by correct-
ing for the background set of genes.

The induction and the maintenance of the chronic 
inflammatory response is a universal mechanism of 
immune tolerance [27]. Inflammatory factors induce 
accumulation of anti-inflammatory and immunosup-
pressive factors, resulting in a positive–negative feedback 
loop. In the present work, each core cluster contained 
immune-, inflammation- and KIRC-related genes, which 
indicated that these genes exhibited close interactions. 
We also found that many immune- and inflammation-
related genes were strongly correlated with respect to 
expression and methylation in KIRC. We identified a key 
pathway, the JAK/SAT signalling pathway, which is based 
on genes in core clusters and which further demonstrated 
the roles of immune- and inflammation-related genes 
in KIRC. The immune- and inflammation-related genes 
were enriched in the upstream part of the JAK/SAT sig-
nalling pathway, which indicated that they play important 
roles in the early stage of KIRC. In addition, our method 
identified novel candidates associated with KIRC devel-
opment and prognosis, which require further research 
and experimental validation.

Conclusions
In summary, an immune, inflammation or KIRC-directed 
neighbour network (IIKDN network) and a KIRC-
related gene-directed network (KIRCD network) were 

constructed to address the role of the immune response 
and inflammation in KIRC. Five core clusters were iden-
tified, and differential expression and co-expression pat-
tern were depicted. In addition, multiple level molecular 
characteristics were systematically portrayed, including 
somatic mutation, copy-number variant and DNA meth-
ylation for the genes in the five modules. These five core 
clusters were associated with survival for KIRC patients, 
and functional analysis showed that they were associated 
with activation of the immune system and cancer pro-
cess. Our findings provide novel insights into KIRC by 
considering the associations among inflammation, the 
immune response and KIRC.
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