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Timing gone awry: distinct tumour 
suppressive and oncogenic roles 
of the circadian clock and crosstalk with hypoxia 
signalling in diverse malignancies
Wai Hoong Chang and Alvina G. Lai*

Abstract 

Background:  The circadian clock governs a large variety of fundamentally important physiological processes in all 
three domains of life. Consequently, asynchrony in timekeeping mechanisms could give rise to cellular dysfunction 
underpinning many disease pathologies including human neoplasms. Yet, detailed pan-cancer evidence supporting 
this notion has been limited.

Methods:  In an integrated approach uniting genomic, transcriptomic and clinical data of 21 cancer types 
(n = 18,484), we interrogated copy number and transcript profiles of 32 circadian clock genes to identify putative loss-
of-function (ClockLoss) and gain-of-function (ClockGain) players. Kaplan–Meier, Cox regression and receiver operating 
characteristic analyses were employed to evaluate the prognostic significance of both gene sets.

Results:  ClockLoss and ClockGain were associated with tumour-suppressing and tumour-promoting roles respec-
tively. Downregulation of ClockLoss genes resulted in significantly higher mortality rates in five cancer cohorts 
(n = 2914): bladder (P = 0.027), glioma (P < 0.0001), pan-kidney (P = 0.011), clear cell renal cell (P < 0.0001) and stomach 
(P = 0.0007). In contrast, patients with high expression of oncogenic ClockGain genes had poorer survival outcomes 
(n = 2784): glioma (P < 0.0001), pan-kidney (P = 0.0034), clear cell renal cell (P = 0.014), lung (P = 0.046) and pancreas 
(P = 0.0059). Both gene sets were independent of other clinicopathological features to permit further delineation of 
tumours within the same stage. Circadian reprogramming of tumour genomes resulted in activation of numerous 
oncogenic pathways including those associated with cancer stem cells, suggesting that the circadian clock may influ-
ence self-renewal mechanisms. Within the hypoxic tumour microenvironment, circadian dysregulation is exacerbated 
by tumour hypoxia in glioma, renal, lung and pancreatic cancers, resulting in additional death risks. Tumour suppres-
sive ClockLoss genes were negatively correlated with hypoxia inducible factor-1A targets in glioma patients, providing 
a novel framework for investigating the hypoxia-clock signalling axis.

Conclusions:  Loss of timekeeping fidelity promotes tumour progression and influences clinical outcomes. ClockLoss 
and ClockGain may offer novel druggable targets for improving patient prognosis. Both gene sets can be used for 
patient stratification in adjuvant chronotherapy treatment. Emerging interactions between the circadian clock and 
hypoxia may be harnessed to achieve therapeutic advantage using hypoxia-modifying compounds in combination 
with first-line treatments.
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Background
Circadian timekeeping is an essential biological process 
that influences most, if not all, aspects of eukaryotic 
and prokaryotic physiology. When its fidelity is com-
promised, circadian dysregulation may not only result 
in increased disease risks but could also have an effect 
on patients’ response to therapy. The core oscillator is 
coordinated by a set of interlocking transcriptional-
translational feedback loop. CLOCK and BMAL1 heter-
odimerise and bind to E-box elements in PERs and CRYs 
to drive their rhythmic transcription [1–3]. PER and CRY 
proteins, in turn, inhibit the CLOCK–BMAL1 complex 
and inhibition is released upon PER and CRY proteolytic 
degradation [4–6]. Along with additional epigenetic and 
post-translational modification processes, core clock pro-
teins within the suprachiasmatic nucleus serve to sustain 
the oscillations of peripheral clocks and rhythmic expres-
sion of downstream targets [7].

The effect of circadian asynchrony in tumorigenesis 
was first reported in the 1960s [8]. Studies in the 1980s 
demonstrated that endocrine rhythm disruption could 
accelerate mammary tumour growth in rats [9, 10]. 
Numerous studies have since shed light on the role of the 
circadian clock in cancer development in humans. Shift 
working is thought to be a carcinogen because of dys-
regulated circadian homeostasis [11, 12]. Circadian dys-
function is also thought to be a cancer risk factor in many 
organ systems [13–19]. Aberration in circadian homeo-
stasis is also linked to poor performance in anti-tumour 
regimes [15, 20, 21].

Circadian dysregulation is widespread in cancer, yet, 
tumour-specific abnormalities of clock genes are far from 
being understood. To help unravel the intricacies of cir-
cadian regulation in diverse cancer types, we employed 
a comparative approach triangulating genomic, tran-
scriptomic and clinical data to discover molecular under-
pinnings of circadian dysregulation and their effects on 
patient prognosis. Our pan-cancer integrated analyses 
demonstrated that the circadian clock had both tumour-
promoting and tumour-suppressing qualities that were 
cell-type dependent. Tumour hypoxia is linked to dis-
ease aggression and therapeutic resistance [22]. Hypoxia 
inducible factors (HIFs), the master regulators of hypoxia 
signalling, are transcription factors containing PER-
ARNT-SIM domains and are structurally analogous to 
core clock proteins BMAL1 and CLOCK [23–25], sug-
gesting that both pathways can be coregulated. Indeed, 
past reports have shown that hypoxic responses are gated 
by the circadian clock [26, 27]. We found that the cross-
talk between tumour hypoxia and circadian dysregulation 
harboured clinically relevant prognostic information. 
Overall, we demonstrated that circadian reprogramming 
of tumour genomes influences disease progression and 

patient outcomes. This work could provide a key staging 
point for exploring personalised cancer chronotherapy 
and potential adjuvant treatment with circadian- and 
hypoxia-modifying drugs to improve clinical outcomes.

Methods
We retrieved 32 circadian clock genes, which included 
core clock proteins from the Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) database listed in Addi-
tional file 1.

Cancer cohorts
Datasets generated by The Cancer Genome Atlas were 
downloaded from Broad Institute GDAC Firehose [28]. 
Genomic, transcriptomic and clinical profiles of 21 can-
cer types and their non-tumour counterparts were down-
loaded (Additional file 2).

Copy number alterations analyses
Firehose Level 4 copy number variation datasets were 
downloaded. GISTIC gene-level tables provided discrete 
amplification and deletion indicators [29]. Samples with 
‘deep amplifications’ were identified as those with val-
ues higher than the maximum copy-ratio for each chro-
mosome arm (+ 2). Samples with ‘deep deletions’ were 
identified as those with values lower than the minimum 
copy-ratio for each chromosome arm (− 2). ‘Shallow 
amplifications’ and ‘shallow deletions’ were identified 
from samples with GISTIC indicators of + 1 and − 1 
respectively.

Defining ClockLoss and ClockGain gene sets and calculating 
clock and hypoxia scores
Recurrently deleted/amplified genes were identified 
from genes that were deleted/amplified in at least 20% 
of samples within a cancer type and at least one-third 
of cancers (> seven cancers). Putative loss-of-function 
genes (ClockLoss) were defined as genes that were recur-
rently deleted and downregulated in tumour versus 
non-tumour samples. Putative gain-of-function genes 
(ClockGain) were defined as genes that were recurrently 
amplified and upregulated in tumour versus non-tumour 
samples. ClockLoss genes were CLOCK, CRY2, FBXL3, 
FBXW11, NR1D2, PER1, PER2, PER3, PRKAA2, RORA 
and RORB. Clockgain genes were ARNTL2 and NR1D1. 
For each patient, ClockLoss and ClockGain scores were cal-
culated from the mean log2 expression values of genes 
within each set. Molecular assessment of tumour hypoxia 
was performed using a 52-hypoxia gene signature [30]. 
Hypoxia scores were determined from the mean log2 
expression of the 52 genes.
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Survival, differential expression and multidimensional 
scaling analyses
We have published detailed methods for the aforemen-
tioned analyses [31], hence, the methods will not be 
repeated here. Briefly, for survival analyses, patients were 
separated into survival quartiles based on their ClockLoss 
and ClockGain scores. Cox proportional hazards regres-
sion, Kaplan–Meier and receiver operating character-
istic analyses were performed using the R survcomp, 
survival and survminer packages according to previous 
methods. For analyses in Fig. 5 investigating the crosstalk 
between hypoxia and the circadian clock, patients were 
separated into four groups based on their median clock 
and hypoxia scores. Nonparametric Spearman’s rank-
order correlation analyses were performed to determine 
the relationship between clock and hypoxia scores in 
Fig.  5. Circular heatmaps in Fig.  6 were generated from 
ClockLoss scores and HIF-target genes (CA9, VEGFA 
and LDHA) log2 expression values in glioma patients. 
ClockLoss scores were ranked from high (purple) to low 
(yellow) in the heatmap. HIF-target genes were ranked 
by decreasing order of ClockLoss scores. Spearman’s cor-
relation analyses were performed on ClockLoss scores and 
HIF-target genes expression values. Differential expres-
sion analyses between tumour and non-tumour samples 
and between the 4th and 1st quartile patients determined 
using ClockLoss and ClockGain scores were performed 
using the Bayes method and linear model followed by 
Benjamini–Hochberg procedure for adjusting false dis-
covery rates. Multidimensional scaling analyses in Fig. 2 
were performed using the R vegan package (Euclidean 
distance) and permutational multivariate analysis of vari-
ance (PERMANOVA) was used to determine statistical 
difference between tumour and non-tumour samples.

Pathway enrichment and transcription factor analyses
Differentially expressed genes (DEGs) were fed into 
GeneCodis [32] and Enrichr [33, 34]. Using GeneCo-
dis, DEGs were mapped against the KEGG and Gene 

Ontology databases. To determine whether DEGs were 
enriched for targets of stem cell-related transcription 
factors, Enrichr was used to map DEGs to ENCODE 
and ChEA chromatin immunoprecipitation sequencing 
profiles.

All plots were generated using R pheatmap and ggplot2 
packages.

Results
Integrated genomic and transcriptomic analyses reveal 
conserved patterns of putative loss‑and gain‑of‑function 
mutations in circadian clock genes
We retrieved 32 genes representing core circadian clock 
components from Kyoto Encyclopaedia of Genes and 
Genomes (KEGG) (Additional file  1). To determine the 
extent of circadian dysregulation across diverse malig-
nancies, we analysed tumour copy number and mRNA 
differential expression profiles (tumour versus non-
tumour) of 18,484 samples across 21 cancer types (Addi-
tional file 1) (Fig. 1a). Chromophobe renal cell carcinoma 
(KICH) exhibited the highest fraction of samples har-
bouring deleted clock genes (Fig.  1b). This was in con-
trast with another kidney cancer subtype, papillary renal 
cell carcinoma (KIRP), which had the lowest frequency 
of somatic deletions (Fig. 1b). When considering somatic 
amplifications, we observed that this was the highest in 
lung squamous cell carcinoma (LUSC) and the lowest in 
glioma (GBMLGG) (Fig. 1b).

At an individual gene level, somatic deletions were 
observed in 19 circadian clock genes in at least 20% of 
samples within a cancer type and at least one-third of 
cancer types (> seven cancers) (Fig. 1a, c). Global somatic 
losses were observed in core circadian pacemaker genes, 
PER1, PER2, PER3, ARNTL (BMAL1), CLOCK, NR1D2 
(REV-ERBB), RORA and RORB (Fig.  1c). For instance, 
PER1 was deleted in 16 cancers, while PER3 and CLOCK 
were lost in 15 and 12 cancers respectively (Fig. 1c). On 
the other hand, a distinct set of 12 genes exhibited global 
patterns of somatic gains, which included core clock 

(See figure on next page.)
Fig. 1  Circadian reprogramming in diverse cancer types. a Schematic diagram depicting the project design and the identification of putative 
loss-of-function and gain-of-function clock genes. Somatic copy number alteration (SCNA) and transcript expression of 32 clock genes are 
investigated in 21 cancer types. A total of 19 or 12 genes are recurrently lost or gained respectively. Of these SCNA events, 11 or two genes are 
also downregulated or upregulated in tumours, representing ClockLoss and ClockGain gene sets respectively. Both gene sets are prognostic in 
seven cancer cohorts. Pie slices indicate the number of patients within each cancer type. Crosstalk between circadian genes and tumour hypoxia 
is investigated. b The proportion of samples with deep and shallow somatic alterations are represented using stacked bar graphs. The number 
of samples within each cancer type is represented by the width of the stacked bars. c Somatic losses and differential expression profiles of 19 
clock genes that are recurrently deleted in at least seven cancer types. d Somatic gains and differential expression profiles of 12 clock genes that 
are recurrently amplified in at least seven cancer types. Bar charts on the far right represent the number of cancers with at least 20% of samples 
affected by copy number alteration. Heatmaps on the far left depict the cohort fraction in which a given gene is deleted or amplified. Cancer types 
are ordered using Euclidean distance metric. Heatmaps in the centre represent differential expression values between tumour and non-tumour 
samples. ClockLoss and ClockGain genes are highlighted in red. Cancer abbreviations are listed in Additional file 2
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genes namely ARNTL2 (BMAL2), CRY1, NR1D1 (REV-
ERBA) and RORC (Fig. 1d). ARNTL2 was one of the most 
amplified genes found in 16 cancers, followed by RORC 
in 14 cancers and NR1D1 and CRY1 in 12 cancers each 
(Fig. 1d).

Somatic copy number alterations (SCNAs) associ-
ated with differential transcript expression may repre-
sent putative loss- or gain-of-function events. Somatic 
losses accompanying transcript downregulation in 
tumours could indicate a loss-of-function and vice versa, 
somatic gains linked to transcript upregulation could 
imply a gain-of-function. Differential expression analy-
ses between tumour and non-tumour samples were per-
formed to identify genes that were significantly altered 
in tumours (> 1.5-fold-change, P < 0.05) of at least seven 
cancer types (Fig. 1c, d). Of genes that exhibited SCNAs, 
11 and two genes were associated with putative loss-of-
function and gain-of-function phenotypes respectively 
(Fig. 1a, c, d).

Tumour suppressive and oncogenic potential 
of the circadian clock are context dependent
Given their global patterns spanning multiple cancer 
types, we reason that putative loss- and gain-of-function 
phenotypes would impact patient prognosis. We hypoth-
esize that loss-of-function genes could have tumour 
suppressive qualities where gene deletions may give rise 
to cancer. On the contrary, gain-of-function genes are 
likely to harbour tumour promoting properties. If this 
is true, patients with low expression of loss-of-function 
genes (ClockLoss) would have poorer clinical outcomes. 
Likewise, high expression of gain-of-function genes 
(ClockGain) would be associated with more advanced 
disease states and poorer outcomes. To evaluate the 
effects of ClockLoss and ClockGain on overall survival, each 
patient was assigned a score based on the average expres-
sion values of 11 and two genes respectively: ClockLoss 
genes (CLOCK, CRY2, FBXL3, FBXW11, NR1D2, PER1, 
PER2, PER3, PRKAA2, RORA and RORB); ClockGain 
genes (ARNTL2 and NR1D1). For Kaplan–Meier analy-
ses, patients were separated into survival quartiles based 
on their ClockLoss and ClockGain scores. Intriguingly, we 
found that both gene sets conferred prognostic informa-
tion in seven cancer cohorts, allowing the stratification of 
patients into risk groups based on circadian dysregula-
tion (Fig. 2a, b). ClockLoss was prognostic in five cohorts: 

bladder (P = 0.027), glioma (P < 0.0001), pan-kidney (con-
sisting of chromophobe renal cell, clear cell renal cell 
and papillary renal cell carcinoma; P = 0.011), clear cell 
renal cell (P < 0.0001) and stomach (P = 0.0007) (Fig. 2a). 
Likewise, ClockGain was also prognostic in glioma 
(P < 0.0001), pan-kidney (P = 0.0034) and clear cell renal 
cell (P = 0.014) cohorts and two additional cohorts; lung 
(P = 0.046) and pancreas (P = 0.0059) (Fig. 2b).

Interestingly, we observed that patients within the 
4th quartile (highest ClockLoss scores) had the lowest 
mortality rates in glioma (hazard ratio [HR] = 0.188, 
P < 0.0001), pan-kidney (HR = 0.520, P = 0.001) and 
clear cell renal cell (HR = 0.292, P < 0.0001) cohorts 
(Table  1). This supports our initial hypothesis that 
downregulation/loss-of-function of putative tumour 
suppressive clock genes were linked to adverse clinical 
outcomes while patients with high expression of these 
genes would perform better. However, this was not the 
case for bladder (HR = 2.081, P = 0.0093) and stom-
ach (HR = 2.155, P = 0.0054) cancers, where patients 
with high ClockLoss scores (4th quartile) had increased 
death risks, suggesting that the function of ClockLoss is 
tumour-type dependent (Table 1). In terms of ClockGain, 
high expression levels were consistently associated 
with increased mortality rates in all five cohorts, sup-
porting the hypothesis on tumour-promoting effects 
of these genes: glioma (HR = 3.961, P < 0.0001), pan-
kidney (HR = 1.890, P = 0.00066), clear cell renal cell 
(HR = 1.755, P = 0.0062), lung (HR = 2.023, P = 0.006) 
and pancreas (HR = 3.034, P = 0.0022) (Table 1).

Given the prognostic significance of ClockLoss and 
ClockGain, we predict that their expression profiles would 
differ between tumour and non-tumour samples in these 
cancers. Indeed, as confirmed by multidimensional scal-
ing analyses using ClockLoss, there was a clear separa-
tion between tumour and non-tumour samples in all 
five cohorts, suggesting that circadian dysregulation is a 
hallmark of cancerous cells (Fig. 2c). Since ClockGain only 
involved two genes, we employed the Mann–Whitney–
Wilcoxon test to compare the distribution of ClockGain 
scores in tumour and non-tumour samples. ClockGain 
was significantly upregulated in pan-kidney (P < 0.00001), 
clear cell renal cell (P < 0.00001) and lung cancer cohorts 
(P < 0.00001) (Fig.  2d). Glioma and pancreatic cancer 
cohorts had limited number of non-tumour samples, five 
and four samples respectively. Because of this, we did not 

Fig. 2  Prognostic significance of ClockLoss and ClockGain. Kaplan–Meier plots are generated using a ClockLoss and b ClockGain. Patients are quartile 
stratified based on their clock gene scores. P values are obtained from log-rank tests. c Ordination plots of multidimensional scaling analyses 
using ClockLoss genes reveal significant differences between tumour and non-tumour samples. P values are obtained from PERMANOVA tests. d 
Expression distribution of ClockGain scores in tumour and non-tumour samples with statistical analyses performed using Mann–Whitney–Wilcoxon 
tests. P values are represented by ****< 0.00001. ns non-significant

(See figure on next page.)
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Table 1  Univariate and  multivariate Cox proportional 
hazards regression analyses demonstrating 
the  independence of  ClockLoss or  ClockGain from  other 
clinicopathological features

Hazard ratio (95% CI) P-value

All gliomas (ClockLost) Univariate

 Q2 vs. Q1 0.393 (0.285–0.543) < 0.0001

 Q3 vs. Q1 0.274 (0.193–0.387) < 0.0001

 Q4 vs. Q1 0.188 (0.127–0.278) < 0.0001

All gliomas (ClockGain) Univariate

 Q2 vs. Q1 1.272 (0.813–1.991) 0.29

 Q3 vs. Q1 2.931 (1.951–4.402) < 0.0001

 Q4 vs. Q1 3.961 (2.668–5.882) < 0.0001

Astrocytoma (ClockGain) Univariate

 Q2 vs. Q1 0.59 (0.242–1.468) 0.26

 Q3 vs. Q1 1.423 (0.65–3.109) 0.38

 Q4 vs. Q1 3.048 (1.514–6.137) 0.0018

Oligodendroglioma (ClockGain) Univariate

 Q2 vs. Q1 0.947 (0.362–2.474) 0.91

 Q3 vs. Q1 1.184 (0.475–2.951) 0.72

 Q4 vs. Q1 2.764 (1.194–6.400) 0.018

Pan-kidney (ClockLost) Univariate

 Q2 vs. Q1 0.783 (0.547–1.121) 0.18

 Q3 vs. Q1 0.801 (0.568–1.131) 0.21

 Q4 vs. Q1 0.520 (0.352–0.768) 0.001

 TNM staging 2.095 (1.858–2.361) < 0.0001

Multivariate

 Q2 vs. Q1 0.783 (0.543–1.129) 0.18

 Q3 vs. Q1 0.764 (0.537–1.089) 0.14

 Q4 vs. Q1 0.569 (0.383–0.847) 0.0055

 TNM staging 2.085 (1.848–2.354) < 0.0001

Pan-kidney (ClockGain) Univariate

 Q2 vs. Q1 1.237 (0.838–1.825) 0.28

 Q3 vs. Q1 1.222 (0.828–1.803) 0.31

 Q4 vs. Q1 1.890 (1.311–2.725) 0.00066

Multivariate

 Q2 vs. Q1 1.177 (0.790–1.752) 0.42

 Q3 vs. Q1 1.429 (0.961–2.124) 0.078

 Q4 vs. Q1 1.941 (1.333–2.826) 0.00054

 TNM staging 2.092 (1.857–2.357) < 0.0001

Clear cell renal cell (ClockLost) Univariate

 Q2 vs. Q1 0.608 (0.416–0.888) 0.01

 Q3 vs. Q1 0.546 (0.361–0.795) 0.0019

 Q4 vs. Q1 0.292 (0.179–0.474) < 0.0001

 TNM staging 1.87 (1.641–2.132) < 0.0001

Multivariate

 Q2 vs. Q1 0.653 (0.447–0.955) 0.027

 Q3 vs. Q1 0.667 (0.448–0.993) 0.046

 Q4 vs. Q1 0.433 (0.265–0.708) 0.00085

 TNM staging 1.798 (1.572–2.058) < 0.0001

Clear cell renal cell (ClockGain) Univariate

 Q2 vs. Q1 1.243 (0.799–1.933) 0.33

Table 1  (continued)

Hazard ratio (95% CI) P-value

 Q3 vs. Q1 1.001 (0.640–1.564) 0.99

 Q4 vs. Q1 1.775 (1.177–2.678) 0.0062

Multivariate

 Q2 vs. Q1 1.222 (0.786–1.901) 0.37

 Q3 vs. Q1 1.284 (0.818–2.017) 0.28

 Q4 vs. Q1 1.856 (1.230–2.802) 0.0032

 TNM staging 1.874 (1.642–2.138) < 0.0001

Bladder (ClockLost) Univariate

 Q2 vs. Q1 1.088 (0.593–1.999) 0.78

 Q3 vs. Q1 1.478 (0.828–2.640) 0.19

 Q4 vs. Q1 2.081 (1.198–3.614) 0.0093

 TNM staging 1.679 (1.323–2.131) < 0.0001

Multivariate

 Q2 vs. Q1 1.059 (0.577–1.946) 0.85

 Q3 vs. Q1 1.357 (0.759–2.426) 0.31

 Q4 vs. Q1 1.776 (1.018–3.099) 0.043

 TNM staging 1.609 (1.263–2.050) 1.20E−04

Stomach (ClockLost) Univariate

 Q2 vs. Q1 0.761 (0.389–1.485) 0.43

 Q3 vs. Q1 1.143 (0.615–2.127) 0.67

 Q4 vs. Q1 2.155 (1.255–3.702) 0.0054

 TNM staging 1.372 (1.067–1.765) 0.038

Multivariate

 Q2 vs. Q1 0.731 (0.374–1.428) 0.36

 Q3 vs. Q1 1.133 (0.609–2.107) 0.69

 Q4 vs. Q1 2.070 (1.205–3.557) 0.0084

 TNM staging 1.354 (1.054–1.739) 0.018

Lung (ClockGain) Univariate

 Q2 vs. Q1 1.633 (0.987–2.699) 0.056

 Q3 vs. Q1 1.604 (0.973–2.644) 0.064

 Q4 vs. Q1 2.023 (1.224–3.343) 0.006

 TNM staging 1.597 (1.364–1.870) < 0.0001

Multivariate

 Q2 vs. Q1 1.604 (0.971–2.652) 0.065

 Q3 vs. Q1 1.434 (0.868–2.370) 0.16

 Q4 vs. Q1 1.832 (1.108–3.029) 0.018

 TNM staging 1.584 (1.348–1.861) < 0.0001

Pancreas (ClockGain) Univariate

 Q2 vs. Q1 1.791 (0.849–3.779) 0.13

 Q3 vs. Q1 1.602 (0.740–3.470) 0.23

 Q4 vs. Q1 3.034 (1.492–6.168) 0.0022

 TNM staging 1.339 (0.897–1.998) 0.153

Multivariate

 Q2 vs. Q1 1.712 (0.803–3.652) 0.16

 Q3 vs. Q1 1.584 (0.731–3.430) 0.24

 Q4 vs. Q1 2.890 (1.399–5.970) 0.0042

 TNM staging 1.143 (0.756–1.728) 0.52

Significant P values are marked in italics. Univariate values for TNM staging were 
in accordance with our previous reports utilising TCGA datasets [69, 70, 72]

CI confidence interval
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observe any significant upregulation of ClockGain in these 
tumours (Fig. 2d).

ClockLoss and ClockGain are independent prognostic factors
Multivariate Cox proportional hazards regression was 
used to determine whether ClockLoss and ClockGain 
were independent of other clinicopathological features. 
Despite accounting for tumour, node and metastasis 
(TNM) staging, both gene sets remained independ-
ent predictors of overall survival; ClockLoss: blad-
der (HR = 1.776, P = 0.043), pan-kidney (HR = 0.569, 
P = 0.0055), clear cell renal cell (HR = 0.433, P = 0.00085), 
stomach (HR = 2.070, P = 0.0084) and ClockGain: pan-
kidney (HR = 1.941, P = 0.00054), clear cell renal cell 
(HR = 1.856, P = 0.0032), lung (HR = 1.832, P = 0.018) 
and pancreas (HR = 2.890, P = 0.0042) (Table 1). The gli-
oma cohort consisted of low- and high-grade subtypes. 
ClockGain remained a prognostic factor in histological 
subtypes of astrocytoma (HR = 3.048, P = 0.0018) and 
oligodendroglioma (HR = 2.764, P = 0.018) (Table  1). 
Since both gene sets were independent of tumour stage, 
we evaluated their ability to improve the resolution of 
TNM staging. Kaplan–Meier analyses revealed that fur-
ther delineation of risk groups within similarly staged 
tumours is afforded by both gene sets; ClockLoss: bladder 
(P < 0.0001), pan-kidney (P < 0.0001), clear cell renal cell 
(P < 0.0001), stomach (P = 0.024) (Fig. 3a) and ClockGain: 
pan-kidney (P < 0.0001), clear cell renal cell (P < 0.0001), 
lung (P < 0.0001), pancreas (P = 0.048), astrocytoma 
(P < 0.0001) and oligodendroglioma (P = 0.023) (Fig. 3b).

Receiver operating characteristic (ROC) analyses were 
employed to determine the predictive performance of 
ClockLoss and ClockGain in comparison to TNM stag-
ing. Circadian gene sets were superior to TNM stag-
ing in predicting 5-year overall survival; ClockLoss: 
bladder (area under the curve [AUC] = 0.639 vs. 0.626), 
stomach (AUC = 0.697 vs. 0.561) and ClockGain: pan-
creas (AUC = 0.757 vs. 0.593) (Fig.  3c, d). Importantly, 
when clock gene sets and TNM staging were consid-
ered as a combined model, predictive performance 
was greater than clock genes or TNM when measured 
separately; ClockLoss: bladder (AUC = 0.688), pan-kid-
ney (AUC = 0.794), clear cell renal cell (AUC = 0.801), 
stomach (AUC = 0.703) and ClockGain: pan-kidney 
(AUC = 0.791), clear cell renal cell (AUC = 0.775), lung 
(AUC = 0.677) and pancreas (AUC = 0.759) (Fig.  3c, 
d). Within the glioma cohort, AUCs for ClockLoss and 
ClockGain were 0.844 and 0.727 respectively (Fig.  3c, d). 
ClockGain was a prognostic indicator in glioma subtypes 
and ROC analyses confirmed its predictive performance 
in astrocytoma (AUC = 0.727) and oligodendroglioma 
(AUC = 0.670) (Fig. 3d).

Dysregulated circadian timekeeping is associated 
with malignant progression
To further investigate the underpinning biological conse-
quences of circadian clock dysregulation and determine 
how they link to unfavourable patient outcomes, we per-
formed differential expression analyses on all transcripts 
to determine genes that were altered as a result of circa-
dian perturbation by comparing patients from the 4th 
survival quartile to those from the 1st quartile. Interest-
ingly, patients stratified using ClockLoss had significantly 
higher number of differentially expressed genes (DEGs; 
− 1.5 > log2 fold change > 1.5; P < 0.01) (Fisher’s exact 
test, P = 2.2e−16) compared to ClockGain (Fig.  4a) (Addi-
tional file 3). Many DEGs were found to be in common 
between cancer types, more so for ClockLoss, suggesting 
the existence of conserved signalling cascades associated 
with circadian dysregulation in driving disease patho-
genesis (Fig. 4a; Additional file 3). Gene Ontology (GO) 
and KEGG functional enrichment analyses revealed 
that circadian reprogramming of tumours resulted in 
the activation of a myriad of oncogenic pathways. Sig-
nalling pathways associated with cancer stem cell func-
tion (MAPK, Wnt, JAK-STAT [35], TGF-β and PPAR 
[36]), metabolism, cell adhesion, cell proliferation, cell 
death, transmembrane transport and extracellular matrix 
organisation were among some of the most altered bio-
logical processes that likely underpin tumour aggression 
and decreased survival in these patients (Fig. 4b, c). Inter-
estingly, with the exception of MAPK signalling, path-
ways associated with cancer stem cell function were only 
enriched in patients stratified using ClockLoss, suggesting 
that ClockLoss genes are keenly linked to stem cell home-
ostasis (Fig. 4c). To further understand how DEGs were 
regulated, we analysed transcription factor (TF) binding 
using Enrichr and observed that DEGs were enriched for 
targets of TFs associated with self-renewal and cancer 
stem cell function (SUZ12, SOX2, REST, EZH2, SMAD4 
and NANOG) (Fig. 4d). These TFs have previously been 
shown to promote metastasis, disease aggression and 
cancer stem cell maintenance [37–39].

Disease phenotypes of tumours with deranged circadian 
homeostasis are aggravated by hypoxia
Circadian oscillations of physiological processes such as 
metabolism, temperature and cortisol levels are affected 
by oxygen levels [40–42]. Hypoxic responses are gated by 
the circadian clock and at the genomic level, BMAL1 and 
HIF-1A synergistically interact to coregulate downstream 
genes [27]. Crosstalk between hypoxia and the clock has 
profound implications on cancer pathophysiology [43, 
44]. We reason that tumour hypoxia could synergise 
with the circadian clock to impact disease progression. 
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Fig. 3  ClockLoss and ClockGain are independent of tumour stage. Kaplan–Meier plots are generated from patients stratified according to TNM stage 
and a ClockLoss and b ClockGain. TNM staging is first used to stratify patients, followed by median stratification into high- and low-score groups 
using ClockLoss or ClockGain. b Glioma histological subtypes, astrocytoma and oligodendroglioma, are quartile stratified using ClockGain. P values are 
obtained from log-rank tests. ROC analyses on c ClockLoss and d ClockGain to determine the specificity and sensitivity of both gene sets in predicting 
5-year overall survival rates. ROC curves generated from clock gene sets are compared to those generated from TNM staging. AUCs for TNM stage 
are in accordance with previous work utilising TCGA datasets [69–71]
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To determine the extent of the hypoxia-clock crosstalk, 
a hypoxia gene signature consisting of 52 genes was 
employed to calculate hypoxia scores in each patient 
[30]. Remarkably, we observed significant negative cor-
relations between hypoxia and ClockLoss scores in gli-
oma (rho = − 0.57, P < 0.0001), pan-kidney (rho = − 0.13, 
P < 0.0001) and clear cell renal cell (rho = − 0.34, 
P < 0.0001) cohorts (Fig. 5a). Patients were separated into 
four groups based on their hypoxia and ClockLoss scores 
for survival analyses. Kaplan–Meier analyses employ-
ing the joint hypoxia-ClockLoss model revealed that 
patients with more hypoxic tumours who concurrently 
had lower levels of ClockLoss genes performed the worst: 

glioma (HR = 7.218, P < 0.0001), pan-kidney (HR = 2.512, 
P < 0.0001) and clear cell renal cell (HR = 1.893, 
P = 0.0054) (Fig.  5b) (Table  2). This observation is con-
sistent with the predicted tumour suppressive roles of 
ClockLoss. 

The trend is flipped when considering ClockGain; sig-
nificant positive correlations between hypoxia and 
ClockGain scores were observed in glioma (rho = 0.35, 
P < 0.0001), pan-kidney (rho = 0.17, P < 0.0001), clear 
cell renal cell (rho = 0.13, P = 0.0027), lung (rho = 0.50, 
P < 0.0001) and pancreas (rho = 0.66, P < 0.0001) (Fig. 5c). 
Consistently, patients with more hypoxic tumours 
and high ClockGain scores had the poorest survival 
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outcomes: glioma (HR = 9.210, P < 0.0001), astrocytoma 
(HR = 5.684, P < 0.0001), oligodendroglioma (HR = 4.085, 
P = 0.0022), pan-kidney (HR = 3.079, P < 0.0001), clear 
cell renal cell (HR = 1.877, P = 0.0041), lung (HR = 2.037, 
P = 0.0012) and pancreas (HR = 1.976, P = 0.012) (Fig. 5d) 
(Table  2). Loss of tumour suppression or increase in 
tumour promoting properties resulted from circadian 
dysregulation is further exacerbated by hypoxia. The 
clock-hypoxia model may be used for delineation of 
patients into additional risk groups to support adjuvant 
therapy with hypoxia-reducing drugs in combination 
with mainstream chemotherapy and radiotherapy.

Discussion
Disruption of circadian homeostasis is frequently 
observed in tumour cells. In a comprehensive study of 
circadian clock genes in 21 cancer types that takes into 
account genomic, transcriptomic and phenotypic (clini-
cal prognosis) data, we demonstrated that clock genes 
were substantially altered by somatically acquired dele-
tions and amplifications. Recurrent deletions or ampli-
fications that were accompanied by altered transcript 
expression in tumours could represent novel loss- or 
gain-of-function phenotypes. To exploit these circadian 
targets in a clinical setting, we analysed survival out-
comes using the ClockLoss and ClockGain and confirmed 
the utility of both gene sets as prognostic tools in 2914 
and 2784 patients involving seven diverse cancer cohorts.

Depending on cellular context, the circadian clock 
can exert both tumour-promoting or tumour-inhibiting 
properties. We observed that core clock genes, PERs, 
CRY2, CLOCK, NR1D2, RORA and RORB exhibited 
global patterns of somatic loss and downregulation 
across multiple tumour types (Fig.  1c). We demon-
strated that loss-of-function of these genes resulted in 
increased death risks in patients, which highlight their 
protective roles (Figs.  2, 3). However, tumour sup-
pressive qualities appear to be cancer type-specific; 
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ClockLoss genes were associated with adverse survival 
outcomes in bladder and stomach cancers (Figs. 2, 3). A 
study on breast cancer revealed that CpG methylation 
on PER promoters is responsible for PER deregulation 

in tumours [45]. PER2 enhances estrogen receptor-α 
(ERα) degradation leading to growth inhibition of 
estrogen receptor-positive breast cancer [46]. Studies 
on glioma [47], head and neck squamous cell carcinoma 

Table 2  Cox proportional hazards regression analyses on  the  relationship between  hypoxia and  ClockLoss or  ClockGain 
on overall survival

Significant P values are marked in italics

CI confidence interval

Hazard ratio (95% CI) P-value

Glioma (ClockLoss)

 Low ClockLoss and high hypoxia score vs. low ClockLoss and low hypoxia score 7.218 (4.234–12.304) < 0.0001

 High ClockLoss and high hypoxia score vs. low ClockLoss and low hypoxia score 3.138 (1.733–5.683) 0.00016

 High ClockLoss and low hypoxia score vs. low ClockLoss and low hypoxia score 1.114 (0.617–2.014) 0.72

Pan-kidney (ClockLoss)

 Low ClockLoss and high hypoxia score vs. low ClockLoss and low hypoxia score 2.512 (1.732–3.643) < 0.0001

 High ClockLoss and high hypoxia score vs. low ClockLoss and low hypoxia score 1.580 (1.094–2.282) 0.0148

 High ClockLoss and low hypoxia score vs. low ClockLoss and low hypoxia score 0.695 (0.423–1.122) 0.14

Clear cell renal cell (ClockLoss)

 Low ClockLoss and high hypoxia score vs. low ClockLoss and low hypoxia score 1.893 (1.207–2.969) 0.0054

 High ClockLoss and high hypoxia score vs. low ClockLoss and low hypoxia score 1.285 (0.761–2.170) 0.35

 High ClockLoss and low hypoxia score vs. low ClockLoss and low hypoxia score 0.796 (0.479–1.324) 0.38

Glioma (ClockGain)

 High ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 9.210 (6.182–13.721) < 0.0001

 High ClockGain and low hypoxia score vs. low ClockGain and low hypoxia score 1.550 (0.917–2.622) 0.11

 Low ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 3.317 (2.105–5.228) < 0.0001

Astrocytoma (ClockGain)

 High ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 5.684 (2.770–11.662) < 0.0001

 High ClockGain and low hypoxia score vs. low ClockGain and low hypoxia score 1.451 (0.527–3.998) 0.47

 Low ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 2.378 (0.985–5.736) 0.054

Oligodendroglioma (ClockGain)

 High ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 4.085 (1.656–10.068) 0.0022

 High ClockGain and low hypoxia score vs. low ClockGain and low hypoxia score 1.218 (0.439–3.374) 0.71

 Low ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 1.541 (0.581–4.091) 0.38

Pan-kidney (ClockGain)

 High ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 3.079 (2.040–4.646) < 0.0001

 High ClockGain and low hypoxia score vs. low ClockGain and low hypoxia score 1.742 (1.089–2.785) 0.021

 Low ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 2.823 (1.850–4.307) < 0.0001

Clear cell renal cell (ClockGain)

 High ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 1.877 (1.222–2.884) 0.0041

 High ClockGain and low hypoxia score vs. low ClockGain and low hypoxia score 1.189 (0.742–1.908) 0.47

 Low ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 1.630 (1.043–2.546) 0.032

Lung (ClockGain)

 High ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 2.037 (1.327–3.129) 0.0012

 High ClockGain and low hypoxia score vs. low ClockGain and low hypoxia score 1.332 (0.755–2.351) 0.33

 Low ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 1.995 (1.221–3.258) 0.0058

Pancreas (ClockGain)

 High ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 1.976 (1.163–3.357) 0.012

 High ClockGain and low hypoxia score vs. low ClockGain and low hypoxia score 0.852 (0.344–2.110) 0.73

 Low ClockGain and high hypoxia score vs. low ClockGain and low hypoxia score 0.893 (0.397–2.009) 0.79
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[48], lung [49], colorectal [50] and liver cancers [51] 
demonstrated that PERs, CRYs and BMAL1 are down-
regulated in tumours and are likely to harbour tumour 
suppressing qualities. BMAL1 overexpression increases 
the sensitivity of colorectal cancer cells to oxaliplatin by 
ATM pathway activation [15]. Overexpression of PER2 
in pancreatic cancer cells inhibits cellular proliferation, 
increases apoptotic rates and had a synergistic effect 
with cisplatin [20]. BMAL1 binds to TP53 promoter to 
induce cell cycle arrest and apoptosis in pancreatic can-
cer cells in a TP53-dependent fashion [52]. Additional 
examples on tumour suppressive functions of clock 
genes are elegantly reviewed by Fu et al. [53].

We demonstrated that a non-overlapping subset of cir-
cadian clock genes, known as ClockGain, were somatically 

amplified and upregulated in tumours. To our knowledge, 
most reports on circadian dysregulation in cancer have 
focused on the pacemaker’s tumour suppressive roles. 
Nonetheless, evidence on its oncogenic potential has 
started to emerge. CLOCK expression levels are higher in 
more aggressive ERα-positive compared to ERα-negative 
breast tumours and estrogen promotes the binding of 
ERα to estrogen-response elements in the CLOCK pro-
moter [54]. CRY2 is overexpressed in colorectal cancer 
samples that are resistant to chemotherapy [21]. CRY2 is 
linked to poor survival outcomes and its silencing could 
increase sensitivity to oxaliplatin [21]. Upregulation of 
PER2 and CRY1 in gastric cancer and CRY1 in colorec-
tal cancer correlate with more advanced disease states 
and lymph node metastasis [55, 56]. CLOCK expression 
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is increased in high-grade glioma tissues and is required 
for glioma progression through modulation of NF-κB 
activity [57]. CLOCK and BMAL1 are required for acute 
myeloid leukaemia cell growth and leukaemia stem cell 
maintenance [58].

Circadian reprogramming of tumours is closely asso-
ciated with metabolic perturbations, activation of cell 
proliferation, induction of cancer stem cell self-renewal 
pathways (Wnt/β-catenin, JAK-STAT and TGF-β) 
and enrichment of binding targets of self-renewal TFs 
(Fig. 4). Circadian disruption in mouse xenograft mod-
els results in tumour progression through Wnt10A-
dependent activation of angio- and stromagenesis [59]. 
BMAL1 overexpression promotes mouse embryonic 
fibroblast cell proliferation by Wnt signalling activa-
tion [60]. In acute myeloid leukaemia, maintenance of 
circadian homeostasis is required for leukaemia stem 
cell self-renewal and inhibition of BMAL1 results in the 
downregulation of β-catenin and other TFs involved 
in self-renewal [58]. BMAL1 loss also causes stem 
cell arrhythmia in squamous cell tumours [61]. Taken 
together, the role of the circadian clock in stem cell 
homeostasis is likely to be conserved across multiple 
tissue types.

Equally important, we demonstrated that tumour 
hypoxia further aggravates the extent of circadian dys-
regulation resulting in increased death risks, suggesting 
that interactions between PER-ARNT-SIM components 
of both circadian and hypoxia pathways could synergis-
tically influence disease progression. The expression of 
clock genes with putative tumour suppressive properties 
(ClockLoss) is negatively correlated with tumour hypoxia 
(Figs.  5a, b, 6). On the other hand, tumour promoting 
ClockGain genes were positively correlated with hypoxia 
(Fig.  5c, d). PER1 and CLOCK levels are elevated when 
mouse brain is exposed to hypoxia [62]. VHL, a protein 
involved in proteasomal degradation of HIFs, is frequently 
mutated in renal cancers and consequently, this results in 
HIF accumulation leading to the induction of pro-angi-
ogenic factors and malignant progression [63]. HIF-1A 
promotes the amplitude of PER2 rhythms in renal cancer 
[64]. Considering the high degree of sequence similari-
ties between HIF-1A ([A/G]CGTG) and BMAL1 (CAC​
GTG​) binding motifs, it is not surprising that HIF-1A and 
BMAL1 co-occupy ~ 30% of all genomic loci [27]. Indeed, 
we observed significant negative correlations between 
ClockLoss and HIF-1A targets (CA9, VEGFA and LDHA) 
in glioma (Fig. 6). Reduction in tumour protective effects 
of ClockLoss coupled with elevated HIF signalling could, 
together, help explain the significant increase in mortal-
ity rates in glioma patients (Fig. 6). These results are sup-
ported by another study on breast cancer where hypoxia is 
negatively correlated with PER2 expression and promotes 

PER2 degradation to stimulate epithelial-mesenchymal 
transition [65].

Conclusion
One of the key strengths of the comparative approach 
we took was that it reveals non-mutually exclusive onco-
genic and tumour suppressive properties of the circadian 
clock. Genes that confer tumour attenuating effects in 
one cancer type could very well play an opposing role in 
another cancer type. We confirmed prognostic values of 
two circadian gene sets in seven cancer cohorts including 
difficult-to-treat cancers such as glioma and pancreatic 
cancer; these genes may be prioritised as new therapeu-
tic targets. Although prospective analysis is needed, we 
anticipate that our findings will provide an important 
framework for cancer chronotherapy initiatives [66–68] 
by enabling patient stratification based on circadian bio-
markers to enhance therapeutic success. Moreover, ther-
apeutic modification of the clock should help lessen the 
damage caused by tumour hypoxia. Likewise, it will be 
important to investigate whether manipulating hypoxia 
levels could improve adjuvant chronotherapy when used 
in combination with first-line treatments.
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