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Genetic polymorphisms of histone 
methyltransferase SETD2 predicts prognosis 
and chemotherapy response in Chinese acute 
myeloid leukemia patients
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Abstract 

Background:  SETD2, the single mediator of trimethylation of histone 3 at position lysine 36, has been reported asso-
ciated with initiation progression and chemotherapy resistance in acute myeloid leukemia (AML). Whether polymor-
phisms of SETD2 affect prognosis and chemotherapy response of AML remains elusive.

Methods:  Three tag single-nucleotide polymorphisms (tagSNPs) of SETD2 were genotyped in 579 AML patients 
by using Sequenom Massarray system. Association of the SNPs with complete remission (CR) rate after Ara-C based 
induction therapy, overall survival (OS) and relapse-free survival (RFS) were analyzed.

Result:  Survival analysis indicated that SETD2 rs76208147 TT genotype was significantly associated with poor 
prognosis of AML (TT vs. CC + CT hazard ratio: HR = 1.838, 95% confidence interval (CI) 1.005–3.360, p = 0.048). After 
adjusting for the known prognostic factors including risk stratification, age, allo-SCT, WBC count and LDH count, 
rs76208147 TT genotype was still associated with OS in the multivariate analysis (TT vs. CC + CT HR = 1.923, 95% CI 
1.007–3.675, p = 0.048). In addition, after adjusting by other clinical features, patients with rs4082155  allele G carries 
showed higher rate of complete remission which indicated by CR rate (AG + GG vs. AA odd ratio (OR) = 0.544, 95% CI 
0.338–0.876, p = 0.012).

Conclusions:  SETD2 genetic polymorphism is associated with AML prognosis and chemotherapy outcome, suggest-
ing the possibility for development in AML diagnostics and therapeutics towards SETD2.
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Background
Acute myeloid leukemia (AML) is a genetically and 
clinically heterogeneous disorder featured by the 
incomplete maturation of hematopoietic stem cell and 
the reduction of normal blood counts [1]. Despite great 
efforts have been made in new therapy development, 

chemotherapy with cytarabine and anthracycline 
remains the current treatment protocols in AML, 
which conduct complete remission (CR) rates of 
70–80% [2]. However, more than half of adult patients 
and around 80% of elder patients develop into primary 
refractoriness, relapse, or treatment-related mortal-
ity [3]. In addition, tremendous individual variabil-
ity in prognosis varies greatly among patients: 5-year 
survival varies from 18 to 82%, and relapse rate var-
ies from 33 to 80%, which can be partly explained by 
disease subtype, age, somatic mutations, gene expres-
sion abnormalities, and other molecular alterations. 
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Genetic variants in those, such as in NPM1, FLT3-ITD, 
CEBPA, WT1 have been verified to be marks of prog-
nosis [4–6], however, these factors can only explain 
part of individual variants for AML.

Recent studies have underscored the significant role 
of epigenetic mechanisms in chemotherapy sensitivity 
and disease prognosis of AML. Such as DNA (cyto-
sine-5)-methyltransferase 3 alpha (DNMT3A) R882 
mutations, which give rise to focal hypomethylation 
phenotype, were associated with inferior prognosis in 
AML [7, 8]. Mutations in Ten–eleven-translocation 
(TET)-enzymes (TET2), which catalyzed the oxida-
tion of 5-methylcytosine to 5-hydroxymethylcytosine 
(5hmC), confers unfavorable prognostic factor in AML 
patients with intermediate-risk cytogenetics [9].

SETD2 belongs to a superfamily of lysine methyl-
transferase, which is a solely H3K36 trimethylation-
methyltransferase in mammals. H3K36 trimethylation 
has also been implicated in a diverse of cellular biology 
functions, including transcriptional activation, alter-
native splicing, dosage compensation, DNA replica-
tion and repair, and homologous recombination [10]. 
SETD2 is a 2-hit tumor suppressor gene, for loss-of-
function mutations and deletions were detected in a 
series of tumor types, most notably in clear cell renal 
cell cancer (ccRCC) [11] and high-grade gliomas [12] 
and subsequently presents in a subset of patients with 
acute lymphoblastic leukemia [13] and acute myeloid 
leukemia [14]. Most of mutations or abnormalities 
of SETD2 has been reported to be associated with a 
worse outcome among patients with ccRCC suggested 
a protection value of SETD2 [15]. Moreover, a selec-
tive enrichment of SETD2 inactivating mutation in 
relapsed acute leukemia indicated an association with 
chemoresistance [16]. However, whether single-nucle-
otide polymorphisms (SNPs) in SETD2 related to dis-
ease progression and drug response remains unknown.

In the present study, we performed the candidate 
gene association study to find out whether SETD2 
SNPs correlated with AML survival and chemotherapy 
response, which will explore factors leading to individ-
ual difference in AML prognosis and will provide new 
directions for new treatment.

Materials and methods
Clinical analysis sample
579 Chinese Han patients were recruited from the 
Department of Hematology of Xiangya Hospital from 
May 2009 to December 2017. All patients were diagnosed 
and classified based on the FAB criteria. The exclusion 
criteria were (1) M3 subtype, because of its specific treat-
ment and outcomes. (2) Patients with serious diseases or 
other cancers, secondary leukemia and those with miss-
ing data (e.g. cytogenetics or molecular abnormalities). 
(3) Patients failed to follow-up were eliminated in this 
study. The detail therapeutic protocols were described 
elsewhere [17–19]. Complete remission (CR) was used 
to assess drug response. CR was defined according to 
the international recommendations, including no clini-
cal presentation of leukemia, no evidence of extramedul-
lary disease, bone marrow blasts < 5%, neutrophils counts 
> 1.0 × 109/L, and platelets counts > 100 × 109/L after 
chemotherapy [20]. Overall survival (OS) and relapse 
free survival (RFS) were used as disease outcomes and 
events were defined as any relapse or death in agreement 
with the criteria as previously described. All survival end 
points were censored at the date of last follow-up when 
relapse or death was not observed [21].

This study was approved by the Ethics Commit-
tee of Institute of Clinical Pharmacology of Central 
South University (Register No. CTXY-120025-2). Clini-
cal study admission (Registration Number: ChiCTR-
PPC-14005297) was approved by the Chinese Clinical 
Trial Register. Written informed consent was obtained 
from each patient in accordance with the recommen-
dations of the Declaration of Helsinki and its later 
amendments.

TagSNPs selection and genotyping and haplotypes
The following criteria were used to select the tagSNPs 
of SETD2. First, we chose a minor allele frequency 
(MAF) > 0.1 in the south Chinese population as the tar-
get according to 1000 human genomes database (https​
://www.ncbi.nlm.nih.gov/varia​tion/tools​/1000g​enome​
s/). Then we examined linkage disequilibrium analysis by 
setting r2 threshold at 0.8. Three tagSNPs with missense 
mutation were selected to represent each block (Table 1, 
Additional file  1: Figure S1). Polyphen database (http://
genet​ics.bwh.harva​rd.edu) was used to predict potential 

Table 1  Features of three selected tag SNP from SETD2 

SNP Position Alleles Variation MAF Chi square pHW

rs4082155 3:47083895 A > G Exon12 (Leu 1962 Pro) 0.47 0.21 0.90

rs6767907 3:47121171 G > A Exon3 (Asn 1155 Lys) 0.35 0.44 0.80

rs76208147 3:47121396 C > T Exon3 (Met 1080 Ile) 0.13 5.37 0.07

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
http://genetics.bwh.harvard.edu
http://genetics.bwh.harvard.edu
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structural and functional change of the candidate SNPs 
and expression quantitative trait locus (eQTL) database 
(https​://gtexp​ortal​.org/home/) was used to predict the 
potential influence of the SNPs on expression the corre-
sponding genes (Additional file 2: Figure S2).

Genomic DNA was extracted from peripheral blood 
cells using E.Z.N.A.VR SQ Blood DNA Kit II (Omega 
Bio-Tek) according to the supplied protocol. SNP geno-
typing was conducted by allele-specific matrix-assisted 
laser desorption/ionization-time-of-flight mass spec-
trometry (Sequenom, San Diego, CA). About 10% of the 
samples were randomly selected to validate the geno-
types by Sanger sequencing. The results reached to a 
100% compliance. Three tagSNPs of SETD2, (rs4082155, 
rs6767907, rs76208147) were finally selected for further 
study.

Statistical analysis
Statistical analysis was carried out by the software SPSS 
version 20.0 (SPSS INc. Chicago, IL, USA). χ2 test was 
used to determine whether genotype distribution of the 
SNPs were in agreement with Hardy–Weinberg equi-
librium. The Kaplan–Meier curves and univariate Cox 
regression analysis were depicted to illustrate the pro-
files of OS/RFS. The independent significant factors were 
adjusted by multivariable analysis, the Cox proportional 
hazards model, including clinical factors and SETD2 
SNPs. Sensitivity analyses were conducted on CR rate. 
Logistic regression were used to evaluate the associa-
tion between genotypes and chemotherapy response. A 
limited backward-selection procedure used to adjust the 
potential confounding covariates, including clinical fac-
tors. Statistical significance was accepted when p < 0.05 
and defined two sides.

Results
Baseline features and overall CR status of the AML patients
The basic and clinical characteristics of the 579 AML 
patients in this study were recorded in Table  2. The 
median age of the patients was 43 (range 14–79) years 
old. Among these patients, 313 were male and 266 were 
female. The median number of WBC was 14.6 × 109/L 
and the mean serum level of LDH was 363.5 U/L at diag-
nosis. Other important clinical information was also 
summarized in Table  2. All patients were classified into 
seven subtypes on the basis of FAB criteria. M3 subtype 
ones were ruled out because of its specific therapeutic 
strategy and outcome. M2 was the most common sub-
type (45.25%), followed by M5 (19.69%). According to 
cytogenetics and molecular abnormalities, 90, 262, and 
112 patients were stratified as low, intermediate and high 
risk, respectively. A total of 368 patients (63.6%) achieved 
CR after one or two courses of chemotherapy, and CR 

could not be evaluated accurately for 33 (5.7%) patients 
due to insufficiencies in clinical evidence. Eighty-four 
(14.51%) patients received hematopoietic stem cell trans-
plantation. All patients were followed up with a median 
follow-up period of 554 days (range 17–4742 days).

SETD2 rs76208147 is associated with overall survival 
of AML patients
Kaplan–Meier survival analysis of this series showed 
that SETD2 rs76208147 rare homozygous genotype TT 
were associated with a worse survival compared to the 
common homozygous genotype CC (p = 0.024; Fig.  1). 
Because there was no significant difference of overall 
survival (OS) between patients with CC and CT, we com-
bined the C allele carriers into one group to establish a 

Table 2  Basic and  clinical characteristics of  the  AML 
patients in this study (n = 579)

Allo-SCT allogeneic hematopoietic stem cell transplantation, AML acute 
myeloid leukemia, FBA subtypes French–Britain–American subtypes, LDH lactate 
dehydrogenase, RBC red blood cell, WBC white blood cell
a  Data represents median and the range

Characteristics Value

Age at diagnosis, median (range)a 43 (14–79)

Gender

 Male 313 (54.1)

 Female 266 (45.9)

WBC count at diagnosis (109/L)a 14.6 (0.5–436.2)

RBC count at diagnosis (109/L)a 2.2 (0.62–4.98)

Hemoglobin at diagnosis (g/L)a 72 (27–155)

Platelets count at diagnosis (109/L)a 34 (2–1344)

Neutrophil count at diagnosis (109/L)a 2 (0–250)

LDH at diagnosis (U/L)a 363.5 (17.0–9289.0)

Bone marrow blasts at diagnosis (%)a 71.0 (17.5–99.0)

Peripheral blood blasts at diagnosis (%)a 60.0 (5.0–96.0)

FBA subtype (n, %)

 M0 1 (0.17)

 M1 25 (4.23)

 M2 262 (45.25)

 M4 98 (16.92)

 M5 114 (19.69)

 M6 12 (2.07)

 M7 1 (0.17)

 Unknown 66 (11.40)

Allo-SCT (n, %)

 Yes 84 (14.51)

 No 495 (85.49)

Cytogenetics and molecular stratification

 Low risk (n, %) 90 (15.54)

 Intermediate risk (n, %) 262 (45.25)

 High risk (n, %) 112 (19.34)

 Unknown 115 (19.86)

https://gtexportal.org/home/
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recessive model. In the recessive model, rs7620147 TT 
genotype showed a significant poorer OS than individu-
als with C alleles (p = 0.023; Fig.  1). Univariate results 
showed that SETD2 rs76208147 TT genotype was asso-
ciated with a worse OS compared with the carriers of 

CC genotype (TT vs. CC hazard ratio: HR = 1.836, 95% 
confidence interval (CI) 1.001–3.369, p = 0.049; Table 3). 
As compared with patients carrying rs76208147 C 
allele (CC + CT), hazard ratio of OS for patients with 
TT genotype was 1.838 (95% CI 1.005–3.360, p = 0.048; 
Table 3). The median overall survival time of the patients 
with CC + CT genotypes was 885  days (95% CI 697–
1073  days), which was significantly longer than those 
with TT genotype (Median OS = 395  days, 95% CI 
71–718 days).

After adjusting for the known prognostic factors 
including risk stratification, age, allo-SCT, WBC count 
and LDH count (adjusted p < 0.001, Additional file  3: 
Table  S1), rs76208147 TT genotype was still associ-
ated with worse OS in the multivariate analysis (TT vs. 
CC + CT HR = 1.923, 95% CI 1.007–3.675, p = 0.048, 
Table 3).

However, other tagSNPs, rs4082155 and rs6767907 did 
not associated with OS of AML patients in univariate 
analysis (Table 3). When RFS was used for endpoint, no 
significantly tagSNPs of SETD2 were observed through 
univariate and multivariate analysis.

Candidate SNPs are associated with AML Ara‑C based 
chemotherapy
The CT genotype of rs76208147 showed lower chem-
otherapy resistant risk compare with CC genotype 
(OR = 0.567, 95% CI 0.35–0.919, p = 0.021, Table  4). 
The CR rate were 64.7% and 76.4% for CC and CT gen-
otypes, respectively. This SNP did not passed the cor-
rection by adjusted for age, risk stratification, LDH and 
WBC (adjusted p < 0.05, Additional file  4: Table  S2) in 
logistic regression analysis. However, when rs76208147 

CTvsCC p=0.739 HR=1.048
TTvsCC p=0.024 HR=2.005
TTvsCT p=0.047 HR=0.523
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Fig. 1  Comparison of overall survival (OS) in AML patients among 
genotypes of SETD2 rs76208147

Table 3  Univariate and multivariate Cox regression analysis of SNPs associated with AML overall survival (OS)

*p < 0.05
a   Adjusted for risk stratification, age, allo-SCT, WBC count and LDH count

Genotype n Mean ± SE (day) Median (range, day) HR (95% CI) p HR (95% CI)a pa

rs4082155

 AA 148 1897 ± 293 926 (663–1189) 1.00 (reference)

 AG 262 1264 ± 81 721 (478–964) 1.148 (0.867–1.520) 0.335 1.074 (0.797–1.447) 0.638

 GG 120 1300 ± 114 1015 (599–1431) 1.014 (0.724–1.420) 0.989 0.989 (0.690–1.418) 0.953

rs6767907

 GG 65 1717 ± 224 817 (608–1026) 1.00 (reference)

 GA 236 1319 ± 85 735 (356–1114) 0.913 (0.714–1.167) 0.466 1.243 (0.882–1.880) 0.302

 AA 229 1338 ± 162 1137 (411–1862) 1.047 (0.880–1.246) 0.602 1.261 (0.833–1.910) 0.273

rs76208147

 CC 406 1844 ± 195 817 (563–1071) 1.00 (reference)

 CT 109 1175 ± 101 1000 (697–1302) 1.001 (0.751–1.334) 0.995 1.131 (0.83–1.54) 0.428

 TT 15 601 ± 146 395 (71–718) 1.836 (1.001–3.369) 0.049* 1.736 (0.84–3.58) 0.135

 CC + CT 515 1806 ± 182 885 (697–1073) 1.00 (reference)

 TT 15 601 ± 146 395 (71–718) 1.838 (1.005–3.360) 0.048* 1.923 (1.007–3.675) 0.048*
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TT genotype was taken into account, the p value failed 
to meet the statistically difference (OR = 0.500, 95% CI 
0.14–1.82, p = 0.293). This may result from the small 
sample size, for only three patients involved in the non-
CR group with TT genotype. To be noted, homozygous 
carriers of the allele T has the same tendency with CT 
genotype indicated by the percentage of CR patients in 
TT genotype is much higher than CC genotype.

For the SETD2 rs4082155, allele G carriers showed sig-
nificant higher sensitivity of chemotherapy than AA car-
riers (GG + AG vs. AA: OR = 0.677, 95% CI 0.460–0.997, 
p = 0.048) in the dominant model. Logistic regression 
analysis showed significant associations of risk stratifica-
tion, age, pretreatment WBC counts and LDH levels with 
non-CR risk (Additional file 4: Table S2). When adjusted 
by these risk factors, notably, rs4082155 allele G carri-
ers was still significantly affected chemotherapy sensi-
tivity. Compared with AA genotype, both AG and GG 
genotype exhibited lower risk of chemoresistance (AG vs. 
AA: OR = 0.562, 95% CI 0.340–0.931, p = 0.025; GG vs. 
AA: OR = 0.501, 95% CI 0.265–0.946, p = 0.033, Table 4). 
After combining AG and GG genotypes into one group 
to create a dominant model, rs4082155 allele G carriers 
indicated more significant higher chemotherapy sensitiv-
ity than AA genotype (AG + GG vs. AA: OR = 0.544, 95% 
CI 0.338–0.876, p = 0.012). In the carriers of three geno-
types of rs4082155, the ratio of complete remission was 
61.1% (AA), 69.2% (AG), and 71.5% (GG) respectively.

Haplotype analysis
We further studied the haplotype of these three SNPs 
of SETD2 using PHASE 2.0 software and analyzed its 

association with clinical outcome and chemotherapy. 
Three haplotypes with frequencies higher than 5% were 
selected. The frequencies of haplotypes AGC (haplotype 
1), GAC (haplotype 2), GGT (haplotype 3) were 53.7%, 
34.4%, 11.9%, respectively. Haplotype GGT with one or 
two copy number presents better chemotherapy response 
compared with no copy number (OR: 0.576, 95% CI 
0.38–0.88, p = 0.01, Table  5). No significant association 
was observed between chemotherapy and other haplo-
types. The association between these three haplotypes 
and OS/RFS was analyzed by log-rank test in univariate 
analysis. However, no haplotype can be a predictable fac-
tor for OS or RFS of patients.

Discussion
In this study, we studied the association between SETD2 
tagSNPs with chemosensitivity response to Ara-C 
baseds therapy as well as disease prognosis in Chinese 
AML patients for the first time. We found that SETD2 
rs76208147 TT genotype predicted worse OS in the 

Table 4  Comparison of CR rate among genotypes after two courses of Ara-C based chemotherapy

*p < 0.05
a   Adjusted for age, risk stratification, LDH and WBC

Genotype Total (n) CR (n, %) Non-CR (n, %) OR (95% CI) p OR (95% CI)a pa

rs4082155

 AA 157 96 (61.1%) 61 (38.9%) 1.00 (reference) 1.00 (reference)

 AG 266 184 (69.2%) 82 (30.8%) 0.701 (0.464–1.060) 0.092 0.562 (0.340–0.931) 0.025*

 GG 123 88 (71.5%) 35 (28.5%) 0.626 (0.377–1.039) 0.07 0.501 (0.265–0.946) 0.033*

 AA 157 96 (61.1%) 61 (38.9%) 1.00 (reference) 1.00 (reference)

 AG + GG 389 272 (69.9%) 117 (30.1%) 0.677 (0.460–0.997) 0.048* 0.544 (0.338–0.876) 0.012*

rs6767907

 GG 237 155 (65.4%) 82 (34.6%) 1.00 (reference) 1.00 (reference)

 GA 242 171 (70.7%) 71 (29.3%) 0.698 (0.396–1.230) 0.213 0.668 (0.323–1.379) 0.275

 AA 67 42 (62.7%) 25 (37.3%) 0.889 (0.506–1.560) 0.681 1.126 (0.548–2.317) 0.746

rs76208147

 CC 422 273 (64.7%) 149 (35.3%) 1.00 (reference) 1.00 (reference)

 CT 110 84 (76.4%) 26 (23.6%) 0.567 (0.350–0.919) 0.021* 0.600 (0.342–1.053) 0.075

 TT 14 11 (78.6%) 3 (21.2%) 0.500 (0.137–1.819) 0.293 0.545 (0.114–2.604) 0.447

Table 5  Haplotype analysis associated with chemosensitivity 
in SETD2 polymorphism

Haplotype CR (n, %) NR (n, %) χ2 p OR (95% CI)

AGC​ 188 (50.9%) 102 (56.6%) 2.871 0.090 0.803 (0.623–
1.035)

GAC​ 127 (34.3%) 62 (34.5%) 0.000 0.998 1.000 (0.767–
1.303)

GGT​ 51 (13.9%) 16 (8.4%) 6.679 0.010 1.738 (1.138–
2.652)
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AML patients, while the SETD2 rs4082155 AA genotype 
were associated with chemoresistance after Ara-C based 
therapy. Moreover, haplotype with one or two copies of 
GGT showed better chemotherapy response compare 
with individuals with no copies.

The SETD2 gene encodes a 230  kDa protein that is 
non-redundantly responsible for trimethylation of lysine 
36 on histone H3 (H3K36me3), a critical mark that is 
involved in various important cellular processes such 
as transcriptional elongation, alteration splicing, mis-
match repair regulation and homologous recombina-
tion repair [22–27]. Recently, SETD2 was identified as 
tumor suppressor, as loss-of-function mutation with 
SETD2 has been discovered in various tumors, including 
ccRCC, lung adenocarcinoma, gliomas, AML, ALL, and 
mastocytosis [12, 28–32]. In addition, loss-of-function 
mutation in SETD2 and/or decreased H3K36me3 levels 
have been linked to poor clinical prognosis in lung can-
cer and ccRCC [15, 33]. In AML, SETD2 mutations are 
recurrent events and are associated with chromosomal 
abnormalities that are known to be driver mutations in 
leukemogenesis, such as MLL-rearrangement [14]. In 
the presence of chromosomal translocation, such as 
MLL-rearrangement, knockdown of SETD2 promotes 
initiation as well as progression of tumor by expedit-
ing the potential of self-renewal of leukemic stem cell 
[14]. Notably, under normal hematopoietic condition, 
SETD2 is required to maintain self-renewal capability of 
hematopoietic stem cell, SETD2-deleted HSCs gives rise 
to malignant transformation eventually [34]. Consistent 
with our findings, SETD2 rs76208147 TT genotype indi-
cates worse prognosis of AML patient, which underlying 
mechanism warrants further investigation.

Recently, it is well accepted that SETD2 was associ-
ated with chemotherapy sensitivity. Studies have identi-
fied the enrichment of mutations in SETD2 in relapsed 
acute lymphoblastic leukemia and MLL-rearranged 
acute leukemia [16]. In addition, SETD2 mutations led 
to resistance to DNA-damaging agents, cytarabine, 
6-thioguanine, doxorubicin, and etoposide, but not to a 
non-DNA damaging agent via impairing DNA damage 
recognition [35]. Moreover, acquired loss-of-function 
mutations in SETD2 enable metastatic non-small cell 
lung cancer to resist to cisplatin [36]. All of these reports 
suggested that SETD2 exerted a subtle impact on the 
DNA mismatch repair (MMR) machinery [37]. It has 
been reported that MSH6, which is an essential compo-
nent of the MMR machinery localizes to chromatin by 
binding to the H3K36 trimethyl mark that SETD2 makes. 
SETD2 knockdown has been shown to give rise to mis-
localization of MSH6 and microsatellite instability and a 
mutator phenotype in several cell types. There are at least 

two possible explanations to link SETD2 inactivation 
to the survival of leukemia cell. First, a mutator pheno-
type induced by SETD2 inactivation could increase the 
mutational diversity and thus, adaptability of the leuke-
mia, leading to clonal survival. Two, since intact MMR is 
important for triggering apoptosis and/or cell cycle arrest 
in response to many DNA damaging chemotherapies, 
SETD2 loss may lead to chemotherapy tolerance [35]. To 
be mentioned, the function of SETD2 is also involved in 
homologous recombination which deficiency have gen-
erally led to sensitivity to DNA-damaging agents, such 
as cisplatin [24]. That being said, the impact of SETD2 
alteration on homologous recombination require further 
investigation.

SETD2 was discovered because of its capability to cata-
lyze H3K36 trimethyltransferase, and major researches 
have been confined to its role of histone modification. 
But, in recent studies it has become apparent that SETD2 
exerts diverse functions that unrelated to histone modi-
fication. For instance, it has been reported that SETD2 
directly mediates STAT1 methylation on lysine 525, 
which amplifies the antiviral immunity of IFN-a [38], 
and a-tubulin methylation on lysine 40, which maintains 
genomic stability through microtubule methylation [39]. 
Taken together, the contributions of these additional 
functions of SETD2 on prognosis and treatment of AML 
remain to be fully elucidated.

There are several limitations in the present study. First, 
the outcomes of our study failed to undergo multiple 
test adjusting, P values lost statistical significance when 
Bonferroni correction was performed possibly due to the 
limited sample size included in our study. Second, Ara-C 
response is affected by various genetic factors, the contri-
bution of single unique gene to the drug exposure might 
be limited.

Conclusion
In conclusion, our study showed for the first time that 
SNPs in epigenetics modulator genes such as SETD2 are 
associated with drug sensitivity to Ara-C based chemo-
therapy and prognosis in Chinese AML patients. As the 
factors applicable for prediction of AML outcome are 
still limited, our findings provide insightful information 
that SNPs in epigenetic modulator may be considered 
as potential markers in evaluation of AML outcome. 
For SETD2 involving in tumor initiation, progression as 
well as chemosensitivity through different mechanism. 
Functional studies are now warranted to illustrate the 
exact biological function of SETD2 in AML, but our data 
add to a growing body of evidence suggesting a role for 
SETD2 and H3K36me3 in AML that may be developed 
for the exploitation of novel therapeutic target.
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